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a b s t r a c t 

Capacitated Vehicle Routing Problem (CVRP) is one of the most famous specialized forms 

of the VRP, which has attracted considerable attention from scientists and researchers. 

Therefore, many accurate, heuristic, and meta-heuristic methods have been introduced to 

solve this problem in recent decades. In this paper, a new meta-heuristic optimization al- 

gorithm is introduced to solve the CVRP, which is based on the law of gravity and group 

interactions. The proposed algorithm uses two of the four basic parameters of velocity 

and gravitational force in physics based on the concepts of random search and searching 

agents, which are a collection of masses that interact with each other based on Newtonian 

gravity and the laws of motion. The introduced method was quantitatively compared with 

the State-of-the-Art algorithms in terms of execution time and number of optimal solu- 

tions achieved in four well-known benchmark problems. Our experiments illustrated that 

the proposed method could be a very efficient method in solving CVRP and the results 

are comparable with the results using state-of-the-art computational methods. Moreover, 

in some cases our method could produce solutions with less number of required vehicles 

compared to the Best Known Solution (BKS) in a very efficient manner, which is another 

advantage of the proposed algorithm. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

Distribution of goods is of great importance in logistics and supply chain management, and some problems in the domain

of goods distribution may even seem to be modeled as Vehicle Routing Problems (VRP). The VRP plays an important role in

reducing the costs of transportation in logistic distribution and it is considered as one of the most important combinatorial

optimization problems. In this problem, a set of customers, each with one demand, are scattered in a graph. The vehicle

that delivers service to the customers is programmed to achieve one or more goals when its route satisfies the needs of

customers along the routes [1,2] . 
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Fig. 1. Example of a group of CVRP routes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The classical VRP includes determining minimum-cost paths for a set of homogeneous vehicles located in a depot to

deliver services to customers that are geographically scattered. These services may be goods delivery, pick-up and delivery

of students, or gather the packets to deliver incoming emails, etc. [3,4] . The VRP, which is an extension of the Traveling

Salesman Problem (TSP), has many applications in real-world high transportation cost in commerce such as transferring

waste materials, newspaper and food delivery, beverages distribution, etc. 

CVRP is a specialized form of the VRP in which a fleet of vehicles located in a depot should meet the various demands

of a group of customers for goods delivery. Fig. 1 depicts one group of CVRP routes. 

The purpose in CVRP is to minimize the total cost (for example, a weighted function of the number of vehicles and the

distance to be covered by them) of service delivery to a set of customers with specified demands. Routing must be designed

such a way that each customer is met once and only by one vehicle. 

CVRP is known as a combinatorial NP-hard problem because it includes a packing problem (in which a container has to

be filled with a set of boxes) and the TSP [5,6] . 

As CVRP [7] can be defined as an undirected graph G = ( V, E ), where V = { v 0 , v 1 , …, v n } is a vertex set and E=
{( v i , v j )| v i , v j ∈ V , i < j } is an edge set. The depot is represented by vertex v 0 , which uses m independent delivery vehicles,

with identical delivery capacity Q , to service demands q i from n cities or customers, i = 1, 2, …, n , represented by the set

of n vertices { v 1 , …, v n }. A solution for the CVRP would be a partition R 1 , R 2 , …, R m 

of V representing the routes of the

vehicles. 

The cost of the problem solution is the sum of the costs of its routes R i ={ v i 0 , v i 1 , …, v ik + 1 }, where v ij ∈ V and

v i 0 = v ik + 1 =0 (0 denotes the depot), satisfying 
∑ 

v i j ∈ R i q j ≤ Q , which can be presented as: 

C ost = 

m ∑ 

i =1 

C ost ( R i ) = 

k ∑ 

j=0 

c i j+1 , (1) 

where matrix C= ( c ij ) is a non-negative cost (distance or travel time) between customers v i and v j defined on E . 

The CVRP consists determining a set of a maximum m routes with minimum total cost, such that each route starts and

ends at the depot, each customer is visited exactly once by exactly one vehicle, subject to the restriction that the total

demand of any route does not exceed Q . We additionally consider that the total duration of any route is no longer than a

preset bound D [7] . 

Fig. 1 shows an example of CVRP routes in which the middle rectangle represents a depot and the smaller rectangles are

different customers [8] . 

The rest of the paper is organized as follows. Section 2 reviews related works on the subject covered in this paper. The

GELS algorithm is introduced in Section 3 . Section 4 thoroughly explains the proposed algorithm. We show the results of

simulations in Section 5 and conclude the work in Section 6 . 
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2. Related work 

VRP with capacity restrictions was first introduced by Dantzig and Ramser [9] in 1959. Following that work, many differ-

ent algorithms were proposed to solve this problem that can be classified into two broad categories: heuristics and meta-

heuristics methods. 

Under the category of heuristic methods, we can name Savings, Tabu Search (TS) and Genetic Based Algorithms (GBA),

which have successfully solved the VRP. 

Clarke and Wright [10] proposed the use of Savings algorithm for solving VRP. The initial conditions were that only one

vehicle services each customer and then there is N routes (where N is customer demands). Stanojevic et al. [11] used an

advanced savings computations for solving the CVRP problem. They introduced a new method of combining routes to find a

formula for calculating the savings, and employed this advanced combination for developing a new, extended, heuristic sav-

ings algorithm that recalculated savings through iterations. Computational results indicated that on an average, the extended

savings algorithm was a better solution compared to the original savings algorithm. 

The Granular Tabu Search (GTS) algorithm was proposed by Toth and Vigo first in 2003 [12] to solve the VRP with

the aim of shortening computation time. The idea was implemented in conjunction with a TS method but the principle is

general and could be beneficial to other types of algorithms. In this model neighbor solutions were obtained by performing

intra-route and inter-route edge exchanges. 

The most common heuristic methods that solved the CVRP are GBA. In [13] a Reduced Variable Neighborhood Search Al-

gorithm (VNSA) for the VRP with capacity restrictions was proposed in which a diversion strategy by the crossover operator

was designed to help the escape from local minima. This algorithm was tested on 34 CVRP samples and results indicated

that its performance was better than other heuristic algorithms. Later, in [14] Genetic Algorithm (GA) was used to solve the

CVRP problem. Results indicated that the algorithm was able to determine the optimal routes for the vehicles by considering

their capacity restrictions and travel times. Nazif and Lee [7] introduced an Optimized Crossover Genetic Algorithm (OCGA)

for the VRP with capacity restrictions. The main feature of the algorithm was that vehicles with similar capacities located in

a depot were used in a way to optimize the routes and satisfy the demands of the customers. The proposed algorithm used

an optimized crossover operator that employed a directed complete bipartite graph for finding an optimal set of delivery

routes, in order to satisfy demands, and minimize the total costs. Considering the slow rate of convergence and the weak

search ability of the traditional GA, the combinatorial GA (which has a greater convergence rate and rapid search ability)

was developed to simplify the problem and improve its search efficiency [15,16] . 

Under the category of meta-heuristic methods, Pisinger and Ropke [17] introduced Large Neighborhood Search (LNS)

to solve CVRP problem as a case study. Authors in [18,19] reported many VRP variants including the CVRP that can be

transformed to a PDPTW and solved using an improved version of the Adaptive Large Neighborhood Search (ALNS) heuristic

[20] . They argued that for most of the tested VRP variants the ALNS heuristic must be considered to be on par with or

better than competing heuristics. 

Vidal et al. [21] named Hybrid Genetic Search with Adaptive Diversity Control (HGSADC) to solve three important VRP

classes: the MDVRP, the PVRP and the MDPVRP, effectively. The meta-heuristic proposed in this paper, combines the ex-

ploration breadth of population based evolutionary search, the aggressive-improvement capabilities of neighborhood-based

meta-heuristics and advanced population-diversity management schemes. The method performs in terms of both solution

quality and computational exigency. Authors tested the method on all available benchmark instances for the CVRP. The

meta-heuristic equals or outperforms the current best methods proposed for each particular class and requires a limited

computational effort. Moreover, with very limited adaptation, the algorithm also proves extremely competitive for the CVRP.

A number of algorithms used advantages of combining Simulated Annealing (SA) with other optimization methods. In

[22] a Hybrid Ant Colony Optimization Routing Algorithm (HACO) was introduced for solving the CVRP problem that was a

Hybrid of Simulated Annealing (HSA) and ACO Algorithm. Experimental results showed that it was able to solve the CVRP

problem. Lin et al. [23] combined SA Algorithm with Local Search Algorithms (LSA). They reported the results of simulations

on 14 classic instances and 20 large-scale samples. Their proposed algorithm found better solutions for 8 of the 14 classic

instances. 

Local search methods have also been used in some meta-heuristics in-order to solve CVRP. A new hybrid

electromagnetism-like algorithm was proposed by Yurtkuran and Emel [24] that were population-based and dependent on

the attraction-repulsion mechanism between charged particles. The obtained solutions were improved using a local search

method and the iterated Swap Procedure, and the algorithm was tested on several benchmark problems. Computational re-

sults showed that the proposed algorithm yielded acceptable results compared to other meta-heuristic methods. The CVRP

studied in [25] was an optimization problem in which a set of vehicle tours was employed to satisfy all demands identi-

cally. The main procedure introduced in the algorithm was a suitable neighbor research project intending to reduce many

of the deviations between minimum and maximum travel times and deviations related to the loading capacity of the fleet

of vehicles. 

3. Gravitational Emulation Local Search Algorithm (GELS) 

In 1995 Voudouris and Tesang [26] proposed the Guided Local Search Algorithm (GLS) for searching and solving NP-

complete problems. Later Webster [27] presented this algorithm as a powerful algorithm and called it GELS algorithm. This
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algorithm is based on randomization concepts along with two velocity and force parameters, and uses the random numbers

provided by existing Local Search Algorithms (LSA) for avoiding the local optimum. The idea of this algorithm is based on

the gravitation force principle in nature that causes the objects to attract each other; heavier objects have more gravitational

force and apply it to other objects, and attracting lighter objects toward themselves. The distance between objects has strong

effect on the gravitational force, by increasing the distance, the gravitational force between objects decreases by the power

of 2 and vice versa. In GELS, the Newton gravitational force between two objects is as below: 

F = 

G m 1 m 2 

R 

2 
. (2) 

In which m 1 and m 2 are the masses of the first and second object respectively. G is the gravitational force constant 6.672

and R (Radius) is the distance between two objects. 

