
Particle Swarm Optimization and Differential
Evolution Algorithms: Technical Analysis,
Applications and Hybridization Perspectives

Swagatam Das1, Ajith Abraham2, and Amit Konar1

1 Department of Electronics and Telecommunication Engineering, Jadavpur
University, Kolkata 700032, India, swagatamdas19@yahoo.co.in,
konaramit@yahoo.co.in

2 Center of Excellence for Quantifiable Quality of Service, Norwegian University
of Science and Technology, Norway, ajith.abraham@ieee.org

Summary. Since the beginning of the nineteenth century, a significant evolution
in optimization theory has been noticed. Classical linear programming and tradi-
tional non-linear optimization techniques such as Lagrange’s Multiplier, Bellman’s
principle and Pontyagrin’s principle were prevalent until this century. Unfortunately,
these derivative based optimization techniques can no longer be used to determine
the optima on rough non-linear surfaces. One solution to this problem has already
been put forward by the evolutionary algorithms research community. Genetic algo-
rithm (GA), enunciated by Holland, is one such popular algorithm. This chapter
provides two recent algorithms for evolutionary optimization – well known as parti-
cle swarm optimization (PSO) and differential evolution (DE). The algorithms are
inspired by biological and sociological motivations and can take care of optimality on
rough, discontinuous and multimodal surfaces. The chapter explores several schemes
for controlling the convergence behaviors of PSO and DE by a judicious selection of
their parameters. Special emphasis is given on the hybridizations of PSO and DE
algorithms with other soft computing tools. The article finally discusses the mutual
synergy of PSO with DE leading to a more powerful global search algorithm and its
practical applications.

1 Introduction

The aim of optimization is to determine the best-suited solution to a prob-
lem under a given set of constraints. Several researchers over the decades
have come up with different solutions to linear and non-linear optimization
problems. Mathematically an optimization problem involves a fitness function
describing the problem, under a set of constraints representing the solu-
tion space for the problem. Unfortunately, most of the traditional optimization
techniques are centered around evaluating the first derivatives to locate the
optima on a given constrained surface. Because of the difficulties in evaluating
S. Das et al.: Particle Swarm Optimization and Differential Evolution Algorithms: Technical

Analysis, Applications and Hybridization Perspectives, Studies in Computational Intelligence
(SCI) 116 , 1–38 (2008)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

2 S. Das et al.

the first derivatives, to locate the optima for many rough and discontinu-
ous optimization surfaces, in recent times, several derivative free optimization
algorithms have emerged. The optimization problem, now-a-days, is repre-
sented as an intelligent search problem, where one or more agents are employed
to determine the optima on a search landscape, representing the constrained
surface for the optimization problem [1].

In the later quarter of the twentieth century, Holland [2], pioneered a new
concept on evolutionary search algorithms, and came up with a solution to
the so far open-ended problem to non-linear optimization problems. Inspired
by the natural adaptations of the biological species, Holland echoed the Dar-
winian Theory through his most popular and well known algorithm, currently
known as genetic algorithms (GA) [2]. Holland and his coworkers includ-
ing Goldberg and Dejong, popularized the theory of GA and demonstrated
how biological crossovers and mutations of chromosomes can be realized in
the algorithm to improve the quality of the solutions over successive iter-
ations [3]. In mid 1990s Eberhart and Kennedy enunciated an alternative
solution to the complex non-linear optimization problem by emulating the col-
lective behavior of bird flocks, particles, the boids method of Craig Reynolds
and socio-cognition [4] and called their brainchild the particle swarm opti-
mization (PSO) [4–8]. Around the same time, Price and Storn took a serious
attempt to replace the classical crossover and mutation operators in GA by
alternative operators, and consequently came up with a suitable differential
operator to handle the problem. They proposed a new algorithm based on
this operator, and called it differential evolution (DE) [9].

Both algorithms do not require any gradient information of the function to
be optimized uses only primitive mathematical operators and are conceptually
very simple. They can be implemented in any computer language very eas-
ily and requires minimal parameter tuning. Algorithm performance does not
deteriorate severely with the growth of the search space dimensions as well.
These issues perhaps have a great role in the popularity of the algorithms
within the domain of machine intelligence and cybernetics.

2 Classical PSO

Kennedy and Eberhart introduced the concept of function-optimization by
means of a particle swarm [4]. Suppose the global optimum of an n-dimensional
function is to be located. The function may be mathematically represented as:

f(x1, x2, x3, . . . , xn) = f(�X)

where �x is the search-variable vector, which actually represents the set of
independent variables of the given function. The task is to find out such a �x,
that the function value f(�x) is either a minimum or a maximum denoted by
f∗ in the search range. If the components of �x assume real values then the

Particle Swarm Optimization and Differential Evolution Algorithms 3

task is to locate a particular point in the n-dimensional hyperspace which is
a continuum of such points.

Example 1. Consider the simplest two-dimensional sphere function given by

f(x1, x2) = f(�X) = x2
1 + x2

2,

if x1 and x2 can assume real values only then by inspection it is pretty clear
that the global minima of this function is at x1 = 0, x2 = 0, i.e., at the origin
(0, 0) of the search space and the minimum value is f(0, 0) = f∗ = 0. No
other point can be found in the x1−x2 plane at which value of the function is
lower than f∗ = 0. Now the case of finding the optima is not so easy for some
functions (an example is given below):

f(x1, x2) = x1 sin(4πx2)− x2 sin(4πx1 + π) + 1

This function has multiple peaks and valleys and a rough fitness landscape.
A surface plot of the function is shown in Fig. 1. To locate the global optima
quickly on such a rough surface calls for parallel search techniques. Here many
agents start from different initial locations and go on exploring the search
space until some (if not all) of the agents reach the global optimal position.
The agents may communicate among themselves and share the fitness function
values found by them.

PSO is a multi-agent parallel search technique. Particles are conceptual
entities, which fly through the multi-dimensional search space. At any partic-
ular instant, each particle has a position and a velocity. The position vector
of a particle with respect to the origin of the search space represents a trial
solution of the search problem. At the beginning, a population of particles is
initialized with random positions marked by vectors �xi and random velocities
�vi. The population of such particles is called a “swarm” S. A neighborhood

Fig. 1. Surface plot of the above-mentioned function

4 S. Das et al.

Fig. 2. Illustrating the dynamics of a particle in PSO

relation N is de“ned in the swarm. N determines for any two particlesPi and
Pj whether they are neighbors or not. Thus for any particleP, a neighbor-
hood can be assigned asN (P), containing all the neighbors of that particle.
Di�erent neighborhood topologies and their e�ect on the swarm performance
will be discussed later. However, a popular version of PSO usesN = S for
each particle. In this case, any particle has all the remaining particles in the
swarm in its neighborhood. PSO dynamics is illustrated in Fig. 2.

Each particle P has two state variables viz., its current position �x(t) and
its current velocity �v(t). It is also equipped with a small memory compris-
ing its previous best position (one yielding the highest value of the “tness
function found so far) �p(t), i.e., personal best experience and the best�p(t) of
all P � N (P): �g(t), i.e., the best position found so far in the neighborhood
of the particle. When we set N (P) = S, �g(t) is referred to as the globally
best particle in the entire swarm. The PSO (PSO) scheme has the following
algorithmic parameters:

(a) Vmax or maximum velocity which restricts �Vi (t) within the interval [ŠVmax ,
Vmax]

(b) An inertial weight factor �
(c) Two uniformly distributed random numbers � 1 and � 2 that respectively

determine the in”uence of �p(t) and �g(t) on the velocity update formula.
(d) Two constant multiplier terms C1 and C2 known as •self-con“denceŽ and

•swarm con“denceŽ, respectively.

Initially the settings for �p(t) and �g(t) are �p(0) = �g(0) = �x(0) for all parti-
cles. Once the particles are all initialized, an iterative optimization process
begins, where the positions and velocities of all the particles are altered by

Particle Swarm Optimization and Differential Evolution Algorithms 5

the following recursive equations. The equations are presented for the dth
dimension of the position and velocity of the ith particle.

Vid(t + 1) = � · vid(t) + C1 · � 1 · (Pid(t) − x id(t)) + C2 · � 2 · (gid(t) − x id(t))

x id(t + 1) = x id(t) + vid(t + 1).

