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Abstract. In a computational grid, at time t, the task is to allocate the user defined jobs efficiently by meeting the 

deadlines and making use of all the available resources. In the past, objectives were combined and the problem is very 

often simplified to a single objective problem.  In this paper, we formulate a novel Evolutionary Multi-Objective 

(EMO) approach by using the Pareto dominance and the objectives are formulated independently. We report some 

preliminary experiments and the performance of the EMO approach is compared with simulated annealing and 

particle swarm optimization techniques. Empirical results indicate that the proposed EMO approach is very efficient. 

1. INTRODUCTION 

Grid Computing (GC) is the ultimate framework to meet the growing computational demands in the new 

millennium [1][3]. To meet the growing needs of the computational power, geographically distributed resources 

need to be logically coupled together to make them work as a unified resource. Computing resources are 

geographically distributed under different ownerships each having their own access policy, cost and various 

constraints. Every resource owners will have a unique way of managing and scheduling resources and the grid 

schedulers are to ensure that they do not conflict with resource owner's policies. In the worst-case situation, the 

resource owners might charge different prices to different grid users for their resource usage and it might vary 

from time to time. Traditionally, most of the schedulers followed system centric approach in resource selection 

and often completely ignore the user requirements.  

Job scheduling is known to be NP-complete, therefore the use of heuristics is the defacto approach in 

order to cope in practice with its difficulty. Single heuristic approaches for the problem include Local Search [6], 

Simulated Annealing [5][7] and Tabu Search [5]. Genetic algorithms for grid scheduling are addressed in several 

works [5] [8]. Ritchie and Levine [9] combined an Ant Colony Optimization algorithm with a Tabu search 

algorithm for the problem. Ye et al. [4] formulated a multi-objective optimization approach to simultaneously 

optimize the completion time and the total execution cost. Other approaches for the problem include the use of AI 

techniques [10], Particle Swarm Optimization [1] Fuzzy based scheduling [11] and economic-based approaches 

[2]. In an economic-based approach an optimal schedule often relies on a trade off between cost and the user 

specified deadline.  

Recently there has been a growing interest in Multi-Objective Evolutionary Algorithm (MOEA) algorithms 

which combines two major disciplines: evolutionary computation and the theoretical frameworks of multi-criteria 

decision making. Even though some real world problems can be reduced to a matter of single objective very often 

it is hard to define all the aspects in terms of a single objective. Defining multiple objectives often gives a better 

idea of the task. In Section 2, we introduce the grid scheduling problem and in Section 3 we present the proposed 

multiobjective approach for the problem. In Section 4, we demonstrate how the MOEA approach can be used to 

formulate scheduling independent tasks in a grid environment followed by some conclusions. 



2. GRID RESOURCE MANAGEMENT AND SCHEDULING ISSUES 

 

The grid resource broker is responsible for resource discovery, deciding allocation of a job to a particular 

resource, binding of user applications (files), hardware resources, initiate computations, adapt to the changes in 

grid resources and present the grid to the user as a single, unified resource. It finally controls the physical 

allocation of the tasks and manages the available resources constantly while dynamically updating the grid 

scheduler whenever there is a change in resource availability. When the computing power demand is much 

greater than the available resources only dynamic scheduling will be useful. To conceptualize the problem as an 

algorithm, we need to dynamically estimate the job lengths from user application specifications or historical data. 

We assume that the jobs and resources are arranged in an ascending order (and dynamically updated) according 

to the job lengths and processor speeds. The information related to job lengths may be derived from historical 

data, some kind of strategy defined by the user or through load profiling. 

To formulate the problem, we consider Jn independent user jobs n={1,2,….N} on Rm heterogeneous 

resources m={1,2,….,M} with an objective of minimizing the completion time and utilizing the resources 

effectively. The speed of each resource is expressed in number of cycles per unit time, and the length of each job 

in number of cycles. Each job Jn has processing requirement Pj cycles and resource Rm has speed of Si 

cycles/second. Any job Jn has to be processed in resource Rm, until completion.  