GELS also imitates this process of nature in order to search in a search space. In this algorithm, the search space is

considered as a large space and its objects are considered feasible solutions for search. Each of these objects (solutions)

has its weight; the weight of each object is its performance and the search criterion is that the best solution has the most

weight and no object can have zero weight [28] . 

In this method, the feasible solutions in search space are classified based on criteria, which depend on the type of the

problem. Each of these classes is a dimension of the solution and for each dimension, a value, which is called initial velocity,

is considered. 

GELS calculates the gravitational force between the solutions in the search space by two methods. In the first method,

a solution from the local neighborhood space is selected as the Current Solution ( CU ) and the gravitational force between

these two solutions will be calculated. The second method, applies the formula to all the solutions in the neighborhood and

the gravitational force between all of them and the CU is calculated. GELS can behave in two ways when moving in the

search space; in the first method it is possible only to move to available solutions in the current neighborhood space. Each

of these motion methods can be used in each calculation for gravitational force and therefore four models for GELS are built

[29] . 

GELS includes a vector that its size indicates the solution dimensions. The vector components indicate the relative ve-

locity in each dimension. The algorithm starts with an initial solution, initial velocity vector and moving direction. For each

dimension in velocity vector, a random number between one and maximum velocity is selected and this is the component

value in each direction. The moving direction of each dimension in the initial velocity vector is determined with respect to

the initial velocity vector of solution dimensions and this direction is equal to the solution dimension with the maximum

initial velocity in the initial velocity vector. 

In each iteration of the algorithm, based on the current moving direction, a Candidate Solution ( CA ) is selected from

the local neighborhood space and the gravitational force between the CU and CA is calculated and then the related velocity

vector is updated. For the next iteration, the velocity vector is checked and a moving direction is selected. 

Every iteration of the algorithm in the second method is completely similar to the first method but there is only a minor

difference between them. In the second method in the update stage, instead of calculating the gravitational force and up-

dating the velocity vector, in order to achieve the CA from the CU the gravitational force and initial velocity is calculated for

all the CA . In the employed Newton formula, the two masses in the numerator of the fraction are replaced by the difference

between the CA cost and CU cost. Thus the gravitational force between two objects is calculated from the following relation

[30,31] : 

F = 

G ( CU − CA ) 

R 

2 
. (3) 

In which CU and CA are the CU cost and the CA cost respectively. If the CU cost is greater than the CA cost, the result

of this formula is positive and if the CA cost is greater, the result of this formula is negative. Then the result of this force

(negative or positive) is added to the velocity vector in the current moving direction. If this operation makes the velocity

value exceed the maximum limit, the same maximum value is considered and if updating makes the velocity negative, the

velocity value is considered to be zero [32,33] . 

The available velocities in GELS are as follows: 

Maximum velocity: The maximum value that can be assigned to each component of the initial velocity vector. 

Radius: The radius used in the calculation of the gravitational force. 

Iteration : Indicates the maximum number of iterations, which guarantee that algorithm will end. 

The parameters can be adjusted by doing repeated experiments and by trial and error. 

Algorithm 1 shows the GELS algorithm. This algorithm shows that an initial response to a problem is created, and each

mass is evaluated. Next, the problem is updated as G , or Best , and/or Worst, and the parameters m and a are calculated for

each mass. Then velocity and the location of each mass are also updated. Finally, the algorithm is concluded if the maximum

number of iterations meets or all the initial velocity vector elements become zero. Otherwise, the algorithm goes back to

Step 2 [34] . 
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Algorithm 1 The GELS Algorithm. 

1. Generate initial population 

2. While (termination condition is not satisfied) 

3. Evaluate the fitness for each agent 

4. Update the G, Best and Worst of the population 

5. Calculate m and a parameters for each agent 

6. Update velocity and position 

7. End While 

8. Return best solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. The proposed algorithm 

In the proposed method, GELS algorithm is used as a strategy to solve the CVRP problem and we called as CVRP_GELS .

The objective of this algorithm is to find the shortest path between customers, reducing the number of vehicles and traveling

time of all the vehicles. 

4.1. Defining the solution dimensions 

In the proposed method, every dimension of the solution can be considered as a customer. In fact the number of solution

dimensions is equal to the number of customers. The neighbor of the CU in the considered dimension is the customer who

has the least distance, time and the most velocity with the customer of the CU for every vehicle and the vehicle has not

met the customer so far. 

4.2. Definition of neighborhood 

In GELS algorithm unlike other algorithms, searching the neighborhood solution is not carried out randomly but every

CU has different neighbors and each of them is based on a particular change, which is named the moving direction toward

the neighboring solution. All the neighbors that are obtained based on this method, are only based on this neighbor. In the

proposed method in order to find the neighboring solution, the following procedure is used: the customer with the least

distance, time and the most velocity with respect to the CU is selected as the neighbor and CA for every vehicle. 

4.3. Solution method 

In the proposed method, GELS algorithm is applied to solve the CVRP. The algorithm’s objective is to reduce the traveling

time and distance and also to reduce the number of employed vehicles. Considering the complexity of the problem, achiev-

ing a solution is difficult even if there is a few numbers of vehicles and customers. Therefore, considering the characteristics

of gravitational force algorithm and its global feature, applying this algorithm is proposed for solving CVRP problem. 

Considering the objective of the problem, which is reducing the traveling distance and number of vehicles, this paper

introduces the gravitational optimization algorithm (GELS) as a suitable strategy for solving the CVRP problem. Contrary

to other algorithms, the gravitational force algorithm (GELS) does not proceed with random solutions, but it proceeds by

examining the present solutions and provides distinct final conditions that can complete the previous direction for a specific

iterate to continue counting. Thus, although the GELS algorithm has a number of elements based on random operators, it

does not proceed purely based on random operators. Although it employs the local neighborhood search method for solving

the problem, it does not move in the same way between them and although it includes a particular behavior of greedy

algorithms in itself, it does not find the best path for searching. The GELS algorithm uses the same law that guides the

motion of objects in physical space in order to control their motion in a complex search space. 

Unlike other algorithms that start from an initial population and then generate the next generations, the GELS algorithm

starts from an initial or CU and in the next step the secondary or CA is generated based on the neighbors, customers and

vehicles that can satisfy the problem constraints. In this step, the gravitational force between these two masses is calculated

and it is considered as a solution for the problem and then velocity and gravitational mass are updated. 

One of the advantages of this algorithm when compared to other algorithms is the presence of velocity factor, which

makes this algorithm to search only for the best and optimum solutions and attract them. This process leads to the growth

of object’s mass and as we know in the gravitational law, as the object mass increases the gravitational force increases as

well and thus the object attracts more optimum solutions toward itself. This process is repeated and in every iteration, by

attracting the optimum solutions, the object’s mass is added and therefore the algorithm achieves the best solution. 

To solve the CVRP problem, we first consider three matrices: distance, initial velocity and time. The distance matrix is

taken from standard problems in [35] and is calculated for every sample separately. Based on gravitational algorithm, the

initial velocity is a constant value at first, in this problem the initial velocity of all the masses is considered equal to 100.

The initial velocity is updated in every stage. As it was explained, in the initial velocity matrix, an initial velocity equal of
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Table 1 

CVRP_GELS Steps. 

1. To create initial response by GELS algorithm 

2. To determine the perimeter of system and initialize customers who are considered as bodies. 

3. To arrange solutions created by customers based on each customer’s weight. 

4. To select the first solution as the best one. 

5. To evaluate the weight of each customer. 

6. To calculate G(t). 

7. To calculate the Gravity force imposed on each customer. 

8. To calculate acceleration, time and speed of each customer. 

9. To update parameters T and V . 

10. Displace solutions in each dimension based on the force exerted on them in different dimensions. 

11. If stop condition is satisfied, run steps 12; otherwise, go to step 4. 

12. Turn the best response. 

Table 2 

Algorithm 2: CVRP_GELS Algorithm. 

Data: I, K, M, A, B, R, F, V, NBListSize 

Result: Distance, Time, BestFit A, BestFit B 

initialization; 

Parameters I, K, M, NBListSize, Distance, Speed, Time, A, B, R, F, V, BestFit A, 

BestFit B. 

//Generate a feasible solution using the GELS algorithm 

Distance = Create Matrix Distance() 

Speed = Create Matrix Speed() 

Time = Create Matrix Time() 

A = Create Parente() 

B = Create Child() 

BestFitA = Fitness A 

BestFitB = Fitness B 

while Number Of City’s Region do 

Empty B 

B = Create Child() 

End 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 is assigned to each customer who is considered as a mass and then in next stages, velocity will be changed and also

time (mass) matrix is obtained based on distance matrix and velocity matrix according to the following equation: 

T = 

√ 

( Y B − Y A ) 
2 + ( X B − X A ) 

2 

V in A,B 

. (4) 

In ( 4 ), T indicates mass of the customer, ( Y B −Y A ) 
2 + ( X B −X A ) 

2 is the distance between the two customers and V i n A,B 
shows

the velocity between the two customers. 

Using the GELS algorithm in these conditions, an appropriate reserve factor should be defined. The reserve factor is

equal to the number of reserved customers for cars in the future. The set of assigned customers to the cars is a solution.

This method can be used to represent a solution in the form of two ( n ∗n ) matrices, which are equal to the number of cars

and customers. Every row and column indicates one of the customers in the group and the number in each row and column

indicates the number of cars that customers belong to them. When the algorithm is completed, the reserved cars for the

customers with the reservation factors are presented. 