�

(1)

The first term in the velocity updating formula represents the inertial velocity
of the particle. “ω” is called the inertia factor. Venter and Sobeiski [10] termed
C1 as “self-confidence” and C2 as “swarm confidence”. These terminologies
provide an insight from a sociological standpoint. Since the coefficient C1 has
a contribution towards the self-exploration (or experience) of a particle, we
regard it as the particle’s self-confidence. On the other hand, the coefficient
C2 has a contribution towards motion of the particles in global direction,
which takes into account the motion of all the particles in the preceding pro-
gram iterations, naturally its definition as “swarm confidence” is apparent.
ϕ1 and ϕ2 stand for a uniformly distributed random number in the interval
[0, 1]. After having calculated the velocities and position for the next time
step t + 1, the first iteration of the algorithm is completed. Typically, this
process is iterated for a certain number of time steps, or until some accept-
able solution has been found by the algorithm or until an upper limit of CPU
usage has been reached. The algorithm can be summarized in the following
pseudo code:

The PSO Algorithm

Input: Randomly initialized position and velocity of the particles: �Xi(0) and
�Vi(0)

Output: Position of the approximate global optima �X∗

Begin
While terminating condition is not reached do
Begin
for i = 1 to number of particles
Evaluate the fitness:= f(�Xi);
Update �pi and �gi;
Adapt velocity of the particle using equations (1);
Update the position of the particle;
increase i;
end while
end

The swarm-dynamics has been presented below using a humanoid agent in
place of a particle on the spherical fitness-landscape.

6 S. Das et al.

Fig. 3. Trajectory of the best particle for the 2-D Rastrigin function. (a) After 40
iterations (b) after 80 iterations (c) after 150 iterations (d) after 200 iterations

Example 2. Consider the two-dimensional function given by

f(�x) = 20 + x2
1 + x2

2 − 10(cos 2πx1 + cos 2πx2).

This function is known as the Rastrigin function [11] and has a global mini-
mum value 0 at x1 =0 and x2 =0. A PSO is run to optimize the function. We
used 30 particles and randomly initialized their positions and velocities in the
interval [−10, 10]. We used the following parameter set-up: C1 = C2 = 2.00,
ω = 0.729, and the maximum particle velocity Vmax = 10. Figure 3 depicts
the trajectory of the globally best particle towards the global minima of the
function over different iterations.

3 Selection of Parameters for PSO

The main parameters of the canonical PSO model are ω, C1, C2, Vmax and the
swarm size S. The settings of these parameters determine how it optimizes
the search-space. For instance, one can apply a general setting that gives
reasonable results on most problems, but seldom is very optimal. Since the
same parameter settings not at all guarantee success in different problems, we
must have knowledge of the effects of the different settings, such that we can
pick a suitable setting from problem to problem.

Particle Swarm Optimization and Di�erential Evolution Algorithms 7

3.1 The Inertia Weight �

The inertia weight � controls the momentum of the particle: If � << 1, only
little momentum is preserved from the previous time-step; thus quick changes
of direction are possible with this setting. The concept of velocity is completely
lost if � = 0, and the particle then moves in each step without knowledge of
the past velocity. On the other hand, if � is high (> 1) we observe the same
e�ect as when C1 and C2 are low: Particles can hardly change their direction
and turn around, which of course implies a larger area of exploration as well
as a reluctance against convergence towards optimum. Setting� > 1 must be
done with care, since velocities are further biased for an exponential growth
(see Fig. 2). This setting is rarely seen in PSO implementation, and always
together with V max . In short, high settings near 1 facilitate global search, and
lower settings in the range [0.2, 0.5] facilitate rapid local search.

Eberhart and Shi have studied� in several papers and found that •when
Vmax is not small (� 3), an inertia-weight of 0.8 is a good choiceŽ [12].
Although this statement is solely based on a single test function, the Scha�er
f6 function, this setting actually is a good choice in many cases. The authors
have also applied an annealing scheme for the� -setting of the PSO, where
� decreases linearly from� = 0 .9 to � = 0 .4 over the whole run [13]. They
compared their annealing scheme results to results with� = 1 obtained by
Angeline [14], and concluded a signi“cant performance improvement on the
four tested functions. The decreasing� -strategy is a near-optimal setting for
many problems, since it allows the swarm to explore the search-space in the
beginning of the run, and still manages to shift towards a local search when
“ne-tuning is needed. This was called PSO-TVIW method (PSO with Time
varying inertia weight) [15].

Finally, Eberhart and Shi devised an adaptive fuzzy PSO, where a fuzzy
controller was used to control � over time [16]. This approach is very inter-
esting, since it potentially lets the PSO self-adapt� to the problem and thus
optimizes and eliminates a parameter of the algorithm. This saves time during
the experimentation, since “ne-tuning of � is not necessary anymore. At each
time-step, the controller takes the •Normalized Current Best Performance
EvaluationŽ (NCBPE) and the current setting of � as inputs, and it outputs
a probabilistic change in � .

3.2 The Maximum Velocity Vmax

The maximum velocity V max determines the maximum change one particle
can undergo in its positional coordinates during an iteration. Usually we set
the full search range of the particle•s position as theVmax . For example, in
case, a particle has position vectorŠ�x = (x1, x2, x3) and if Š10 � xi � 10 for
i = 1, 2 and 3, then we set Vmax = 20. Originally, Vmax was introduced to
avoid explosion and divergence. However, with the use of constriction factor
� (to be discussed shortly) or� in the velocity update formula, Vmax to some

8 S. Das et al.

degree has become unnecessary; at least convergence can be assured without
it [17]. Thus, some researchers simply do not use Vmax. In spite of this fact,
the maximum velocity limitation can still improve the search for optima in
many cases.

3.3 The Constriction Factor χ

In 2002, Clerc and Kennedy proposed an adaptive PSO model [17] that uses
a new parameter ‘χ’ called the constriction factor. The model also excluded
the inertia weight ω and the maximum velocity parameter Vmax. The velocity
update scheme proposed by Clerc can be expressed for the dth dimension of
ith particle as:

Vid(t + 1) = � [Vid(t) + C1 · � 1 · (Pid(t) − X id(t)) + C2 · � 2 · (gid(t) − X id(t))]

X id(t + 1) = X id(t) + Vid(t + 1),

�

(2)
where,

χ =
2�

�
�4− ϕ−

�
ϕ2 − 4ϕ

�
�
�

With ϕ = C1 + C2

Constriction coefficient results in the quick convergence of the particles over
time. That is the amplitude of a particle’s oscillations decreases as it focuses
on the local and neighborhood previous best points. Though the particle con-
verges to a point over time, the constriction coefficient also prevents collapse
if the right social conditions are in place. The particle will oscillate around
the weighted mean of pid and pgd, if the previous best position and the neigh-
borhood best position are near each other the particle will perform a local
search. If the previous best position and the neighborhood best position are
far apart from each other, the particle will perform a more exploratory search
(global search). During the search, the neighborhood best position and pre-
vious best position will change and the particle will shift from local search
back to global search. The constriction coefficient method therefore balances
the need for local and global search depending on what social conditions are
in place.

3.4 The Swarm Size

It is quite a common practice in the PSO literature to limit the number of
particles to limit the number of particles to the range 20–60 [12, 18]. Van
den Bergh and Engelbrecht [19] have shown that though there is a slight
improvement of the optimal value with increasing swarm size, a larger swarm
increases the number of function evaluations to converge to an error limit.
Eberhart and Shi [18] illustrated that the population size has hardly any
effect on the performance of the PSO method.

Particle Swarm Optimization and Differential Evolution Algorithms 9

3.5 The Acceleration Coefficients C1 and C2

A usual choice for the acceleration coefficients C1 and C2 is C1 = C2 = 1.494
[18]. However, other settings were also used in different papers. Usually C1
equals to C2 and ranges from [0, 4]. Ratnaweera et al. have recently investi-
gated the effect of varying these coefficients with time in [20]. Authors adapted
C1 and C2 with time in the following way:

C1 = (C1f − C1i)
iter

MAXITER
+ C1i

C2 = (C2f − C2i)
iter

MAXITER
+ C2i

, (3)

where C1i, C1f , C2i, and C2f are constants, iter is the current iteration num-
ber and MAXITER is the number of maximum allowable iterations. The
objective of this modification was to boost the global search over the entire
search space during the early part of the optimization and to encourage the
particles to converge to global optima at the end of the search. The authors
referred this as the PSO-TVAC (PSO with time varying acceleration coeffi-
cients) method. Actually C1 was decreased from 2.5 to 0.5 whereas C2 was
increased from 0.5 to 2.5.