To formulate our objective, define Cj as the completion time the last job j finishes processing. Define 

Cmax = max {Cj , j=1,…,N}, the makespan and ΣCj , as the flowtime. An optimal schedule will be the one that 

optimizes the flowtime and makespan [8]. The conceptually obvious rule to minimize ΣCj is to schedule Shortest 

Job on the Fastest Resource (SJFR). The simplest rule to minimize Cmax is to schedule the Longest Job on the 

Fastest Resource (LJFR). Minimizing ΣCj asks the average job finishes quickly, at the expense of the largest job 

taking a long time, whereas minimizing Cmax, asks that no job takes too long, at the expense of most jobs taking a 

long time. In summary, minimization of Cmax will result in maximization of ΣCj. 

3. EVOLUTIONARY MULTIOBJECTIVE APPROACH 

Several optimization criteria can be considered for this problem, but in this paper, we consider a bi-objective 

minimization problem with the task of minimization of makespan and flowtime. The fundamental criterion is that 

of minimizing the makespan, that is, the time when the last task is finished. A secondary criterion is to minimize 

the flowtime of the grid system that is, minimizing the sum of completion times of all the tasks. The most 

common approaches of a multiobjective optimization problem use the concept of Pareto dominance as defined 

below: 

Definition (Pareto dominance) 

Consider a maximization problem. Let x, y be two decision vectors (solutions) from the definition domain. 

Solution x dominate y (also written as x f  y) if and only if the following conditions are fulfilled: 

(i) fi(x) ≥ fi(y); ∀i = 1, 2,…, n;  

(ii) ∃ j∈{1, 2,…,n} :  fj(x) > fj(y). 

That is, a feasible vector x is Pareto optimal if no feasible vector y can increase some criterion without causing a 

simultaneous decrease in at least one other criterion. Multiobjective evolutionary algorithms can yield a whole set 

of potential solutions, which are all optimal in some sense. The main challenge in a multiobjective optimization 

environment is to minimize the distance of the generated solutions to the Pareto set and to maximize the diversity 

of the developed Pareto set. A good Pareto set may be obtained by appropriate guiding of the search process 

through careful design of reproduction operators and fitness assignment strategies. To obtain diversification 

special care has to be taken in the selection process. Special care is also to be taken care to prevent non-

dominated solutions from being lost. 

 



 

3.1. Solution representation and genetic operators 

In the proposed multiobjective approach, the solution is represented as a string of length equal to the number of 

jobs. The value corresponding to each position i in the string represent the machine to which job i was allocated.  

Consider we have 10 jobs and 3 machines. Then a chromosome and the job allocation can be represented as 

follows: 

 

1 2 3 2 1 1 3 2 1 3 

 

 
Machine 1 

 

Machine 2 

 

Machine 3 

 

Mutation and crossover were used as operators. Binary tournament selection was used in the implementation. The 

Pareto dominance concept is used in order to compare 2 solutions. The one which dominates is preferred. In case 

of nondominance, the solution whose jobs allocation between machines is uniform is preferred. This means, there 

will not be idle machines as well as overloaded machines. The evolution process is similar to the evolution 

scheme of a standard genetic algorithm for multiobjective optimization. Reader is advised to refer [12] for more 

details about EMO approach. 

4. EXPERIMENT RESULTS 

As a preliminary study, two sets of scheduling experiments were performed. Results obtained by MOEA are 

compared with a simple Genetic algorithm (GA), Simulated Annealing (SA) and Particle Swarm Optimization 

(PSO). Specific parameter settings for all the considered algorithms are described in Table 1. Each experiment 

was repeated 10 times with different random seeds. Each trial (except for MOEA) had a fixed number of 50 ∗m∗ 
n iterations (m is the number of the grid nodes, n is the number of the jobs). The makespan values of the best 

solutions throughout the optimization run were recorded. In a grid environment, the main emphasis was to 

generate the schedules as fast as possible. So the completion time for 10 trials was used as one of the criteria to 

improve their performance. First we tested a small scale job scheduling problem involving 3 nodes and 13 jobs 

represented as (3,13). The node speeds of the 3 nodes are 4, 3, 2 CPUT, and the job length of 13 jobs are 

6,12,16,20,24,28,30,36,40,42,48,52,60 cycles, respectively. The results (makespan) for 10 runs were as follows: 

• GA: {47, 46, 47, 47.3333, 46, 47, 47, 47, 47.3333, 49}, average value = 47.1167.  