The algorithm stops when the assigned speed is zero or the number of iterations of the algorithm reaches the maximum

value determined by the problem. In the following tables, we simply explain the steps of our algorithm ( Table 1 ) and the

pseudo code of CVRP_GELS in detail ( Table 2 ). 

5. Simulation results 

Experimental results of the proposed algorithm (CVRP_GELS) are presented with details in this section, and are compared

with those of other popular meta-heuristic methods. We use four different benchmarks in order to test and comparer our

method. A large number of algorithms were executed on these benchmarks and, hence, a good comparison could be made

between the proposed CVRP_GELS algorithm and other algorithms. The first benchmark with 14 instances is proposed by

Christofides [36] , the second benchmark that has 12 different problems is proposed by Taillard [37] , the third benchmark

which is our main benchmark is introduced by Uchoa et al. [38] and the fourth benchmark is proposed by Golden et al.

[39] and compared with State-of-the-Art methods. 

It is obviously challenging to compare the performance of algorithms whose testing was done using different computers.

However, a very simple hint of the machine relative speed may be derived from the flops measure using a benchmark as a

classic numerical application. Within this simplified setting, the flops ratios may be used to convert CPU times of different
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Table 3 

Instances’ characteristics of Christofides et al. [41] . 

Instance C K Q m.t.l s.t 

C1 50 5 160 ∞ –

C2 75 10 140 ∞ –

C3 100 8 200 ∞ –

C4 150 12 200 ∞ –

C5 199 17 200 ∞ –

C6 50 6 160 200 10 

C7 75 11 140 160 10 

C8 100 9 200 230 10 

C9 150 14 200 200 10 

C10 199 18 200 200 10 

C11 120 7 200 ∞ –

C12 100 10 200 ∞ –

C13 120 11 200 720 50 

C14 100 11 200 1040 90 

C: number of costumer, K: minimum number of used vehicle, Q: capacity of vehicle, 

m.t.l.: maximum tour length, s.t.: service time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

machines [12] . In our computational testing we implemented our codes using Matlab Language and run the codes on Intel(R)

Core(TM) i7 CPU 950 @ 3.07 GHz (24,596 Mflops), and we use a conversion factor in order to make our algorithm compatible

to other algorithms in different tables of this section according to Dongarra benchmarks [40] . 

5.1. Experiments on Christofides [35] benchmark 

In this benchmark, 14 standard instances were considered that has a combination of problems with 50–199 nodes

(in addition to the depot). Moreover, among these 14 instances, the first 10 (C1–C10) include customers who were ran-

domly distributed around the depot, while the customers in the other 4 instances belonged to more distant classes and the

depot was not located in their centers. Furthermore, all considered instances had capacity restriction, but instances C6–C10,

C13, and C14 had the additional route length and service time restrictions. In other words, no vehicle in these instances

could travel more than a specific length of the routes. 

Table 3 lists the characteristics of these instances. In this table, C indicates the number of costumer, K: minimum number

of used vehicle, Q: capacity of vehicle, m.t.l.: maximum tour length, s.t.: service time. 

Tables 4 and 5 list execution times (in seconds) obtained from the comparison of the proposed algorithm with a large

number of available methods for the VRP problem. It must be noted that the instances shown in these tables can be divided

into three classes based on the number of the customers: small (fewer than 100), medium (100–150), and large (more than

150) customers. Therefore, results of applying the algorithm on these three classes can be studied separately. 

We compare our proposed algorithm against the BKS results summarized in Table 4 . Concerning the instances of

Christofides et al. [41] , we have selected some algorithms namely: Tabu Search (TS) and Savings Ants (SA) by Osman [42] ,

and (SS_ACO) algorithm, which is to hybridize the solution construction mechanism of ACO and Scatter Search (SS) to solve

the Vehicle Routing Problem by Zhang and Tang [43] , Particle Swarm Optimization (PSO) by Ai and Kachitvichyanukul [44] ,

and Hybrid Genetic–PSO–GRASP–ENS for the Vehicle Routing Problem (Hyb GENPSO) by Marinakis and Marinaki [45] . For

the proposed algorithm we show three columns. The first column shows the average solution quality (averaged over the 10

experiments), and the second column shows the best result out of 10 experiments. The third column shows the root CPU

time (in seconds) used for finding the solutions. Bold entries mark the best solution quality obtained among the heuristics

in the comparison. 

As per Table 4 , the first class contains 4 instances, in which, the proposed algorithm was almost completely successful

and returned the best solutions found so far in the 75% of the instances. This indicates that the proposed algorithm has a

good efficiency for small instances. In the second class for the next 6 instances, the proposed algorithm could find the best

solutions for 83% of the instances. Therefore, it can be concluded that the proposed algorithm was highly efficient in solving

medium size instances. Finally, in the third class with 4 instances, it exhibited good efficiency the same as first class, and

could return the best solutions found so far for 75% of the instances. Moreover, we assumed that the two algorithms SA

and TS can obtain the best solutions found so far if they found the correct parts of the solutions returned by BKS. With

this assumption, SA was able to find optimal solutions for only 1 of the instances, while TS could obtain the answers found

by BKS in 3 of the instances. Another algorithm that could obtain solutions similar to those of the SA algorithm was the

(SS-ACO) algorithm. It was able to return BKS solutions in only 1 of the instances, while the PSO algorithm, found the best

solutions in 4 of the instances and could find best solutions compared to the other one mentioned algorithms. Furthermore,

this algorithm obtained solutions that were weaker compared to the (Hyb GENPSO) algorithm that returned BKS results in 6

of the instances. It must be noted that in this table the CVRP_GELS algorithm obtained the best solutions and, as mentioned

earlier, found the best solutions for 8 of the instances. 
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Table 4 

Computational results for the benchmark of Christofides et al. [41] . The bold values mean the best-so-far results that are found by the algorithms. 

Instance SA [42] TS [42] SS-ACO [43] PSO [44] Hyb GENPSO [45] CVRP_GELS BKS 

Best val. Time (s) Best val. Time (s) Best val. Time (s) Best val. Time (s) Best val. Time (s) Avg. of 10 Best of 10 Time (s) 

C1 528.5 0.33 524.5 0.22 524.61 32.39 524.61 – 524.61 0.70 528 524.61 51 524.61 a 

C2 838.10 12.56 844.10 0.35 835.26 41.23 844.42 – 835.26 15.33 838 835.26 68 835.26 a 

C3 829.8 18.22 838.8 3.01 830.14 70.67 829.40 – 826.14 17.42 830 826.14 136 826.14 a 

C4 1058.12 9.78 1044.12 6.95 1038.20 147.83 1048.89 – 1028.4 2 43.21 1035 1028.42 173 1028.42 a 

C5 1378.16 4.52 1334.16 6.33 1307.18 416.98 1323.89 – 1294.21 126.14 1302 1294.21 541 1294.29 b 

C6 555.6 6.65 555.6 0.34 559.12 38.28 555.43 – 555.43 0.70 559 555.43 58 555.43 a 

C7 909.11 1.22 911.11 2.06 912.68 53.01 917.68 – 909.68 13.94 920 914.13 89 909.68 a 

C8 866.9 1.87 878.9 5.85 869.34 123.68 867.01 – 865.94 43.90 876 869.34 192 865.94 a 

C9 1164.14 164.52 1184.14 9.28 1179.4 306.85 1181.14 – 1163.41 75.96 1174 1162.55 437 1162.55 a 

C10 1417.18 11.14 1441.18 8.90 1410.26 596.03 1428.46 – 1397.51 152.62 1405 1395.85 997 1395.85 c 

C11 1176.7 0.62 1043.7 2.82 1044.12 136.64 1051.87 – 1042.11 10.45 1058 1042.11 225 1042.11 a 

C12 826.10 1.23 819.10 1.74 824.31 91.88 819.56 – 819.56 18.12 829 819.56 149 819.56 

C13 1545.11 14.88 1545.11 5.53 1556.52 275.04 1546.20 – 1544.57 21.60 1564 1541.14 451 1541.14 a 

C14 890.11 0.60 866.11 2.30 870.26 217.33 866.37 – 866.37 16.73 873 866.37 357 866.37 a 

The column Best val. indicates the number of vehicles used in the best found solution. The column Time indicates time of the best run of tested algorithms 

respectively. 

Bold: Indicates the solution that minimizes the number of vehicles with least distance traveled. 

SA: Savings Ants (SA) algorithm from Osman [42] ; VAX 8600 Computer using Fortran 77 language, Performance = 48 Mflops. 

TS: Tabu Search (TS) algorithm from Osman [42] ; VAX 8600 Computer using Fortran 77 language, Performance = 48 Mflops. 

SS_ACO: Hybridize the solution construction mechanism of ACO and Scatter Search (SS) to solve the Vehicle Routing Problem from Zhang and Tang [43] ; 

IBM computer with 512 MB RAM and 1600 MHz CPU using visual C ++ language, Performance = 14,486 Mflops. 

PSO: Particle Swarm Optimization (PSO) from Ai and Kachitvichyanukul [44] ; Intel Pentium 4, CPU 3.4 GHz and 1 GB RAM using Microsoft Visual Studio 

C#.Net language. 

Hyb GENPSO: Hybrid Genetic–PSO–GRASP–ENS for the Vehicle Routing Problem (Hyb GENPSO) from Marinakis and Marinaki [45] ; Intel Pentium M 750 at 

1.86 GHz, using Fortran 90 and was compiled using the Lahey f95 compiler, Linux 9.1, Performance = 17,141 Mflops. 

CVRP_GELS: Capacitated Vehicle Routing Problem Using the Gravitational Emulation Local Search Algorithm; Pentium core i7 950, at 3.07 GHz with 16 GB 

RAM using Matlab language, Performance = 24,596 Mflops. 

BKS: Best Known Solution. 

–: No value is calculated for this case. 