4 The Neighborhood Topologies in PSO

The commonly used PSOs are either global version or local version of PSO [5].
In the global version of PSO, each particle flies through the search space with
a velocity that is dynamically adjusted according to the particle’s personal
best performance achieved so far and the best performance achieved so far by
all the particle. While in the local version of PSO, each particle’s velocity is
adjusted according to its personal best and the best performance achieved as
far within its neighborhood. The neighborhood of each particle is generally
defined as topologically nearest particles to the particle at each side. The
global version of PSO also can be considered as a local version of PSO with
each particle’s neighborhood to be the whole population. It has been suggested
that the global version of PSO converges fast, but with potential to converge
to the local minimum, while the local version of PSO might have more chances
to find better solutions slowly [5]. Since then, a lot of researchers have worked
on improving its performance by designing or implementing different types of
neighborhood structures in PSO. Kennedy [21] claimed that PSO with small
neighborhoods might perform better on complex problems while PSO with
large neighborhood would perform better for simple problems.

The k-best topology, proposed by Kennedy connects every particle to its
k nearest particles in the topological space. With k = 2, this becomes the
circle topology (and with k = swarmsize-1 it becomes a gbest topology). The
wheel topology, in which the only connections are from one central particle to

Particle Swarm Optimization and Differential Evolution Algorithms 11

The position �Xi(t) has changed from being a point in real-valued space to
being a bit-string, and the velocity �Vi(t) has now become a probability for
�Xi(t) to be 1or 0. If �Vi(t) = 0 the probability for the outcome �Xi(t + 1) = 1
will be 50%. On the other hand, if �Vi(t) > 0 the probability for �Xi(t + 1) = 1
will be above 50%, and if �Vi(t) < 0 a probability below 50%. It is not quite
clear, at least intuitively, how and why this changed approach will work. In
particular, to the best of our knowledge, there has not been published any
papers concerning with the changed meaning of the ω parameter in the binary
PSO. The discussion on the meaning of ω above must therefore be regarded
as a novel discovery and an independent research result in its own right. In
conclusion, since a binary version of the PSO is a key point to practical and
commercial use of the PSO in discrete problems solving, this topic definitely
needs a lot more attention in the coming years.

6 Hybridization of PSO with Other Evolutionary
Techniques

A popular research trend is to merge or combine the PSO with the other
techniques, especially the other evolutionary computation techniques. Evolu-
tionary operators like selection, crossover and mutation have been applied into
the PSO. By applying selection operation in PSO, the particles with the best
performance are copied into the next generation; therefore, PSO can always
keep the best-performed particles [14]. By applying crossover operation, infor-
mation can be swapped between two individuals to have the ability to “fly”
to the new search area as that in evolutionary programming and GAs [23].
Among the three evolutionary operators, the mutation operators are the most
commonly applied evolutionary operators in PSO. The purpose of applying
mutation to PSO is to increase the diversity of the population and the abil-
ity to have the PSO to escape the local minima [24–27]. One approach is to
mutate parameters such as χ, C1 and C2, the position of the neighborhood
best [26], as well as the inertia weight [25]. Another approach is to prevent
particles from moving too close to each other so that the diversity could be
maintained and therefore escape from being trapped into local minima. In [25],
the particles are relocated when they are too close to each other. In [24, 27],
collision-avoiding mechanisms are designed to prevent particle from colliding
with each other and therefore increase the diversity of the population. In addi-
tion to incorporating evolutionary operations into PSO, different approaches
to combine PSO with the other evolutionary algorithms have been reported.
Robinson et al. [28] obtained better results by applying PSO first followed by
applying GA in their profiled corrugated horn antenna optimization problem.
In [29], either PSO algorithm or GA or hill climbing search algorithm can
be applied to a different sub-population of individuals which each individual
is dynamically assigned to according to some pre-designed rules. In [30], ant

12 S. Das et al.

colony optimization is combined with PSO. A list of best positions found so
far is recorded and the neighborhood best is randomly selected from the list
instead of the current neighborhood best.

In addition, non-evolutionary techniques have been incorporated into PSO.
In [31], a cooperative particle swarm optimizer (CPSO) is implemented. The
CPSO employs cooperative behavior to significantly improve the performance
of the original PSO algorithm through using multiple swarms to optimize dif-
ferent components of the solution vector cooperatively. The search space is
partitioned by splitting the solutions vectors into smaller vector. For exam-
ple, a swarm with n-dimensional vector is partitioned into n swarms of
one-dimensional vectors with each swarm attempting to optimize a single
component of the solution vector. A credit assignment mechanism needs to
be designed to evaluate each particle in each swarm. In [23], the population of
particles is divided into subpopulations which would breed within their own
sub-population or with a member of another with some probability so that the
diversity of the population can be increased. In [32], deflection and stretching
techniques as well as a repulsion technique.

7 The Differential Evolution (DE)

In 1995, Price and Storn proposed a new floating point encoded evolutionary
algorithm for global optimization and named it DE [9] owing to a special
kind of differential operator, which they invoked to create new offspring from
parent chromosomes instead of classical crossover or mutation. Easy methods
of implementation and negligible parameter tuning made the algorithm quite
popular very soon. In the following section, we will outline the classical DE
and its different versions in sufficient details.

7.1 Classical DE – How Does it Work?

Like any other evolutionary algorithm, DE also starts with a population of
NP D-dimensional search variable vectors. We will represent subsequent gen-
erations in DE by discrete time steps like t = 0, 1, 2, . . . , t, t + 1, etc. Since
the vectors are likely to be changed over different generations we may adopt
the following notation for representing the ith vector of the population at the
current generation (i.e., at time t = t) as

�Xi(t) = [xi,1(t), xi,2(t), xi,3(t) xi,D(t)].

These vectors are referred in literature as “genomes” or “chromosomes”. DE
is a very simple evolutionary algorithm.

For each search-variable, there may be a certain range within which value
of the parameter should lie for better search results. At the very beginning

Particle Swarm Optimization and Differential Evolution Algorithms 13

of a DE run or at t = 0, problem parameters or independent variables are
initialized somewhere in their feasible numerical range. Therefore, if the jth
parameter of the given problem has its lower and upper bound as xL

j and xU
j ,

respectively, then we may initialize the jth component of the ith population
members as

xi,j(0) = xL
j + rand (0, 1) · (xU

j − xL
j),

where rand (0,1) is a uniformly distributed random number lying between 0
and 1.

Now in each generation (or one iteration of the algorithm) to change each
population member �Xi(t) (say), a Donor vector �Vi(t) is created. It is the
method of creating this donor vector, which demarcates between the various
DE schemes. However, here we discuss one such specific mutation strategy
known as DE/rand/1. In this scheme, to create �Vi(t) for each ith member,
three other parameter vectors (say the r1, r2, and r3th vectors) are chosen
in a random fashion from the current population. Next, a scalar number F
scales the difference of any two of the three vectors and the scaled difference
is added to the third one whence we obtain the donor vector �Vi(t). We can
express the process for the jth component of each vector as

vi,j(t + 1) = xr1,j(t) + F · (xr2,j(t)− xr3,j(t)). (5)

The process is illustrated in Fig. 5. Closed curves in Fig. 5 denote constant
cost contours, i.e., for a given cost function f , a contour corresponds to
f(�X) = constant. Here the constant cost contours are drawn for the Ackley
Function.

Next, to increase the potential diversity of the population a crossover
scheme comes to play. DE can use two kinds of cross over schemes namely
“Exponential” and “Binomial”. The donor vector exchanges its “body parts”,
i.e., components with the target vector �Xi(t) under this scheme. In “Expo-
nential” crossover, we first choose an integer n randomly among the numbers
[0, D–1]. This integer acts as starting point in the target vector, from where
the crossover or exchange of components with the donor vector starts. We
also choose another integer L from the interval [1, D]. L denotes the number
of components; the donor vector actually contributes to the target. After a
choice of n and L the trial vector:

�Ui(t) = [ui,1(t), ui,2(t) . . . ui,D(t)] (6)

is formed with

ui,j(t) = vi,j(t) for j =< n >D, < n + 1 >D, . . . < n− L + 1 >D

= xi,j(t), (7)

where the angular brackets <>D denote a modulo function with modu-
lus D. The integer L is drawn from [1, D] according to the following pseudo
code.