• SA: {46.5, 46.5, 46, 46, 46, 46.6667, 47, 47.3333, 47, 47} average value = 46.6.  

• PSO : {46, 46, 46, 46, 46.5, 46.5, 46.5, 46, 46.5, 46.6667}, average value = 46.2667.  

• MOEA: {46, 46, 46, 46, 46, 46, 46, 46, 46, 46}, average value = 46.  

The optimal result for (3,13) makespan is supposed to be 46 and the MOEA approach gave 46. The average total 

flow time obtained = 138. While GA provided the best results twice, SA and PSO provided the best result three 

and five times respectively. MOEA approach is obtaining the best result in each of the considered runs.  

 

Table 1. Parameters used by the algorithms considered in experiments 

Job 1 Job 5 Job 6 Job 9 

Job 2 Job 4 Job 8 

Job 3 Job 7 Job 10 



Algorithm Parameter Value 

GA 

Population size 

Crossover probability  

Mutation probability 

Scale for mutations  

20 

0.8 

0.02 

0.1 

SA 

Number operations before temperature adjustment  

Number of cycles  

SA temperature reduction factor 

Vector for control step of length adjustment 

Initial temperature 

20 

10 

0.85 

2 

50 

PSO 

Swarm size 

PSO Self-recognition coefficient c1 1.49 

Social coefficient c2 1.49 

Inertia weight w  

20 

1.49 

1.49 

0.9 → 0.1 

MOEA 

Population size 

Number of generations 

Mutation probability 

Crossover probability 

100 (500 for the second experiment) 

200 (1000 for the second experiment) 

1 (0.9 for the second experiment) 

1 (0.9 for the second experiment) 

 

Further, we tested the algorithms for the case (10, 50). All the jobs and the nodes were submitted at one time. The 

average makespan values for 10 trials are illustrated in Table 2. Although the average makespan value of SA was 

better than that of GA for (3,13), the case was reversed for this second case. Using the MOEA approach, the total 

average flow time obtained is = 348.07. Figures 1 (a) and (b) illustrate the makespan and flow time given by 31 

non-dominated solutions from the final population. The user would have the option to go for a better flow time 

solution at the expense of a non-optimal makespan.  As evident from the Figure, the lowest flow time was 343.72 

with the makespan of 44.75 for solution no. 27. 

 

Table 2. Performance comparison for the case (10, 50). 

Algorithm Average makespan 

GA 38.04 

SA 41.78 

PSO 37.66 

MOEA 36.68 

 
Figure 1. (a) Makespan and (b) Flowtime from 31 non-dominated solutions in the final population for (10, 50) 

 

Results obtained by GA, SA and PSO were adapted from [1]. As evident from the data obtained above, MOEA 

have given excellent results when compared to other techniques modeled using a single objective approach. Due 

to space limitations, more results (also Pareto fronts etc.) could not be presented in this paper.  



5. CONCLUSIONS 

The grid scheduling problem involves simultaneous optimization of several objectives including completion time, 

resource utilization, QoS metrics, costs, reliability factors etc. So, by its nature, it is a multiobjective optimization 

problem. All the existing approaches for dealing with grid scheduling problem transform this problem into a 

single objective problem (either by using weighted sum method or other similar methods). In this paper a new 

multiobjective approach for grid scheduling problem is proposed. The results obtained by EMOA are compared 

with the results obtained by three well known global optimization techniques namely simulated annealing, 

genetic algorithm and particle swarm optimization. Even though the MOEA approach obtained better results for 

the considered test problems, more conclusions could be drawn only after extensive validation using bigger 

problem sizes and more objectives etc. Our future research plan is to extend the approach for more complicated 

experiments with more objectives.  
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