Note. Computing times are expressed in seconds based on a machine with the performance of 24,596 Mflops. 
a Taillard [37] . 
b Mester and Braysy [50] . 
c Rochat and Taillard [56] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 compared the proposed algorithm with other five meta-heuristic algorithms on the same benchmark as men-

tioned in Table 4 . Namely, Optimized Crossover Genetic Algorithm (OCGA) by Nazif and Lee [7] , an Active Guided Evolution

Strategies Meta-heuristic Called (AGES) proposed by Mester and Braysy [46] , adaptive memory programming method called

(SEPAS) by Tarantilis [47] , and GAs that are those of Prins (GA_P) [48] and Berger and Barkaoui (GA_BB) [49] and also against

the BKS results reported in the literature concerning the instances of Christofides et al. [41] benchmark. For the proposed

algorithm we show three columns. The first column shows the average solution quality (averaged over the 10 experiments),

the second column shows the best result out of 10 experiments and the three column shows the root CPU time required to

run every algorithm on an instance (in seconds) to find the solutions. In this set, our algorithm could find the best solution

for C10, which could not solve by other compared algorithms. 

5.2. Experiments on Taillard [37] benchmark 

The second benchmark includes 12 instances, introduced by Taillard [37] . The instances, divided into three groups that

have 75, 100, or 150 nodes. There were 4 instances in each group, the number of used vehicles was 9 or 10 in group 1, 11

or 12 in group 2, and 14 or 15 in group 3, and an algorithm could set to solve the problem using both number of vehicles.

Table 6 presents the complete characteristics of these groups. 

Table 7 shows the instances suggested by Taillard [37] and the execution times (in seconds) of the proposed algorithms

for these instances. The instances suggested by Taillard have been tested on a limit number of algorithms compared to the

benchmark introduced by Christofides et al. [41] . We include three most important algorithms in Table 7 . Namely, Optimized

Crossover Genetic Algorithm (OCGA) by Nazif and Lee [7] , an Active Guided Evolution Strategies Meta-heuristic Called (AGES)

proposed by Mester and Braysy [50] , and a Cellular Genetic Algorithm Called (JCell2o1i) by Alba and Dorronsoro [51] . Like

in Tables 4 and 5 , for the proposed algorithm we show three columns. The first column shows the average solution quality

(averaged over the 10 experiments), and the second column shows the best result out of 10 experiments. The third column

shows the CPU time (in seconds) used for finding the solutions. Bold entries mark the best solution quality obtained among

the heuristics in the comparison. 

In these tests, the proposed algorithm was able to prove its efficiency. It could successfully find 8 out of 12 solutions

and obtained good solutions for three other instances. On the other hand, OCGA [7] found 6 out of 12 solutions successfully,
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Table 5 

Computational results for the benchmark of Christofides et al. [41] . The bold values mean the best-so-far results that are found by the algorithms. 

OCGA [7] AGES [46] SEPAS [47] GA_P [48] GA_BB [49] CVRP_GELS BKS 

Instance Best val. Best val. Best val. Best val. Best val. Avg. of 10 Best of 10 Time (s) 

C1 524.61 524.61 524.61 524.61 524.61 528 524.61 51 524.61 a 

C2 835.26 835.26 835.26 835.26 835.26 838 835.26 68 835.26 a 

C3 826.14 826.14 826.14 826.14 827.39 830 826.14 136 826.14 a 

C4 1028.42 1028.42 1028.42 1030.46 1036.16 1035 1028.42 173 1028.42 a 

C5 1299.64 1291.29 1311.48 1296.39 1324.06 1302 1294.21 541 1291.29 b 

C6 555.43 555.43 555.43 555.43 555.43 559 555.43 58 555.43 a 

C7 909.68 909.68 909.68 909.68 909.68 920 914.13 89 909.68 a 

C8 865.94 865.94 865.94 865.94 868.32 876 869.34 192 865.94 a 

C9 1163.38 1162.55 1162.55 1162.55 1169.15 1174 1162.55 437 1162.55 a 

C10 1406.23 1401.12 1407.21 1402.75 1418.79 1405 1395.85 997 1395.85 c 

C11 1042.11 1042.11 1042.11 1042.11 1043.11 1058 1042.11 225 1042.11 a 

C12 819.56 819.56 819.56 819.56 819.56 829 819.56 149 819.56 a 

C13 1542.25 1541.14 1544.01 1542.86 1553.12 1564 1541.14 451 1541.14 a 

C14 866.37 866.37 866.37 866.37 866.37 873 866.37 357 866.37 a 

The column Best val. indicates the number of vehicles used in the best found solution. The column Time indicates time of the best run of tested algorithms 

respectively. 

Bold: Indicates the solution that minimizes the number of vehicles with least distance traveled. 

OCGA: Optimized Crossover Genetic Algorithm (OCGA) from Nazif and Lee [7] ; Pentium 4, 2.0 GHz computer with 2.0 GB RAM using C language. 

AGES: Active Guided Evolution Strategies Meta-heuristic Called (AGES) proposed from Mester and Braysy [46] ; Pentium IV Net Vista PC2800 MHz with 

512 MB RAM using Visual Basic 6.0 language. 

SEPAS: Adaptive memory programming method called (SEPAS) from Tarantilis [47] ; Pentium II/400 with 128 MB RAM using Visual C ++ language. 

GA_P: GAs that are those of Prins (GA_P) [48] ; Pentium-3PC clocked at 1 GHz under the operating system Windows 98 using Pascal-like, Delphi 5 language. 

GA_BB: Berger and Barkaoui (GA_BB) [49] ; Pentium 400 MHz using C ++ language. 

CVRP_GELS: Capacitated Vehicle Routing Problem Using the Gravitational Emulation Local Search Algorithm; Pentium 7, at 3.07 GHz with 16 GB RAM using 

Matlab language. 

BKS: Best Known Solution. 

Note. Computing times are expressed in seconds based on a machine with the performance of 24,596 Mflops. 
a Taillard [37] . 
b Mester and Braysy [50] . 
c Rochat and Taillard [56] . 

Table 6 

Instances’ characteristics of Taillard [37] . 

Instance C K Q m.t.l s.t 

Tai75a 75 9 or 10 1445 ∞ –

Tai75b 75 9 or 10 1679 ∞ –

Tai75c 75 9 or 10 1122 ∞ –

Tai75d 75 9 or 10 1699 ∞ –

Tai100a 100 11 or 12 1409 ∞ –

Tai100b 100 11 or 12 1842 ∞ –

Tai100c 100 11 or 12 2043 ∞ –

Tai100d 100 11 or 12 1297 ∞ –

Tai150a 150 14 or 15 1544 ∞ –

Tai150b 150 14 or 15 1918 ∞ –

Tai150c 150 14 or 15 2021 ∞ –

Tai150d 150 14 or 15 1874 ∞ –

C: number of costumer, K: minimum number of used vehicle, Q: capacity of vehicle, m.t.l.: maximum tour length, s.t.: service time. 

 

 

 

 

 

 

 

 

AGES [50] found 7 successful solutions and JCell2oil [51] could find only 4 out of 12 solutions. Comparing the results,

confirm that the proposed CVRP-GELS algorithm works best to solve the problems proposed in these 12 instances. 

5.3. Experiments on Uchoa et al. [38] benchmark 

In order to compare our method with the state of the art methods, we used a benchmark introduced by Uchoa et al.

[38] . The introduced benchmark contains a set of instances running from 100 to 10 0 0 customers. We report results of our

experiment jointly in Tables 8 –10 , which compared our method with other methods based on the average solution quality,

best solutions quality and average CPU time of every method, the lower bound, root CPU time, number of search nodes and

overall time, and finally the cost and number of vehicles of the BKS ever found since the instances were created, including

preliminary runs of those heuristics with alternative parameterizations. 

We selected two of the successful meta-heuristics that have been tested on the same benchmark. The first method that

we choose is an efficient neighborhood-based method, the Iterated Local Search based meta-heuristic algorithm (ILS-SP)
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Table 7 

Computational results for the benchmark of Taillard [38] . The bold values mean the best-so-far results that are found by the algorithms. 

Instance OCGA [7] AGES [50] JCell2o1i [51] CVRP_GELS BKS 

AVG. of 10 Best of 10 Time (s) 

Tai75a 1618.36 1618.36 1618.36 1625 1618.36 39 1618.36 a 

Tai75b 1344.63 1344.64 1344.62 1348 1344.62 48 1344.62 b 

Tai75c 1291.01 1291.01 1291.01 1298 1291.01 41 1291.01 a 

Tai75d 1365.42 1365.42 1365.42 1369 1365.42 63 1365.42 a 

Tai100a 2050.64 2041.34 2047.90 2056 2041.34 75 2041.34 c 

Tai100b 1939.90 1939.90 1940.36 1967 1947.07 89 1939.90 d 

Tai100c 1408.40 1406.20 1411.66 1429 1406.20 84 1406.20 c 

Tai100d 1581.22 1581.25 1584.20 1609 1581.25 92 1581.25 c 

Tai150a 3055.23 3055.23 3056.41 3099 3069.14 117 3055.23 a 

Tai150b 2755.09 2727.67 2732.75 2769 2656.47 114 2656.47 c 

Tai150c 2352.86 2343.11 2364.08 2394 2341.84 138 2341.84 a 

Tai150d 2660.33 2645.40 2654.69 2702 2659.02 129 2645.39 e 

Bold: Indicates the solution that minimizes the number of vehicles with least distance traveled. 

OCGA: Optimized Crossover Genetic Algorithm (OCGA) from Nazif and Lee [7] ; Pentium 4, 2.0 GHz computer with 2.0 GB RAM using C language. 

AGES: Active Guided Evolution Strategies Meta-heuristic Called (AGES) proposed from Mester and Braysy [46] ; Pentium IV Net Vista PC2800 MHz with 

512 MB RAM using Visual Basic 6.0 language. 

JCell2o1i: Cellular Genetic Algorithm Called (JCell2o1i) from Alba and Dorronsoro [51] ; 2.8 GHz computer using Java language. 