14 S. Das et al.

Fig. 5. Illustrating creation of the donor vector in 2-D parameter space (The
constant cost contours are for two-dimensional Ackley Function)

L = 0;
do
{

L=L+1;
} while (rand (0, 1) < CR) AND (L < D));

Hence in e�ect probability (L > m) = (CR) mŠ 1 for any m > 0. CR is called
•CrossoverŽ constant and it appears as a control parameter of DE just like
F. For each donor vectorV, a new set ofn and L must be chosen randomly
as shown above. However, in •BinomialŽ crossover scheme, the crossover is
performed on each of the D variables whenever a randomly picked number
between 0 and 1 is within the CR value. The scheme may be outlined as

ui,j (t) = vi,j (t) if rand (0 , 1) < CR,

= xi,j (t) else... . .. (8)

In this way for each trial vector �X i (t) an o�spring vector �Ui (t) is created. To
keep the population size constant over subsequent generations, the next step
of the algorithm calls for •selectionŽ to determine which one of the target
vector and the trial vector will survive in the next generation, i.e., at time

Particle Swarm Optimization and Differential Evolution Algorithms 15

t = t + 1. DE actually involves the Darwinian principle of “Survival of the
fittest” in its selection process which may be outlined as

�Xi(t + 1) = �Ui(t) if f(�Ui(t)) ≤ f(�Xi(t)),

= �Xi(t) if f(�Xi(t)) < f(�Ui(t)), . . . (9)

where f () is the function to be minimized. So if the new trial vector yields a
better value of the fitness function, it replaces its target in the next generation;
otherwise the target vector is retained in the population. Hence the population
either gets better (w.r.t. the fitness function) or remains constant but never
deteriorates. The DE/rand/1 algorithm is outlined below:

Procedure DE

Input: Randomly initialized position and velocity of the particles: �xi(0)

Output: Position of the approximate global optima �X∗

Begin

Initialize population;
Evaluate fitness;
For i = 0 to max-iteration do
Begin
Create Difference-Offspring;
Evaluate fitness;
If an offspring is better than its parent
Then replace the parent by offspring in the next generation;
End If;

End For;
End.

Example 3. This example illustrates the complete searching on the fitness
landscape of a two-dimensional sphere function by a simple DE. Sphere is
perhaps one of the simplest two-dimensional functions and has been chosen
to provide easy visual depiction of the search process. The function is given by

f(�x) = x2
1 + x2

2.

As can be easily perceived, the function has only one global minima f∗ = 0 at
X∗ = [0, 0]T. We start with a randomly initialized population of five vectors
in the search range [−10, 10]. Initially, these vectors are given by

X1(0) = [5,−9]T

X2(0) = [6, 1]T

X3(0) = [−3, 5]T

X4(0) = [−7, 4]T

X5(0) = [6, 7]T

16 S. Das et al.

Figures 6–9 illustrate the initial orientation of the search variable vectors in the
two-dimensional X1−X2 space. The concentric circular lines are the constant
cost contours of the function, i.e., locus in the X1 −X2 plane. Now following
the mutation and recombination schemes as presented in expressions (7) and

Fig. 6. Orientation of the initial solutions in the two-dimensional search space

Fig. 7. Orientation of the population members after five iterations

Fig. 8. Orientation of the population members after 10 iterations

Particle Swarm Optimization and Differential Evolution Algorithms 17

Fig. 9. Orientation of the population members after 20 iterations

(8), we form five donor vectors and then create five offspring vectors for time
t = 1. Next we apply the selection method described by (9) and evolve the
entire population at time t = 1. These steps have been summarized in Table 1.

7.2 The Complete DE Family of Storn and Price

Actually, it is the process of mutation, which demarcates one DE scheme from
another. In the former section, we have illustrated the basic steps of a simple
DE. The mutation scheme in (5) uses a randomly selected vector �Xr1 and only
one weighted difference vector F · (�Xr2 − �Xr3) is used to perturb it. Hence,
in literature the particular mutation scheme is referred to as DE/rand/1. We
can now have an idea of how different DE schemes are named. The general
convention used, is DE/x/y. DE stands for DE, x represents a string denoting
the type of the vector to be perturbed (whether it is randomly selected or it
is the best vector in the population with respect to fitness value) and y is the
number of difference vectors considered for perturbation of x. Below we outline
the other four different mutation schemes, suggested by Price et al. [33].

Scheme DE/rand to best/1

DE/rand to best/1 follows the same procedure as that of the simple DE
scheme illustrated earlier. The only difference being that, now the donor
vector, used to perturb each population member, is created using any two
randomly selected member of the population as well as the best vector of
the current generation (i.e., the vector yielding best suited objective func-
tion value at t = t). This can be expressed for the ith donor vector at time
t = t + 1 as

�Vi(t + 1) = �Xi(t) + λ · (�Xbest(t)− �Xi(t)) + F · (�Xr2 (t)− �Xr3(t)) (10)

where λ is another control parameter of DE in [0, 2], Xi(t) is the target vector
and �Xbest(t) is the best member of the population regarding fitness at current

18 S. Das et al.

T
a
b
le

1
.

E
vo

lu
ti

on
of

th
e

po
pu

la
ti

on
fr

om
t

=
0

to
t

=
1

in
E

xa
m

pl
e

3

P
op

ul
at

io
n

F
it

ne
ss

D
on

or
ve

ct
or

O
ffs

pr
in

g
ve

ct
or

F
it

ne
ss

of
off

sp
ri

ng
E

vo
lv

ed
po

pu
la

ti
on

at
t

=
0

at
t

=
0

at
t

=
1

at
t

=
1

at
t

=
1

at
t

=
1

X
1
(0

)
=

[2
,−

1]
5

V
1
(1

)
=

[−
0.

4,
10

.4
]

T
1
(1

)
=

[−
0.

4,
−

1]
1.

16
X

1
(1

)
=

[−
0.

4,
−

1]
X

2
(0

)
=

[6
,1

]
37

V
2
(1

)X
1
(0

)
=

[1
.2

,−
0.

2]
T

2
(1

)
=

[1
.2

,1
]

2.
44

X
2
(1

)
=

[1
.2

,1
]

X
3
(0

)
=

[−
3,

5]
34

V
3
(1

)
=

[−
4.

4,
−

0.
2]

T
3
(1

)
=

[−
4.

4,
−

0.
2]

19
.4

X
3
(1

)
=

[−
4.

4,
−

0.
2]

X
4
(0

)
=

[−
2,

6]
40

V
4
(1

)
=

[9
.2

,−
4.

2]
T

4
(1

)
=

[9
.2

,6
]

12
0.

64
X

4
(1

)
=

[−
2,

6]
X

5
(0

)
=

[6
,7

]
85

V
5
(1

)
=

[5
.2

,0
.2

]
T

5
(1

)
=

[6
,0

.2
]

36
.0

4
X

5
(1

)
=

[6
,0

.2
]

Particle Swarm Optimization and Di�erential Evolution Algorithms 19

time step t = t. To reduce the number of control parameters a usual choice is
to put � = F .

Scheme DE/best/1

In this scheme everything is identical to DE/rand/1 except the fact that the
trial vector is formed as

�Vi (t + 1) = �X best (t) + F · (�X r 1(t) Š �X r 2(t)) , (11)

here the vector to be perturbed is the best vector of the current population
and the perturbation is caused by using a single di�erence vector.

Scheme DE/best/2

Under this method, the donor vector is formed by using two di�erence vectors
as shown below:

�Vi (t + 1) = �X best (t) + F · (�X r 1(t) + �X r 2(t) Š �X r 3(t) Š �X r 4(t)) . (12)

Owing to the central limit theorem the random variations in the parameter
vector seems to shift slightly into the Gaussian direction which seems to be
bene“cial for many functions.

Scheme DE/rand/2

Here the vector to be perturbed is selected randomly and two weighted dif-
ference vectors are added to the same to produce the donor vector. Thus for
each target vector, a totality of “ve other distinct vectors are selected from
the rest of the population. The process can be expressed in the form of an
equation as

�Vi (t + 1) = �X r 1(t) + F1 · (�X r 2(t) Š �X r 3(t)) + F2 · (�X r 4(t) Š �X r 5(t)) (13)

Here F1 and F2 are two weighing factors selected in the range from 0 to 1. To
reduce the number of parameters we may chooseF1 = F2 = F .