CVRP_GELS: Capacitated Vehicle Routing Problem Using the Gravitational Emulation Local Search Algorithm; Pentium 7, at 3.07 GHz with 16 GB RAM using 

Matlab language. 

BKS: Best Known Solution. 

Note. Computing times are expressed in seconds based on a machine with the performance of 24,596 Mflops. 
a Taillard [37] . 
b Alba and Dorronosoro [51] . 
c Gambardella et al. [57] . 
d Mester and Braysy [50] . 
e Rochat and Taillard [56] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of Subramanian et al. [52] . The second method that we consider is a recent population-based method, the Unified Hybrid

Genetic Search (UHGS) of Vidal et al. [21,53] . 

As reported in [21,52,53] , ILS-SP and UHGS have been tested on a Xeon CPU with 3.07 GHz and 16 GB of RAM, running

under Oracle Linux Server 6.4. The average and best results on 50 runs are reported in Tables 8–10 , as well as the average

computational time per instance similar to reported tables of benchmark Uchoa et al. [38] . Table 10 also reports additional

statistics on instances characteristics and results, such as the minimum, maximum, average and median results on the in-

stance set for n, Q, r, n / K min , as well as for the Gaps (%) and CPU time of ILS-SP, UHGS and CVRP_GELS . 

As shown in Table 10 , all the tested methods namely, ILS-SP, UHGS and CVRP_GELS , find solutions of consistent quality,

with an average gap of 0.52%, 0.19% and 0.16%, respectively, with respect to the BKS ever found during all experiments. 

CVPR_GELS finds solutions of generally higher quality than both UHGS and ILS for a comparable amount of CPU time

specially when comparing its execution time with execution of the UHGS method. In some cases our method could find

solutions with less number of required vehicles compare to BKS in a very efficient manner which is another advantage of

this algorithm. 

Overall, these experiments revealed that the proposed method could be a very efficient method in order to solve CVRP

and its results are comparable with the results of state-of-the-art methods. 

5.4. Experiments on Christofides et al. [41] and Golden et al. [39] benchmarks 

In order to compare our method with more methods, in Table 11 we compare the results of GTS proposed by [12] ,

XK algorithm proposed by Xu and Kelly [54] and with those of a deterministic annealing heuristic, called RTR, described in

Golden et al. [39] . In this test we use fifteen CVRP instances proposed by Christofides et al. [41] and Golden et al. [39] which

are generally used as a standard benchmark for CVRP algorithms. The results of the GTS, XK and RTR algorithms for the

CVRP are those reported in [12] . On these widely used test instances, CVRP_GELS proved to solve the problems, as fast as

GTS with better solutions found in average. The CVRP_GELS solution is worse than the GTS only in two out of the fifteen

CVRP instances and found better solutions than the BKS in nine cases. 

Table 12 summarizes the results of comparing four well-known algorithms that solved CVRP problem. In this test, we

compared our results using 14 instances (P01–P14) of Christofides et al. [41] ranging from 50 to 199 customers and 20

large-scale instances (Pr01–Pr20) of Golden et al. [39] , ranging from 200 to 483 customers with average results of other

four algorithms based on the report given by Vidal et al. in [21] . 

In Table 12 the first two columns display the instance identifier and the number of customers respectively, while the

next columns compare the average performance of CVPR_GELS to the performance of Hybrid Genetic Algorithm of Prins

[6] (Hybrid GA), the guided evaluation strategies of Mester et al. [46] (AGES), edge-assembly crossover based metric algo-

rithm of Nagata et al. [55] (EAX) and Hybrid Genetic Search Adaptive Diversity Control of Vidal et al [21] (HGSADC). We also
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Table 8 

New set of benchmark instances: characteristics and results of current state-of-the-art algorithms (Part I). The bold values mean the best-so-far results that are found by the algorithms. 

# Name Instance Characteristics ILS-SP [52] UHGS [21, 53] CVRP_GELS BKS 

n Dep Cust Dem Q r n / K min Avg Best T(min) Avg Best T(min) Avg Best T(min) Value NV 

1 X-n101-k25 100 R RC (7) 1–100 206 4.0 4.0 27,591.0 27,591 0.13 27,591.0 27,591 1.43 27,591.0 27,591 1.24 27,591 26 

2 X-n106-k14 105 E C ( 3 ) 50–100 600 8.0 7.5 26,375.9 26,362 2.01 26,381.8 26,378 4.04 26,375.9 26,362 3.87 26,362 14 

3 X-n110-k13 109 C R 5–100 66 8.8 8.4 14,971.0 14,971 0.20 14,971.0 14,971 1.58 14,971.0 14,971 1.35 14,971 13 

4 X-n115-k10 114 C R SL 169 12.5 11.4 12,747.0 12,747 0.18 12,747.0 12,747 1.81 12,747.0 12,747 1.72 12,747 10 

5 X-n120-k6 119 E RC (8) U 21 21.8 19.8 13,337.6 13,332 1.69 13,332.0 13,332 2.31 13,332.0 13,332 2.21 13,332 6 

6 X-n125-k30 124 R C (5) Q 188 4.2 4.1 55,673.8 55,539 1.43 55,542.1 55,539 2.66 55,542.1 55,539 2.57 55,539 30 

7 X-n129-k18 128 E RC (8) 1–10 39 7.4 7.1 28,998.0 28,948 1.92 28,948.5 28,940 2.71 28,944.7 28,940 2.63 28,940 18 

8 X-n134-k13 133 R C ( 4 ) Q 643 10.4 10.2 10,947.4 10,916 2.07 10,934.9 10,916 3.32 10,938.2 10,916 3.11 10,916 13 

9 X-n139-k10 138 C R 5–10 106 14.0 13.8 13,603.1 13,590 1.60 13,590.0 13,590 2.28 13,586.4 13,590 2.17 13,590 10 

10 X-n143-k7 142 E R 1–100 1190 22.6 20.3 15,745.2 15,726 1.64 15,700.2 15,700 3.10 15,743.1 15,709 3.02 15,700 7 

11 X-n148-k46 147 R RC (7) 1–10 18 3.2 3.2 43,452.1 43,448 0.84 43,448.0 43,448 3.18 43,445.6 43,448 3.08 43,448 47 

12 X-n153-k22 152 C C ( 3 ) SL 144 7.1 6.9 21,400.0 21,340 0.49 21,226.3 21,220 5.47 21,223.1 21,220 5.34 21,220 23 

13 X-n157-k13 156 R C ( 3 ) U 12 12.0 12.0 16,876.0 16,876 0.76 16,876.0 16,876 3.19 16,876.0 16,876 3.10 16,876 13 

14 X-n162-k11 161 C RC (8) 50–100 1174 15.5 14.6 14,160.1 14,138 0.54 14,141.3 14,138 3.32 14,152.7 14,138 3.14 14,138 11 

15 X-n167-k10 166 E R 5–10 133 17.8 16.6 20,608.7 20,562 0.86 20,563.2 20,557 3.73 20,563.2 20,557 3.63 20,557 10 

16 X-n172-k51 171 C RC (5) Q 161 3.4 3.4 45,616.1 45,607 0.64 45,607.0 45,607 3.83 45,610.8 45,607 3.79 45,607 53 

17 X-n176-k26 175 E R SL 142 6.8 6.7 4 4 8,24 9.8 48,140 1.11 47,957.2 47,812 7.56 47,951.4 47,812 7.47 47,812 26 

18 X-n181-k23 180 R C (6) U 8 8.4 7.8 25,571.5 25,569 1.59 25,591.1 25,569 6.28 25,583.7 25,569 6.16 25,569 23 

19 X-n186-k15 185 R R 50–100 974 13.0 12.3 24,186.0 24,145 1.72 24,147.2 24,145 5.92 24,159.1 24,145 5.82 24,145 15 

20 X-n190-k8 189 E C ( 3 ) 1–10 138 25.0 23.6 17,143.1 17,085 2.10 16,987.9 16,980 12.08 16,975.2 16,980 11.92 16,980 8 

21 X-n195-k51 194 C RC (5) 1–100 181 3.8 3.8 44,234.3 44,225 0.87 4 4,24 4.1 44,225 6.10 44,237.3 44,225 6.04 44,225 53 

22 X-n200-k36 199 R C (8) Q 402 5.6 5.5 58,697.2 58,626 7.48 58,626.4 58,578 7.97 58,626.4 58,578 7.85 58,578 36 

23 X-n204-k19 203 C RC (6) 50–100 836 11.2 10.7 19,625.2 19,570 1.08 19,571.5 19,565 5.35 19,571.5 19,565 5.24 19,565 19 

24 X-n209-k16 208 E R 5–10 101 13.5 13.0 30,765.4 30,667 3.80 30,680.4 30,656 8.62 30,678.3 30,656 8.56 30,656 16 

25 X-n214-k11 213 C C ( 4 ) 1–100 944 19.4 19.4 11,126.9 10,985 2.26 10,877.4 10,856 10.22 10,877.4 10,856 10.15 10,856 11 

26 X-n219-k73 218 E R U 3 3.6 3.0 117,595.0 117,595 0.85 117,604.9 117,595 7.73 117,582.1 117,595 7.66 117,595 73 

27 X-n223-k34 222 R RC (5) 1–10 37 6.5 6.5 40,533.5 40,471 8.48 40,499.0 40,437 8.26 40,487.7 40,437 8.15 40,437 34 

28 X-n228-k23 227 R C (8) SL 154 10.0 9.9 25,795.8 25,743 2.40 25,779.3 25,742 9.80 25,779.3 25,742 9.76 25,742 23 

29 X-n233-k16 232 C RC (7) Q 631 14.5 14.5 19,336.7 19,266 3.01 19,288.4 19,230 6.84 19,276.4 19,230 6.79 19,230 17 

30 X-n237-k14 236 E R U 18 18.6 16.9 27,078.8 27,042 3.46 27,067.3 27,042 8.90 27,075.1 27,042 8.83 27,042 14 

31 X-n242-k48 241 E R 1–10 28 5.0 5.0 82,874.2 82,774 17.83 82,948.7 82,804 12.42 82,751.0 82,751 12.37 82,751 48 

32 X-n247-k50 246 C C ( 4 ) SL 134 5.3 4.9 37,507.2 37,289 2.06 37,284.4 37,274 20.41 37,284.4 37,274 20.35 37,274 51 

33 X-n251-k28 250 R RC ( 3 ) 5–10 69 9.2 8.9 38,840.0 38,727 10.77 38,796.4 38,699 11.69 38,752.8 38,684 11.64 38,684 28 

34 X-n256-k16 255 C C (8) 50–100 1225 16.0 15.9 18,883.9 18,880 2.02 18,880.0 18,880 6.52 18,880.0 18,880 6.47 18,880 17 

35 X-n261-k13 260 E R 1–100 1081 21.0 20.0 26,869.0 26,706 6.67 26,629.6 26,558 12.67 26,629.6 26,558 12.57 26,558 13 

Bold: Indicates the solution that minimizes the number of vehicles with least distance traveled. 