Summary of all Schemes

In 2001 Storn and Price [2] suggested total ten di�erent working strate-
gies of DE and some guidelines in applying these strategies to any given
problem. These strategies were derived from the “ve di�erent DE mutation
schemes outlined above. Each mutation strategy was combined with either the

Particle Swarm Optimization and Differential Evolution Algorithms 21

p′ =
�
�
�f(�Xr1)

�
�
� +

�
�
�f(�Xr2)

�
�
� +

�
�
�f(�Xr3)

�
�
� , (14)

p1 =
�
�
�f(�Xr1)

�
�
�
�
p′, (15)

p2 =
�
�
�f(�Xr2)

�
�
�
�
p′, (16)

p3 =
�
�
�f(�Xr3)

�
�
�
�
p′. (17)

Let rand (0, 1) be a uniformly distributed random number in (0, 1) and Γ be
the trigonometric mutation rate in the same interval (0, 1). The trigonometric
mutation scheme may now be expressed as

�Vi(t + 1) = (�Xr1 + �Xr2 + �Xr3)/3 + (p2 − p1) · (�Xr1 − �Xr2)

+ (p3 − p2) · (�Xr2 − �Xr3) + (p1 − p3) · (�Xr3 − �Xr1)
if rand (0, 1) < Γ

�Vi(t + 1) = �Xr1 + F · (�Xr2 + �Xr3) else. (18)

Thus, we find that the scheme proposed by Lampinen et al. uses trigonometric
mutation with a probability of Γ and the mutation scheme of DE/rand/1 with
a probability of (1− Γ).

DERANDSF (DE with Random Scale Factor)

In the original DE [9] the difference vector (�Xr1(t) − �Xr2(t)) is scaled by a
constant factor “F ”. The usual choice for this control parameter is a number
between 0.4 and 1. We propose to vary this scale factor in a random manner
in the range (0.5, 1) by using the relation

F = 0.5∗(1 + rand (0, 1)), (19)

where rand (0, 1) is a uniformly distributed random number within the range
[0, 1]. We call this scheme DERANDSF (DE with Random Scale Factor) [35].
The mean value of the scale factor is 0.75. This allows for stochastic variations
in the amplification of the difference vector and thus helps retain population
diversity as the search progresses. Even when the tips of most of the population
vectors point to locations clustered near a local optimum due to the randomly
scaled difference vector, a new trial vector has fair chances of pointing at
an even better location on the multimodal functional surface. Therefore, the
fitness of the best vector in a population is much less likely to get stagnant
until a truly global optimum is reached.

DETVSF (DE with Time Varying Scale Factor)

In most population-based optimization methods (except perhaps some hybrid
global-local methods) it is generally believed to be a good idea to encourage

22 S. Das et al.

Fig. 10. Illustrating DETVSF scheme on two-dimensional cost contours of Ackley
function

the individuals (here, the tips of the trial vectors) to sample diverse zones of
the search space during the early stages of the search. During the later stages it
is important to adjust the movements of trial solutions finely so that they can
explore the interior of a relatively small space in which the suspected global
optimum lies. To meet this objective we reduce the value of the scale factor
linearly with time from a (predetermined) maximum to a (predetermined)
minimum value:

R = (Rmax −Rmin)∗(MAXIT − iter)/MAXIT (20)

where Fmax and Fmin are the maximum and minimum values of scale factor F,
iter is the current iteration number and MAXIT is the maximum number of
allowable iterations. The locus of the tip of the best vector in the population
under this scheme may be illustrated as in Fig. 10. The resulting algorithm is
referred as DETVSF (DE with a time varying scale factor) [35].

DE with Local Neighborhood

Only in 2006, a new DE-variant, based on the neighborhood topology of the
parameter vectors was developed [36] to overcome some of the disadvantages of
the classical DE versions. The authors in [36] proposed a neighborhood-based
local mutation operator that draws inspiration from PSO. Suppose we have
a DE population P = [�X1, �X2,, �XNp] where each �Xi (i = 1, 2, . . . , Np)
is a D-dimensional vector. Now for every vector �Xi we define a neighborhood
of radius k, consisting of vectors �Xi−k, �Xi, �Xi+k. We assume the vec-
tors to be organized in a circular fashion such that two immediate neighbors
of vector �X1 are �XNp and �X2. For each member of the population a local
mutation is created by employing the fittest vector in the neighborhood of

Particle Swarm Optimization and Differential Evolution Algorithms 23

that member and two other vectors chosen from the same neighborhood. The
model may be expressed as:

�Li(t) = �Xi(t) + λ′ · (�Xnbest(t)− �Xi(t)) + F ′ · (�Xp(t)− �Xq(t)) (21)

where the subscript nbest indicates the best vector in the neighborhood of−→
X i and p, q ∈ (i − k, i + k). Apart from this, we also use a global mutation
expressed as:

�Gi(t) = �Xi(t) + λ · (�Xbest(t)− �Xi(t)) + F · (�Xr(t)− �Xs(t)), (22)

where the subscript best indicates the best vector in the entire population,
and r, s ∈ (1, Np). Global mutation encourages exploitation, since all members
(vectors) of a population are biased by the same individual (the population
best); local mutation, in contrast, favors exploration, since in general different
members of the population are likely to be biased by different individuals. Now
we combine these two models using a time-varying scalar weight w ∈ (0, 1) to
form the actual mutation of the new DE as a weighted mean of the local and
the global components:

�Vi(t) = w · �Gi(t) + (1− w) · �Li(t). (23)

The weight factor varies linearly with time as folows:

w = wmin + (wmax − wmin) ·
�

iter

MAXIT

�
, (24)

where iter is the current iteration number, MAXIT is the maximum number
of iterations allowed and wmax, wmin denote, respectively, the maximum and
minimum value of the weight, with wmax, wmin ∈ (0, 1). Thus the algorithm
starts at iter = 0 with w = wmin but as iter increases towards MAXIT,
w increases gradually and ultimately when iter = MAXIT w reaches wmax.
Therefore at the beginning, emphasis is laid on the local mutation scheme, but
with time, contribution from the global model increases. In the local model
attraction towards a single point of the search space is reduced, helping DE
avoid local optima. This feature is essential at the beginning of the search
process when the candidate vectors are expected to explore the search space
vigorously. Clearly, a judicious choice of wmax and wmin is necessary to strike
a balance between the exploration and exploitation abilities of the algorithm.
After some experimenting, it was found that wmax = 0.8 and wmin = 0.4 seem
to improve the performance of the algorithm over a number of benchmark
functions.

8 A Synergism of PSO and DE – Towards a New Hybrid
Evolutionary Algorithm

Das et al. proposed a new scheme of adjusting the velocities of the particles
in PSO with a vector differential operator borrowed from the DE family [37].
The canonical PSO updates the velocity of a particle using three terms. These

24 S. Das et al.

include a previous velocity term that provides the particle with the necessary
momentum, a social term that indicates how the particle is stochastically
drawn towards the globally best position found so far by the entire swarm,
and finally a cognitive term that reflects the personal thinking of the particle,
i.e., how much it is drawn towards the best position so far encountered in its
own course. In the proposed scheme the cognitive term is omitted; instead
the particle velocities are perturbed by a new term containing the weighted
difference of the position vectors of any two distinct particles randomly chosen
from the swarm. This differential velocity term is inspired by the DE muta-
tion scheme and hence the authors name this algorithm as PSO-DV (particle
swarm with differentially perturbed velocity). A survival of the fittest mecha-
nism has also been incorporated in the swarm following the greedy selection
scheme of DE.

8.1 The PSO-DV Algorithm

PSO-DV introduces a differential operator (borrowed from DE) in the velocity-
update scheme of PSO. The operator is invoked on the position vectors of two
randomly chosen particles (population-members), not on their individual best
positions. Further, unlike the PSO scheme, a particle is actually shifted to a
new location only if the new location yields a better fitness value, i.e., a selec-
tion strategy has been incorporated into the swarm dynamics. In the proposed
algorithm, for each particle i in the swarm two other distinct particles, say
j and k (i �= j �= k), are selected randomly. The difference between their
positional coordinates is taken as a difference vector:

�δ = �Xk − �Xj .

Then the dth velocity component (1 < d < n) of the target particle i is
updated as

Vid(t + 1) = � · Vid(t) + β · δd + C2 · � 2 · (Pgd − jX id(t)), if randd (0, 1) ≤ CR.
= Vid(t), otherwise,

�

(25)

where CR is the crossover probability, δd is the dth component of the dif-
ference vector defined earlier, and β is a scale factor in [0, 1]. In essence the
cognitive part of the velocity update formula in (1) is replaced with the vec-
tor differential operator to produce some additional exploration capability.
Clearly, for CR ≤ 1, some of the velocity components will retain their old
values. Now, a new trial location Tri is created for the particle by adding the
updated velocity to the previous position Xi:

�Tri = �Xi(t) + �Vi(t + 1). (26)

The particle is placed at this new location only if the coordinates of the
location yield a better fitness value. Thus if we are seeking the minimum

26 S. Das et al.

Procedure PSO-DV

begin
initialize population;

while stopping condition not satisfied do
for i = 1 to no of particles
evaluate fitness of particle;
update Pgd;
select two other particles j and k (i �= j �= k) randomly;
construct the difference vector as �δ = �Xk − �Xj;
for d = 1 to no of dimensions

if randd (0, 1) ≤ CR
Vid(t + 1) = ω · Vid(t) + β · δd + C2 · ϕ2 · (Pgd −Xid(t));

else Vid(t + 1) = Vid(t);
endif

endfor
create trial location as �Tri = �Xi(t) + �Vi(t + 1);

if (f(�Tri) ≤ f(�Xi(t))) then �Xi(t + 1) = �Tr;
else �Xi(t + 1) = �Xi(t);
endif

endfor
for i = 1 to no of particles

if Xi stagnates for N successive generations
for r = 1 to no of dimensions
Xir(t + 1) = Xmin + randr (0, 1)∗(Xmax −Xmin)
end for

end if
end for

end while
end

9 PSO-DV Versus Other State-of-the-Art Optimizers

In this section we provide performance comparison between PSO-DV and
four variants of the PSO algorithm and the classical DE algorithm over a
test-bed of five well known benchmark functions. In Table 2, n represents the
number of dimensions (we used n = 25, 50, 75 and 100). The first two test
functions are uni-modal, having only one minimum. The others are multi-
modal, with a considerable number of local minima in the region of interest.
All benchmark functions except f6 have the global minimum at the origin or
very near to the origin [28]. For Shekel’s foxholes (f6), the global minimum is
at (−31.95, −31.95) and f6 (−31.95, −31.95) ≈ 0.998, and the function has
only two dimensions. An asymmetrical initialization procedure has been used
here following the work reported in [29].

Particle Swarm Optimization and Differential Evolution Algorithms 27

Table 2. Benchmark functions used

Function Mathematical representation

Sphere function f 1(x) =
n�

i=1

x2
i

Rosenbrock f 2(x) =
n−1�

i=1

[100(xi+1 − x2
i)2 + (xi − 1)2]

Rastrigin f 3(x) =
n�

i=1

[x2
i − 10 cos(2�x i) + 10]

Griewank f 4(x) =
1

4000

n�

i=1

x2
i −

n	

i=1

cos
�

x i√
i

�
+ 1

Ackley f 5(x) = −20 exp

−0.2

�

(
1
n

n�

i=1

x2
i) − exp

�
1
n

n�

i=1

cos 2�x i

�
+ 20 + e

Shekel’s
Foxholes

f 6(x) =

�

�

1
500

+
25�

j=1

1

j +
2�

i=1

(xi − aij)6

�

�
�
�

−1

Simulations were carried out to obtain a comparative performance analysis
of the new method with respect to: (a) canonical PSO, (b) PSO-TVIW [18,37],
(c) MPSO-TVAC [20], (d) HPSO-TVAC [20], and (e) classical DE. Thus a
total of six algorithms were considered – one new, the other five existing in the
literature. For a given function of a given dimension, 50 independent runs of
each of the six algorithms were executed, and the average best-of-run value and
the standard deviation were obtained. Different maximum generations (Gmax)
were used according to the complexity of the problem. For all benchmarks
(excluding Schaffer’s f6 and f7) the stopping criterion was set as reaching a
fitness of 0.001. However, for Shekel’s Foxholes function (f7) it was fixed at
0.998. Table 3 compares the algorithms on the quality of the best solution.
The mean and the standard deviation (within parentheses) of the best-of-run
solution for 50 independent runs of each of the six algorithms are presented
in Table 3. Missing values of standard deviation in this table indicate a zero
standard deviation. The best solution in each case has been shown in bold.
Table 4 shows results of unpaired t-tests between the best algorithm and the
second best in each case (standard error of difference of the two means, 95%
confidence interval of this difference, the t value, and the two-tailed P value).
For all cases in Table 4, sample size = 50 and degrees of freedom = 98. It
is interesting to see from Tables 3 and 4 that the proposed method performs
equally or better than other algorithms in a statistically meaningful way.

In Fig. 12, we have graphically presented the rate of convergence of all
the methods for two most difficult functions Rosenbrock (f2) and Ackley (f5)
functions (in 30 dimensions). We do not provide convergence graphs for all
the functions in order to save space.

30 S. Das et al.

[47], automated mirror design [48], optimization of radial active magnetic
bearings [49], and optimization of fermentation by using a high ethanol-
tolerance yeast [50]. A DE based neural network-training algorithm was first
introduced in [51]. In [52] the method’s characteristics as a global optimizer
were compared to other neural network training methods. Das et al. in [53]
have compared the performance of some variants of the DE with other com-
mon optimization algorithms like PSO, GA, etc. in context to the partitional
clustering problem and concluded in their study that DE rather than GAs
should receive primary attention in such partitional cluster algorithms.

In this section we describe a simple application of the aforementioned algo-
rithms to the design of two dimensional IIR filters [54]. In signal processing,
the function of a filter is to remove unwanted parts of the signal, such as
random noise, or to extract useful parts of the signal, such as the components
lying within a certain frequency range. There are two main kinds of filter,
analog and digital. They are quite different in their physical makeup and in
how they work. An analog filter uses analog electronic circuits made up from
components such as resistors, capacitors and op-amps to produce the required
filtering effect. Such filter circuits are widely used in such applications as noise
reduction, video signal enhancement, graphic equalisers in hi-fi systems, and
many other areas. A digital filter uses a digital processor to perform numer-
ical calculations on sampled values of the signal. The processor may be a
general-purpose computer such as a PC, or a specialised DSP (digital signal
processor) chip.

Digital filters are broadly classified into two main categories namely, FIR
(finite impulse response) filters and IIR (infinite impulse response) filters. The
impulse response of a digital filter is the output sequence from the filter when
a unit impulse is applied at its input. (A unit impulse is a very simple input
sequence consisting of a single value of 1 at time t = 0, followed by zeros at all
subsequent sampling instants). An FIR filter is one whose impulse response
is of finite duration. The output of such a filter is calculated solely from the
current and previous input values. This type of filter is hence said to be non-
recursive. On the other hand, an IIR filter is one whose impulse response
(theoretically) continues for ever in time. They are also termed as recursive
filters. The current output of such a filter depends upon previous output
values. These, like the previous input values, are stored in the processor’s
memory. The word recursive literally means “running back”, and refers to the
fact that previously-calculated output values go back into the calculation of
the latest output. The recursive (previous output) terms feed back energy into
the filter input and keep it going.

In our work [54, 55] the filter design is mainly considered from a fre-
quency domain perspective. Frequency domain filtering consists in first, taking
the fourier transform of the two-dimensional signal (which may be the pixel
intensity value in case of a gray-scale image), then multiplying the frequency
domain signal by the transfer function of the filter and finally inverse trans-

Particle Swarm Optimization and Differential Evolution Algorithms 31

Fig. 13. Scheme of filtering with 2-D digital filter

forming the product in order to get the output response of the filter. The
scheme is illustrated in Fig. 13.

Let the general prototype 2-D transfer function for the digital filter be

H(z1, z2) = H0

N�

i=0

N�

j=0
pijz

izj

N	

k=1
(1 + qkz1 + rkz2 + skz1 · z2)

(29)

It is a general practice to take p00 = 1 (by normalizing pij ’s with respect
to the value of p00). Also, let us assume that the user-specified amplitude
response of the filter to be designed is Md which is obviously a function of
digital frequencies ω1 and ω2 (ω1, ω2 ε [0, π]). Now the main design problem is
to determine the coefficients in the numerator and denominator of (29) in such
a fashion that H(z1, z2) follows the desired response Md (ω1, ω2) as closely
as possible. Such an approximation of the desired response can be achieved
by minimizing

J(pij , qk, rk, sk, H0) =
N1�

n1 =0

N2�

n2 =0

[|M(ω1, ω2)| −Md(ω1, ω2)]b, (30)

where
M(ω1, ω2) = H(z1, z2)

�
�
�z1 = ejω1

z2 = ejω2

(31)

and

ω1 = (π/N1)n1 ;
ω2 = (π/N2)n2 ;

32 S. Das et al.

and b is an even positive integer (usually b = 2 or 4). Equation (30) can be
restated as

J =
N1�

n1 =0

N2�

n2 =0

� �
�
�
�M

�
πn1

N1
,
πn2

N2

� �
�
�
� −Md

�
πn1

N1
,
πn2

N2

�� b

. (32)

Here the prime objective is to reduce the difference between the desired and
actual amplitude responses of the filter at N1 ·N2 points. For BIBO (bounded
input bounded output) stability the prime requirement is that the z-plane
poles of the filter transfer function should lie within the unit circle. Since
the denominator contains only first degree factors, we can assert the stability
conditions as

|qk + rk| − 1 < sk < 1− |qk − rk|, (33)

where k = 1, 2, . . . , N .
We solve the above constrained minimization problems using a binary

coded GA [56], PSO, DE and PSO-DV and observe that the synergistic PSO-
DV performs best as compared to the other competitive algorithms over this
problem.