ILS-SP: Set Partitioning (SP) formulation with an Iterated Local Search (ILS) from A. Subramanian et al. [52] and E. Uchoa et al. [38] ; Xeon CPU 3.07 GHz with 16 GB of RAM using Oracle Linux Server 6.4, 

Performance = 24 Gflops. 

UHGS: Unified Hybrid Genetic Search from T. Vidal et al. [21, 53] and E. Uchoa et al. [38] ; Xeon CPU 3.07 GHz with 16 GB of RAM using Oracle Linux Server 6.4, Performance = 24 Gflops. 

CVRP_GELS: Capacitated Vehicle Routing Problem Using the Gravitational Emulation Local Search Algorithm; Pentium 7, at 3.07 GHz with 16 GB RAM using Matlab language, Performance = 24 Gflops. 

BKS: Best Known Solution. 

Note. Computing times are expressed in minutes based on a machine with the performance of 24 Gflops. 
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Table 9 

New set of benchmark instances: characteristics and results of current state-of-the-art algorithms (Part II). The bold values mean the best-so-far results that are found by the algorithms. 

# Name Instance Characteristics ILS-SP [52] UHGS [21, 53] CVRP_GELS BKS 

n Dep Cust Dem Q r n / K min Avg Best T(min) Avg Best T(min) Avg Best T(min) Value NV 

36 X-n266-k58 265 R RC (6) 5–10 35 4.6 4.6 75,563.3 75,478 10.03 75,759.3 75,517 21.36 75,563.3 75,478 18.03 75,478 58 

37 X-n270-k35 269 C RC (5) 50–100 585 7.7 7.7 35,363.4 35,324 9.07 35,367.2 35,303 11.25 35,342.4 35,291 10.05 35,291 36 

38 X-n275-k28 274 R C ( 3 ) U 10 10.8 9.8 21,256.0 21,245 3.59 21,280.6 21,245 12.04 21,267.2 21,245 8.2 21,245 28 

39 X-n280-k17 279 E R SL 192 16.5 16.4 33,769.4 33,624 9.62 33,605.8 33,505 19.09 33,598.4 33,503 11.9 33,503 17 

40 X-n284-k15 283 R C (8) 1–10 109 20.2 18.9 20,448.5 20,295 8.64 20,286.4 20,227 19.91 20,273.7 20,226 10.17 20,226 15 

41 X-n289-k60 288 E RC (7) Q 267 4.8 4.8 95,450.6 95,315 16.11 95,469.5 95,244 21.28 95,453.1 95,238 14.3 95,185 61 

42 X-n294-k50 293 C R 1–100 285 5.9 5.9 47,254.7 47,190 12.42 47,259.0 47,171 14.70 47,117.2 47,167 10.07 47,167 51 

43 X-n298-k31 297 R R 1–10 55 9.6 9.6 34,356.0 34,239 6.92 34,292.1 34,231 10.93 34,286.3 34,231 8.01 34,231 31 

44 X-n303-k21 302 C C (8) 1–100 794 15.0 14.4 21,895.8 21,812 14.15 21,850.9 21,748 17.28 21,817.8 21,744 15.02 21,744 21 

45 X-n308-k13 307 E RC (6) SL 246 24.2 23.6 26,101.1 25,901 9.53 25,895.4 25,859 15.31 25,887.1 25,859 11.16 25,859 13 

46 X-n313-k71 312 R RC ( 3 ) Q 248 4.4 4.4 94,297.3 94,192 17.50 94,265.2 94,093 22.41 94,228.6 94,044 19.25 94,044 72 

47 X-n317-k53 316 E C ( 4 ) U 6 6.2 6.0 78,356.0 78,355 8.56 78,387.8 78,355 22.37 78,375.4 78,355 17.41 78,355 53 

48 X-n322-k28 321 C R 50–100 868 11.6 11.5 29,991.3 29,877 14.68 29,956.1 29,870 15.16 29,947.3 29,866 14.59 29,866 28 

49 X-n327-k20 326 R RC (7) 5–10 128 17.0 16.3 27,812.4 27,599 19.13 27,628.2 27,564 18.19 27,604.8 27,556 20.74 27,556 20 

50 X-n331-k15 330 E R U 23 23.4 22.0 31,235.5 31,105 15.70 31,159.6 31,103 24.43 31,142.7 31,103 19.28 31,103 15 

51 X-n336-k84 335 E R Q 203 4.0 4.0 139,461.0 139,197 21.41 139,534.9 139,210 37.96 139,458.4 139,197 26.19 139,197 86 

52 X-n344-k43 343 CR C (7) 5–10 61 8.0 8.0 42,284.0 42,146 22.58 42,208.8 42,099 21.67 42,201.9 42,099 18.06 42,099 43 

53 X-n351-k40 350 C C ( 3 ) 1–100 436 8.8 8.8 26,150.3 26,021 25.21 26,014.0 25,946 33.73 26,009.1 25,946 29.48 25,946 41 

54 X-n359-k29 358 E RC (7) 1–10 68 12.5 12.3 52,076.5 51,706 48.86 51,721.7 51,509 34.85 51,717.3 51,509 32.17 51,509 29 

55 X-n367-k17 366 R C ( 4 ) SL 21.8 21.8 21.5 23,003.2 22,902 13.13 22,838.4 22,814 22.02 22,827.1 22,814 14.62 22,814 17 

56 X-n376-k94 375 E R U 4 4.2 4.0 147,713.0 147,713 7.10 147,750.2 147,717 28.26 147,709.6 147,713 19.57 147,713 94 

57 X-n384-k52 383 R R 50–100 564 7.4 7.4 66,372.5 66,116 34.47 66,270.2 66,081 40.20 66,264.7 66,081 39.85 66,081 53 

58 X-n393-k38 392 C RC (5) 5–10 78 10.4 10.3 38,457.4 38,298 20.82 38,374.9 38,269 28.65 38,372.6 38,269 25.15 38,269 38 

59 X-n401-k29 400 E C (6) Q 745 14.0 13.8 66,715.1 66,453 60.36 66,365.4 66,243 49.52 66,357.4 66,243 47.36 66,243 29 

60 X-n411-k19 410 R C (5) SL 216 22.6 21.6 19,954.9 19,792 23.76 19,743.8 19,718 34.71 19,737.3 19,718 28.61 19,718 19 

61 X-n420-k130 419 C RC ( 3 ) 1–10 18 3.2 3.2 107,838.0 107,798 22.19 107,924.1 107,798 53.19 107,899.1 107,798 47.13 107,798 130 

62 X-n429-k61 428 R R 50–100 536 7.1 7.0 65,746.6 65,563 38.22 65,648.5 65,501 41.45 65,635.8 65,501 38.04 65,501 62 

63 X-n439-k37 438 C RC (8) U 12 12.0 11.8 36,441.6 36,395 39.63 36,451.1 36,395 34.55 36,447.2 36,395 33.27 36,395 37 

64 X-n449-k29 448 E R 1–100 777 15.5 15.4 56,204.9 55,761 59.94 55,553.1 55,378 64.92 55,372.6 55,358 54.06 55,358 29 

65 X-n459-k26 458 C C ( 4 ) Q 1106 17.8 17.6 24,462.4 24,209 60.59 24,272.6 24,181 42.80 24,263.1 24,181 47.18 24,181 26 

66 X-n469-k138 468 E R 50–100 256 3.4 3.4 222,182.0 221,909 36.32 222,617.1 222,070 86.65 222,314.3 221,909 73.35 221,909 140 

67 X-n480-k70 479 R C (8) 5–10 52 6.8 6.8 89,871.2 89,694 50.40 89,760.1 89,535 66.96 89,742.8 89,535 55.71 89,535 70 

68 X-n491-k59 490 R RC (6) 1–100 42 8.4 8.3 67,226.7 66,965 52.23 66,898.0 66,633 71.94 66,834.0 66,633 67.43 66,633 60 

69 X-n502-k39 501 E C ( 3 ) U 13 13.0 12.8 69,346.8 69,284 80.75 69,328.8 69,253 63.61 69,317.1 69,253 64.91 69,253 39 

70 X-n513-k21 512 C RC ( 4 ) 1–10 142 25.0 24.4 24,434.0 24,332 35.04 24,296.6 24,201 33.09 24,279.6 24,201 30.07 24,201 21 

Bold: Indicates the solution that minimizes the number of vehicles with least distance traveled. 

ILS-SP: Set Partitioning (SP) formulation with an Iterated Local Search (ILS) from A. Subramanian et al. [52] and E. Uchoa et al. [38] ; Xeon CPU 3.07 GHz with 16 GB of RAM using Oracle Linux Server 6.4, 

Performance = 24 Gflops. 

UHGS: Unified Hybrid Genetic Search from T. Vidal et al. [21, 53] and E. Uchoa et al. [38] ; Xeon CPU 3.07 GHz with 16 GB of RAM using Oracle Linux Server 6.4, Performance = 24 GMflops. 