To judge the accuracy of the algorithms, we run all of them for a long
duration upto 100,000FEs. Each algorithm is run independently (with a dif-
ferent seed for the random number generator in every run) for 30 times and
the mean best J value obtained along with the standard deviations have been
repored for the design problem (32) in Table 5. Figures 14 and 15 illustrate
the frequency responses of the filters. The notation Jb has been used to denote
four sets of experiments performed with the value of J obtained using expo-
nent b = 1, 2, 4 and 8. Table 6 summarizes the results of the unpaired t-test
on the J values (standard error of difference of the two means, 95% confidence
interval of this difference, the t value, and the two-tailed P value) between
the best and next-to-best results in Table 4. For all cases in Table 6, sample
size = 30 and number of degrees of freedom = 58.

The frequency response of the various filters deigned by the above men-
tioned algorithms are shown below.

Table 5. Mean value and standard deviations of the final results (J values) with
exponent p = 1, 2, 4, 8 after 100,000 FEs (mean of 20 independent runs of each of
the competitor algorithms)

Value of PSO-DV PSO DE Binary GA in [56]
J for
different
exponents

J1 61.7113 ± 0.0054 98.5513 ± 0.0327 95.7113 ± 0.0382 96.7635 ± 0.8742
J2 9.0215 ± 0.0323 11.9078 ± 0.583 10.4252 ± 0.0989 10.0342 ± 0.0663
J4 0.5613 ± 0.00054 0.9613 ± 0.0344 0.5732 ± 0.0024 0.6346 ± 0.0154

J8 0.0024 ± 0.001 0.2903 ± 0.0755 0.0018 ± 0.0006 0.0091 ± 0.0014

Particle Swarm Optimization and Differential Evolution Algorithms 33

Fig. 14. (a) Ideal desired filter response (b) Frequency response of the filter designed
by PSO-DV

Fig. 15. (a) Frequency response of the filter designed by PSO (b) Frequency
response of the filter designed by DE (c) Frequency response of the filter designed
by a binary GAv [56]

34 S. Das et al.

Table 6. Results of unpaired t-tests on the data of Table 5

Cost Std. err t 95% Conf. intvl Two-tailed P Significance
function

J1 0.195 179.313 −35.447 to −34.656 < 0.0001 Extremely
significant

J2 0.221 6.3440 −1.8516 to −0.9557 < 0.0001 Extremely
significant

J4 0.030 3.1041 −0.1518 to −0.0319 0.0036 Very
significant

J8 0.000 1.9551 −0.0000213 to 0.0012213 0.0580 Not
significant

11 Conclusions

Search and optimization problems are ubiquitous through the various realms
of science and engineering. This chapter has provided a comprehensive over-
view of two promising optimization algorithms, which are currently gaining
popularity for their greater accuracy, faster convergence speed and simplicity.
One of these algorithms, known as PSO mimics the behavior of a group of
social insects in multi-agent cooperative search problems. The latter one called
DE (DE) is a deviant variety of GA, which attempts to replace the crossover
operator in GA by a special type of differential operator for reproducing
offspring in the next generation.

The chapter explores several schemes for controlling the convergence
behaviors of PSO and DE by a judicious selection of their parameters. It
also focuses on the hybridizations of these algorithms with other soft com-
puting tools. It finally discusses the mutual synergy of PSO with DE leading
to a more powerful global search algorithm. Applications of the algorithms
to diverse domains of engineering problems have been surveyed. The chapter
elaborates one such application of PSO, DE and their variants to the design
of IIR digital filters in greater details.

The present article reveals that a significant progress has been made in the
field of swarm intelligence and evolutionary computing in the past 10 years. In
recent times, a symbiosis of swarm intelligence with other soft computing algo-
rithms has opened up new avenues for the next generation computing systems.
Engineering search and optimization problems including pattern recognition,
bioinformatics and machine intelligence will find new dimensions in the light
of hybridization of swarm intelligence with other algorithms.

References

1. Konar A (2005), Computational Intelligence: Principles, Techniques and
Applications, Springer, Berlin Heidelberg New York.

2. Holland JH (1975), Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor.

Particle Swarm Optimization and Di�erential Evolution Algorithms 35

3. Goldberg DE (1975), Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA.

4. Kennedy J, Eberhart R and Shi Y (2001), Swarm Intelligence, Morgan
Kaufmann, Los Altos, CA.

5. Kennedy J and Eberhart R (1995), Particle Swarm Optimization, In Proceedings
of IEEE International Conference on Neural Networks, pp. 1942…1948.

6. Storn R and Price K (1997), Di�erential Evolution … A Simple and E�cient
Heuristic for Global Optimization Over Continuous Spaces, Journal of Global
Optimization, 11(4), 341…359.

7. Venter G and Sobieszczanski-Sobieski J (2003), Particle Swarm Optimization,
AIAA Journal, 41(8), 1583…1589.

8. Yao X, Liu Y, and Lin G (1999), Evolutionary Programming Made Faster, IEEE
Transactions on Evolutionary Computation, 3(2), 82…102.

9. Shi Y and Eberhart RC (1998), Parameter Selection in Particle Swarm Opti-
mization, Evolutionary Programming VII, Springer, Lecture Notes in Computer
Science 1447, 591…600.

10. Shi Y and Eberhart RC (1999), Empirical Study of Particle Swarm Optimiza-
tion, In Proceedings of the 1999 Congress of Evolutionary Computation, vol. 3,
IEEE Press, New York, pp. 1945…1950.

11. Angeline PJ (1998), Evolutionary Optimization Versus Particle Swarm Opti-
mization: Philosophy and Performance Di�erences, Evolutionary Programming
VII, Lecture Notes in Computer Science 1447, Springer, Berlin Heidelberg New
York, pp. 601…610.

12. Shi Y and Eberhart RC (1998), A Modi“ed Particle Swarm Optimiser, IEEE
International Conference on Evolutionary Computation, Anchorage, Alaska,
May 4…9.

13. Shi Y and Eberhart RC (2001), Fuzzy Adaptive Particle Swarm Optimization, In
Proceedings of the Congress on Evolutionary Computation 2001, Seoul, Korea,
IEEE Service Center, IEEE (2001), pp. 101…106.

14. Clerc M and Kennedy J (2002), The Particle Swarm … Explosion, Stability,
and Convergence in a Multidimensional Complex Space, IEEE Transactions on
Evolutionary Computation, 6(1), 58…73.

15. Eberhart RC and Shi Y (2000), Comparing Inertia Weights and Constriction
Factors in Particle Swarm Optimization, In Proceedings of IEEE International
Congress on Evolutionary Computation, vol. 1, pp. 84…88.

16. van den Bergh F and Engelbrecht PA (2001), E�ects of Swarm Size on Coopera-
tive Particle Swarm Optimizers, In Proceedings of GECCO-2001, San Francisco,
CA, pp. 892…899.

17. Ratnaweera A, Halgamuge SK, and Watson HC (2004), Self-Organizing Hierar-
chical Particle Swarm Optimizer with Time-Varying Acceleration Coe�cients,
IEEE Transactions on Evolutionary Computation, 8(3), 240…255.

18. Kennedy J (1999), Small Worlds and Mega-Minds: E�ects of Neighborhood
Topology on Particle Swarm Performance, In Proceedings of the 1999 Congress
of Evolutionary Computation, vol. 3, IEEE Press, New York, pp. 1931…1938.

19. Kennedy J and Eberhart RC (1997), A Discrete Binary Version of the Particle
Swarm Algorithm, In Proceedings of the 1997 Conference on Systems, Man, and
Cybernetics, IEEE Service Center, Piscataway, NJ, pp. 4104…4109.