CVRP_GELS: Capacitated Vehicle Routing Problem Using the Gravitational Emulation Local Search Algorithm; Pentium 7, at 3.07 GHz with 16 GB RAM using Matlab language, Performance = 24 Gflops. 

BKS: Best Known Solution. 

Note. Computing times are expressed in minutes based on a machine with the performance of 24 Gflops. 
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Table 10 

New set of benchmark instances: characteristics and results of current state-of-the-art algorithms (Part III). The bold values mean the best-so-far results that are found by the algorithms. 

# Name Instance Characteristics ILS-SP [52] UHGS [21, 53] CVRP_GELS BKS 

n Dep Cust Dem Q r n / K min Avg Best T(min) Avg Best T(min) Avg Best T(min) Value NV 

71 X-n524-k153 523 R R SL 125 3.8 3.4 155,005.0 154,709 27.27 154,979.5 154,774 80.70 154,968.3 154,594 40.61 154,594 155 

72 X-n536-k96 535 C C (7) Q 371 5.6 5.6 95,700.7 95,524 62.07 95,330.6 95,122 107.53 95,318.7 95,122 73.91 95,122 97 

73 X-n548-k50 547 E R U 11 11.2 10.9 86,874.1 86,710 63.95 86,998.5 86,822 84.24 86,952.9 86,710 73.17 86,710 50 

74 X-n561-k42 560 C RC (7) 1–10 74 13.5 13.3 43,131.3 42,952 68.86 42,866.4 42,756 60.60 42,816.1 42,756 55.38 42,756 42 

75 X-n573-k30 572 E C ( 3 ) SL 210 19.4 19.1 51,173.0 51,092 112.03 50,915.1 50,780 188.15 50,903.0 50,780 142.62 50,780 30 

76 X-n586-k159 585 R RC ( 4 ) 5–10 28 3.6 3.7 190,919.0 190,612 78.54 190,838.0 190,543 175.29 190,838.0 190,543 81.36 190,543 159 

77 X-n599-k92 598 R R 50–100 487 6.5 6.5 109,384.0 109,056 72.96 109,064.2 108,813 125.91 109,014.7 108,813 88.25 108,813 94 

78 X-n613-k62 612 C R 1–100 523 10.0 9.9 60,4 4 4.2 60,229 74.80 59,960.0 59,778 117.31 59,935.1 59,778 72.31 59,778 62 

79 X-n627-k43 626 E C (5) 5–10 110 14.5 14.6 62,905.6 62,783 162.67 62,524.1 62,366 239.68 62,503.5 62,366 175.92 62,366 43 

80 X-n641-k35 640 E RC (8) 50–100 1381 18.6 18.3 64,606.1 64,462 140.42 64,192.0 63,839 158.81 64,177.2 63,839 137.41 63,839 35 

81 X-n655-k131 654 C C ( 4 ) U 5 5.0 5.0 106,782.0 106,780 47.24 106,899.1 106,829 150.48 106,761.4 106,780 63.17 106,780 131 

82 X-n670-k130 669 R R SL 129 5.3 5.1 147,676.0 147,045 61.24 147,222.7 146,705 264.10 147,216.3 146,705 93.49 146,705 134 

83 X-n685-k75 684 C RC (6) Q 408 9.2 9.1 68,988.2 68,646 73.85 68,654.1 68,425 156.71 68,639.67 68,425 82.57 68,425 75 

84 X-n701-k44 700 E RC (7) 1–10 87 16.0 15.9 83,042.2 82,888 210.08 82,487.4 82,293 253.17 82,489.5 82,294 208.38 82,292 44 

85 X-n716-k35 715 R C ( 3 ) 1–100 1007 21.0 20.4 44,171.6 44,021 225.79 43,641.4 43,525 264.28 43,625.1 43,525 231.74 43,525 35 

86 X-n733-k159 732 C R 1–10 25 4.6 4.6 137,045.0 136,832 111.56 136,587.6 136,366 244.53 136,572.8 136,366 136.26 136,366 160 

87 X-n749-k98 748 R C (8) 1–100 396 7.7 7.6 78,275.9 77,952 127.24 77,864.9 77,715 313.88 77,797.4 77,700 216.23 77,700 98 

88 X-n766-k71 765 E RC (7) SL 166 10.8 10.8 115,738.0 115,443 242.11 115,147.9 114,683 382.99 115,132.7 114,683 231.93 114,683 71 

89 X-n783-k48 782 R R Q 832 16.5 16.3 73,722.9 73,447 235.48 73,009.6 72,781 269.70 72,974.19 72,768 227.64 72,727 48 

90 X-n801-k40 800 E R U 20 20.2 20.0 74,005.7 73,830 432.64 73,731.0 73,587 289.24 73,723.9 73,587 273.18 73,587 40 

91 X-n819-k171 818 C C (6) 50–100 358 4.8 4.8 159,425.0 159,164 148.91 158,899.3 158,611 374.28 158,776.1 158,611 214.51 158,611 173 

92 X-n837-k142 836 R RC (7) 5–10 44 5.9 5.9 195,027.0 194,804 173.17 194,476.5 194,266 463.36 194,458.3 194,266 195.72 194,266 142 

93 X-n856-k95 855 C RC ( 3 ) U 9 9.6 9.0 89,277.6 89,060 153.65 89,238.7 89,118 288.43 89,226.5 89,060 179.85 89,060 95 

94 X-n876-k59 875 E C (5) 1–100 764 15.0 14.8 100,417.0 100,177 409.31 99,884.1 99,715 495.38 99,871.4 99,715 411.68 99,715 59 

95 X-n895-k37 894 R R 50–100 1816 24.2 24.2 54,958.5 54,713 410.17 54,439.8 54,172 321.89 54,421.9 54,172 315.91 54,172 38 

96 X-n916-k207 915 E RC (6) 5–10 33 4.4 4.4 330,948.0 330,639 226.08 330,198.3 329,836 0.81 330,182.6 329,836 113.47 329,836 208 

97 X-n936-k151 935 C R SL 138 6.2 6.2 134,530.0 133,592 202.50 133,512.9 133,140 531.50 133,361.2 133,105 381.49 133,105 159 

98 X-n957-k87 956 R RC ( 4 ) U 11 11.6 11.0 85,936.6 85,697 311.20 85,822.6 85,672 432.90 85,815.1 85,672 186.74 85,672 87 

99 X-n979-k58 978 E C (6) Q 998 17.0 16.9 120,253.0 119,994 687.22 19,502.1 119,194 553.96 19,488.3 119,194 520.17 119,194 58 

100 100 X-n1001-k43 10 0 0 R R - 1–10 131 23.4 23.3 73,985.4 73,776 792.75 72,956.0 72,742 549.03 72,917.9 72,742 536.83 72,742 43 

Min 100 – – – 3 3.2 3.0 0.00% 0.00% 0.13 0.00% 0.00% 1.43 0.00% 0.0 0 0% 1.35 – –

Max 10 0 0 – – – 1816 25.0 24.4 2.50% 1.42% 792.75 0.55% 0.13% 560.81 0.53% 0.074% 536.83 – –

Avg. 412.2 – – – 324.6 11.4 11.1 0.52% 0.25% 71.71 0.19% 0.01% 98.79 0.16% 0.002% 69.82 – –

Median 333 – – – 149 10.2 9.9 0.38% 0.10% 17.67 0.20% 0.00% 22.39 0.15% 0.0 0 0% 19.43 – –

Bold: Indicates the solution that minimizes the number of vehicles with least distance traveled. 

ILS-SP: Set Partitioning (SP) formulation with an Iterated Local Search (ILS) from A. Subramanian et al. [52] and E. Uchoa et al. [38] ; Xeon CPU 3.07 GHz with 16 GB of RAM using Oracle Linux Server 6.4, 

Performance = 24 Gflops. 

UHGS: Unified Hybrid Genetic Search from T. Vidal et al. [21, 53] and E. Uchoa et al. [38] ; Xeon CPU 3.07 GHz with 16 GB of RAM using Oracle Linux Server 6.4, Performance = 24 Gflops. 

CVRP_GELS: Capacitated Vehicle Routing Problem Using the Gravitational Emulation Local Search Algorithm; Pentium 7, at 3.07 GHz with 16 GB RAM using Matlab language, Performance = 24 Gflops. 

BKS: Best Known Solution. 

Note. Computing times are expressed in minutes based on a machine with the performance of 24 Gflops. 
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Table 11 

Computational results for the benchmark of Christofides et al. [41] and Golden et al. [39] . The bold values mean the best-so-far results that are found by the algorithms. 

Instance n K C GTS [12] XK [54] RTR [39] CVRP_GELS BKS 

Best % T(min) % T(min) % T(min) AVG. of 10 Best of 10 % T(min) 

D051-06c 50 6 160 555.43 10 0.0 0 0.86 10 0.0 0 30.67 10 0.0 0 3.17 555.98 555.43 10 0.0 0 0.81 555.43 a 

D076-11c 75 11 140 920.72 101.21 2.751 106.151 102.13 10 0.0 0 23.10 911.36 909.68 10 0.0 0 15.06 909.68 a 

D101-09c 100 9 200 869.48 100.41 2.90 101.78 98.15 100.27 8.60 867.92 863.47 99.71 18.28 865.94 a 

D101-11c 100 11 200 866.37 10 0.0 0 1.41 105.64 152.98 100.02 9.42 869.83 866.37 10 0.0 0 8.60 866.37 a 

D121-11c 120 11 200 1545.51 100.28 9.34 105.02 201.75 100.59 2.00 1544.52 1542.97 100.12 54.05 1541.14 a 

D151-14c 150 14 200 1173.12 100.91 5.67 – 168.08 101.40 15.55 1159.24 1157.32 99.55 26.08 1162.55 a 

D200-18c 199 18 200 1435.74 102.86 9.11 103.11 368.37 101.79 52.02 1387.51 1384.28 99.17 46.52 1395.85 a 

D201-05k 200 5 900 6697.53 99.92 2.38 – 591.40 10 0.0 0 11.24 6660.14 6657.41 99.32 1.88 6702.73 b 

D241-10k 240 10 550 5736.159 98.31 4.98 – 802.87 10 0.0 0 3.68 5835.42 5834.60 10 0.0 0 11.56 5834.60 b 

D281-08k 280 8 900 8963.32 99.41 4.65 – 913.70 10 0.0 0 18.79 9017.65 9016.93 10 0.0 0 9.95 9016.93 b 

D321-10k 320 10 700 8553.03 99.858 8.28 – 898.53 105.09 22.66 8522.75 8507.39 99.32 26.35 8566.04 b 

D361-09k 360 9 900 10,547.44 95.47 11.66 – 1062.73 101.50 22.55 10,514.31 10,511.58 95.15 33.07 11,047.69 b 

D401-10k 400 10 900 11,402.759 97.89 12.94 – 1749.27 101.98 40.04 11,326.68 11,324.74 97.22 36.03 11,649.06 b 

D441-11k 440 11 900 12,036.24 98.251 11.08 – 1586.20 102.16 111.37 12,011.42 12,008.53 98.03 28.23 12,250.06 b 

D481-12k 480 12 10 0 0 14,910.62 101.8515 15.13 – 2432.42 10 0.0 0 122.61 14,615.07 14,611.84 99.81 43.56 14,639.32 b 

n: number of costumer, K: minimum number of used vehicle, C: capacity of vehicle. 