20. Løvbjerg M, Rasmussen TK, and Krink T (2001), Hybrid Particle Swarm Opti-
mizer with Breeding and Subpopulations, In Proceedings of the Third Genetic
and Evolutionary Computation Conference (GECCO-2001).

36 S. Das et al.

21. Krink T, Vesterstrøm J, and Riget J (2002), Particle Swarm Optimization
with Spatial Particle Extension, In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC-2002).

22. Løvbjerg M and Krink T (2002), Extending Particle Swarms with Self-Organized
Criticality, In Proceedings of the Fourth Congress on Evolutionary Computation
(CEC-2002).

23. Miranda V and Fonseca N (2002), EPSO – Evolutionary Particle Swarm Opti-
mization, a New Algorithm with Applications in Power Systems, In Proceedings
of IEEE T&D AsiaPacific 2002 – IEEE/PES Transmission and Distribu-
tion Conference and Exhibition 2002: Asia Pacific, Yokohama, Japan, vol. 2,
pp. 745–750.

24. Blackwell T and Bentley PJ (2002), Improvised Music with Swarms. In Pro-
ceedings of IEEE Congress on Evolutionary Computation 2002.

25. Robinson J, Sinton S, and Rahmat-Samii Y (2002), Particle Swarm, Genetic
Algorithm, and Their Hybrids: Optimization of a Profiled Corrugated Horn
Antenna, In Antennas and Propagation Society International Symposium, 2002,
vol. 1, IEEE Press, New York, pp. 314–317.

26. Krink T and Løvbjerg M (2002), The Lifecycle Model: Combining Particle
Swarm Optimization, Genetic Algorithms and Hill Climbers, In Proceedings
of PPSN 2002, pp. 621–630.

27. Hendtlass T and Randall M (2001), A Survey of Ant Colony and Particle Swarm
Meta-Heuristics and Their Application to Discrete Optimization Problems, In
Proceedings of the Inaugural Workshop on Artificial Life, pp. 15–25.

28. vandenBergh F and Engelbrecht A (2004), A Cooperative Approach to Particle
Swarm Optimization, IEEE Transactions on Evolutionary Computation 8(3),
225–239.

29. Parsopoulos KE and Vrahatis MN (2004), On the Computation of All Global
Minimizers Through Particle Swarm Optimization, IEEE Transactions on
Evolutionary Computation, 8(3), 211–224.

30. Price K, Storn R, and Lampinen J (2005), Differential Evolution – A Practical
Approach to Global Optimization, Springer, Berlin Heidelberg New York.

31. Fan HY, Lampinen J (2003), A Trigonometric Mutation Operation to Dif-
ferential Evolution, International Journal of Global Optimization, 27(1),
105–129.

32. Das S, Konar A, Chakraborty UK (2005), Two Improved Differential Evolution
Schemes for Faster Global Search, ACM-SIGEVO Proceedings of GECCO’ 05,
Washington D.C., pp. 991–998.

33. Chakraborty UK, Das S and Konar A (2006), DE with Local Neighborhood, In
Proceedings of Congress on Evolutionary Computation (CEC 2006), Vancouver,
BC, Canada, IEEE Press, New York.

34. Das S, Konar A, Chakraborty UK (2005), Particle Swarm Optimization with a
Differentially Perturbed Velocity, ACM-SIGEVO Proceedings of GECCO’ 05,
Washington D.C., pp. 991–998.

35. Salerno J (1997), Using the Particle Swarm Optimization Technique to Train a
Recurrent Neural Model, IEEE International Conference on Tools with Artificial
Intelligence, pp. 45–49.

36. van den Bergh F (1999), Particle Swarm Weight Initialization in Multi-Layer
Perceptron Artificial Neural Networks, Development and Practice of Artificial
Intelligence Techniques, Durban, South Africa, pp. 41–45.

Particle Swarm Optimization and Differential Evolution Algorithms 37

37. He Z, Wei C, Yang L, Gao X, Yao S, Eberhart RC, and Shi Y (1998), Extracting
Rules from Fuzzy Neural Network by Particle Swarm Optimization, In Proceed-
ings of IEEE Congress on Evolutionary Computation (CEC 1998), Anchorage,
Alaska, USA.

38. Eberhart RC and Hu X (1999), Human Tremor Analysis Using Particle
Swarm Optimization, In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 1999), Washington D.C., pp. 1927–1930.

39. Wachowiak MP, Smoĺıková R, Zheng Y, Zurada MJ, and Elmaghraby AS (2004),
An Approach to Multimodal Biomedical Image Registration Utilizing Particle
Swarm Optimization, IEEE Transactions on Evolutionary Computation, 8(3),
289–301.

40. Messerschmidt L and Engelbrecht AP (2004), Learning to Play Games
Using a PSO-Based Competitive Learning Approach, IEEE Transactions on
Evolutionary Computation 8(3), 280–288.

41. Yoshida H, Kawata K, Fukuyama Y, Takayama S, and Nakanishi Y (2000), A
Particle Swarm Optimization for Reactive Power and Voltage Control Consider-
ing Voltage Security Assessment, IEEE Transactions on Power Systems, 15(4),
1232–1239.

42. Abido MA (2002), Optimal Design of Power System Stabilizers Using Particle
Swarm Optimization, IEEE Transactions on Energy Conversion, 17(3), 406–413.

43. Paterlini S and Krink T (2006), Differential Evolution and Particle Swarm Opti-
mization in Partitional Clustering, Computational Statistics and Data Analysis,
vol. 50, 1220–1247.

44. Rogalsky T, Kocabiyik S and Derksen R (2000), Differential Evolution in
Aerodynamic Optimization, Canadian Aeronautics and Space Journal, 46(4),
183–190.

45. Doyle S, Corcoran D, and Connell J (1999), Automated Mirror Design Using
an Evolution Strategy, Optical Engineering, 38(2), 323–333.

46. Stumberger G, Dolinar D, Pahner U, and Hameyer K (2000), Optimization
of Radial Active Magnetic Bearings Using the Finite Element Technique and
Differential Evolution Algorithm, IEEE Transactions on Magnetics, 36(4), 1009–
1013.

47. Wang FS and Sheu JW (2000), Multi-Objective Parameter Estimation Prob-
lems of Fermentation Processes Using High Ethanol Tolerance Yeast, Chemical
Engineering Science, 55(18), 3685–3695.

48. Masters T and Land W (1997), A New Training Algorithm for the General
Regression Neural Network,” Proceedings of Computational Cybernetics and
Simulation, Organized by IEEE Systems, Man, and Cybernetics Society, 3,
1990–1994.

49. Zelinka I and Lampinen J (1999), An Evolutionary Learning Algorithms for
Neural Networks, In Proceedings of Fifth International Conference on Soft
Computing, MENDEL’99, pp. 410–414.

50. Das S, Abraham A, and Konar A (2007), Adaptive Clustering Using Improved
Differential Evolution Algorithm, IEEE Transactions on Systems, Man and
Cybernetics – Part A, IEEE Press, New York, USA.

51. Das S and Konar A (2007), A Swarm Intelligence Approach to the Synthesis of
Two-Dimensional IIR Filters, Engineering Applications of Artificial Intelligence,
20(8), 1086–1096. http://dx.doi.org/10.1016/j.engappai.2007.02.004

38 S. Das et al.

52. Das S and Konar A (2006), Two-Dimensional IIR Filter Design with
Modern Search Heuristics: A Comparative Study, International Journal of
Computational Intelligence and Applications, 6(3), Imperial College Press.

53. Mastorakis N, Gonos IF, Swamy MNS (2003), Design of Two-Dimensional
Recursive Filters Using Genetic Algorithms, IEEE Transactions on Circuits and
Systems, 50, 634–639.

54. Liu H, Abraham A, and Clerc M (2007), Chaotic Dynamic Characteristics in
Swarm Intelligence, Applied Soft Computing Journal, Elsevier Science, 7(3),
1019–1026.

55. Abraham A, Liu H, and Chang TG (2006), Variable Neighborhood Particle
Swarm Optimization Algorithm, Genetic and Evolutionary Computation Con-
ference (GECCO-2006), Seattle, USA, Late Breaking Papers, CD Proceedings,
Jörn Grahl (Ed.).

56. Abraham A, Das S, and Konar A (2007), Kernel Based Automatic Clustering
Using Modified Particle Swarm Optimization Algorithm, 2007 Genetic and Evo-
lutionary Computation Conference, GECCO 2007, ACM Press, Dirk Thierens
et al. (Eds.), ISBN 978-1-59593-698-1, pp. 2–9.