Bold: Indicates the solution that minimizes the number of vehicles with least distance traveled. 

GTS: Granular Tabu-Search from P. Toth and D. Vigo [12] ; Pentium 200 MHz PC using FORTRAN 77 language, Performance = 15 Mflops. 

XK: J. Xu, J. Kelly [54] ; DEC ALPHA work station (DEC OSF/1 v3.0), Performance = 43 Mflops. 

RTR: Record- to-Record algorithm from Golden et al. [39] ; Pentium 100 MHz PC, Performance = 12 Mflops. 

CVRP_GELS: Capacitated Vehicle Routing Problem Using the Gravitational Emulation Local Search Algorithm; Pentium 7, at 3.07 GHz with 16 GB RAM using Matlab language, Performance = 24,596 Mflops. 

BKS: Best Known Solution. 

–: No value is calculated for this case. 

Note. Computing times are expressed in minutes based on a machine with the performance of 15 Mflops. 
a Christofides et al. [41] . 
b Golden et al. [39] . 
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Table 12 

Computational results for the benchmark of Christofides et al. [41] and Golden et al. [39] . The bold values mean the best-so-far results that are found by 

the algorithms. 

Instance n Hybrid GA [6] AGES [46] EAX [55] HGSADC [21] CVRP_GELS BKS 

AVG. of 10 T (min) AVG. of 10 T (min) Best of 10 

P01 50 524.61 524.61 524.61 524.61 0.43 527.98 0.28 524.61 524.61 

P02 75 835.26 835.26 835.61 835.26 0.96 836.64 0.49 835.26 835.26 

P03 100 826.14 826.14 826.14 826.14 1.27 827.43 2.17 826.14 826.14 

P04 150 1031.63 1028.42 1028.42 1028.42 2.87 1028.42 4.13 1028.42 1028.42 

P05 199 1300.23 1291.29 1291.84 1294.06 5.94 1292.34 5.46 1291.29 1291.29 

P06 50 555.43 555.43 555.43 555.43 0.48 555.43 0.21 555.43 555.43 

P07 75 912.3 909.68 910.41 909.68 1.09 911.01 1.89 909.68 909.68 

P08 100 865.94 865.94 865.94 865.94 1.14 867.23 2.03 865.94 865.94 

P09 150 1164.25 1162.55 1162.56 1162.55 2.53 1162.55 3.15 1162.55 1162.55 

P10 199 1420.2 1401.12 1398.3 1398.3 8.22 1396.16 6.65 1395.85 1395.85 

P11 120 1042.11 1042.11 1042.11 1042.11 1.15 1043.22 2.03 1042.11 1042.11 

P12 100 819.56 819.56 819.56 819.56 0.84 822.17 0.35 819.56 819.56 

P13 120 1542.97 1541.14 1542.99 1542.99 2.83 1542.37 3.92 1541.14 1541.14 

P14 100 866.37 866.37 866.37 866.37 1.19 866.37 2.1 866.37 866.37 

Pr01 240 5648.04 5627.54 5632.05 5627.00 11.68 5627.69 7.63 5623.52 5626.81 

Pr02 320 8459.73 8447.92 8440.25 8440.25 20.75 8441.82 13.79 8404.78 8431.66 

Pr03 400 11,036.22 11,036.22 11,036.22 11,036.22 27.99 11,036.22 17.01 11,036.22 11,036.22 

Pr04 480 13,728.80 13,624.52 13,618.55 13,624.52 43.67 13,618.55 27.23 13,618.55 13,592.88 

Pr05 200 6460.98 6460.98 6460.98 6460.98 2.56 6462.14 3.29 6460.98 6460.98 

Pr06 280 8412.90 8412.88 8412.90 8412.90 8.38 8413.98 6.86 8412.88 8404.26 

Pr07 360 10,267.50 10,195.56 10,186.93 10,157.63 22.94 10,105.19 14.21 10,102.7 10,156.58 

Pr08 440 11,865.40 11,663.55 11,691.54 11,646.58 40.67 11,636.27 22.68 11,635.3 11,663.55 

Pr09 255 596.89 583.39 581.46 581.79 16.22 579.71 8.47 579.71 580.02 

Pr10 323 751.41 741.56 739.56 739.86 25.86 736.26 15.33 736.26 738.44 

Pr11 399 939.74 918.45 916.27 916.44 45.61 912.84 28.35 912.84 914.03 

Pr12 483 1152.88 1107.19 1108.21 1106.73 95.67 1102.69 60.83 1102.69 1104.84 

Pr13 252 877.71 859.11 858.42 859.64 9.36 857.19 7.77 857.19 857.19 

Pr14 320 1089.93 1081.31 1080.84 1082.41 14.12 1081.42 8.19 1080.55 1080.55 

Pr15 396 1371.61 1345.23 1344.32 1343.52 39.15 1339.54 22.33 1337.92 1340.24 

Pr16 480 1650.94 1622.69 1622.26 1621.02 58.27 1613.39 35.28 1612.50 1616.33 

Pr17 240 717.09 707.79 707.78 708.09 7.06 707.76 5.74 707.76 707.76 

Pr18 300 1018.74 998.73 995.91 998.44 14.40 956.16 8.33 955.13 955.13 

Pr19 360 1385.60 1366.86 1366.70 1367.83 27.91 1367.82 16.59 1365.60 1365.97 

Pr20 420 1846.55 1820.09 1821.65 1822.02 38.23 1818.32 22.4 1818.32 1819.99 

Avg Gap – + 1.00% + 0.13% + 0.10% + 0.11% + 0.03% – –

Avg Time – – 14.20 min 17.64 min 17.69 min 11.39 min – –

Bold: Indicates the solution that minimizes the number of vehicles with least distance traveled. 

Hybrid GA: Hybrid Genetic Algorithm for C. Prins [6] ; Pentium-3 PC clocked at 1 GHz using Delphi 5 language. 

AGES: Active Guided Evolution Strategies Meta-heuristic Called (AGES) proposed from Mester and Braysy [46] ; Pentium IV Net Vista PC2800 MHz with 

512 MB RAM using Visual Basic 6.0 language. 

EAX: Edge Assembly for Y. Nagata and O. Braysy [55] ; Xeon 3.2 GHz with 1 GB RAM using C ++ language. 

HGSADC: Hybrid Genetic Search Adaptive Diversity Control from T. Vidal et al [21] ; Pentium 2.4 GHz with ADM Opteron 250 computer using C ++ language, 

performance = 1291 Mflops. 

CVRP_GELS: Capacitated Vehicle Routing Problem Using the Gravitational Emulation Local Search Algorithm; Pentium 7, at 3.07 GHz with 16 GB RAM using 

Matlab language, Performance = 24,596 Mflops. 

BKS: Best Known Solution. 

–: No value is calculated for this case. 

Note. n: number of costumer. 

Note. Computing times are expressed in minutes based on a machine with the performance of 1291 Mflops. 

 

 

 

 

 

 

 

 

underline the solutions when upper bounds are improved with respect to the BKS. The average percentage of error relative

to the BKS, and computation time for each method is provided in last two lines of this table. 

In this test also our algorithm has shown the best performance with minimum computation time except in some in-

stances like P01, P11, P12 which are all belonging to small size problems. These results show that our method works better

when the size of the problem is very large. 

6. Conclusions 

In this paper, a Gravitational Emulation Local Search Algorithm called CVRP_GELS was introduced for solving the CVRP

problem. Velocity, execution time, and low evaluation values are the advantages of the proposed algorithm. We tested the

proposed algorithm on four different benchmarks and compared solutions of the proposed algorithm with results produced

by other meta-heuristic methods. The first benchmark that we used contained 35 standard instances, the second benchmark

contained 12 instances, the third benchmark contained 100 instances and the fourth benchmark contained 28 instances
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from large to small-scale problems. Compared to previous methods, our method could find best solutions for small-scale

and large-scale standard problems, and was considerably superior to the most of the algorithms in solving large-scale prob-

lems in comparable time. This indicates that the proposed algorithm can be used for various types of routing problems for

vehicles with capacity restrictions. Since the time required for obtaining the final solution, and finding the shortest route,

are very important in solving CVRP problems, the lower execution time of the proposed algorithm compared with many

algorithms is one of its advantages. In many cases our method could produce solutions with less number of required vehi-

cles compared to the BKS in a very efficient manner, which is another advantage of this algorithm. However, in some cases,

especially when the number of customers is small, our algorithm could not be as efficient as other methods. Overall, our

experiments illustrated that the proposed method could be a very efficient method in order to solve CVRP and its results

are comparable with results of the state-of-the-art. 
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