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Abstract 

 
This paper introduces a modified version of the well 

known global optimization technique named line search 

method. The modifications refer to the way in which the 

direction and the steps are determined. The modified line 

search technique (MLS) is applied for some global 

optimization problems. Functions having a high number 

of dimensions are considered (50 in this case). Results 

obtained by the proposed method on a set of well known 

benchmarks are compared to the results obtained by the 

standard line search method, genetic algorithms and 

differential evolution. Numerical results show the 

effectiveness of the proposed approach while compared 

to the other techniques.  

 

1. Introduction  
 
Global optimization is still a challenging domain and 

still a huge amount of work is published every year. The 

standard mathematical techniques have been improved, 

modified and hybridized so that their performance is 

improved. In this paper, we propose a modification for 

one of the standard mathematical techniques for global 

optimization: line search. This technique is very simple 

and it has several variants. We propose here a new way 

of choosing the values of its parameters, namely the 

direction and step. Instead of using some sophisticated 

and time consuming techniques to set the values of these 

parameters, we applied a random method. We also 

consider more than on initial (starting) point. A detailed 

description of the original line search technique and the 

proposed modification is presented in Section 2. In order 

to illustrate the performance of the modified approach 

we perform some numerical experiments by considering 

several functions having 50 dimensions. Some 

comparisons with some well known techniques for 

optimization (such as genetic algorithms and differential 

evolution which are shortly described in Section 3) are 

performed in Section 4. Conclusions are provided 

towards the end.  

2. Modified Line Search (MLS) 

The original line search general method can be described 

as follows: a search direction p and a step s are 

determined at each iteration k so that the following 

conditions are fulfilled: 

- the direction pk (direction p at iteration k) is a descent 

direction, i.e.  

0 if0, ≠≤ kkk ggp  
where g denotes the gradient; 

 

- the step sk is calculated so that  

f(xk + pksk) < f(xk) 

There are several ways to calculate adequate values for 

sk (like backtracking, etc). Readers are advised to consult 

[3] for more details. 

Finding the right value for sk can be sometimes difficult. 

Figure 1 illustrates few situations considering different 

values for pk and sk for optimizing the function f(x) = x
2
 

for  10 iterations. It is observed that for smaller values of 

sk the function converges very slowly while for greater 

values it can even miss the optimum.  

Taking into account of this problem, we propose a very 

simple modification of the standard line search method 

as given below:  

(i) Instead of computing (using different other 

methods) adequate values for sk and pk we are 

simply generating at random the values of these 

parameters at each iteration. The values of 

these variables vary between the range [-1, 1]. 

Also, the value of pk is modified at each 

iteration by pk= pk(-1)
k+1

. 

(ii) Instead of considering a single starting point, a 

set of several randomly generated points are 

considered over the search space. The line 

search procedure is applied from each of these 

points. 
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Figure 1. Example of line search method for the function f(x)=x
2
 considering: (a) pk=(-1)

k+1
 and sk=2+3/2

k+1
; (b) pk=-

1 and sk=1/2
k+1

; (c) pk=-1 and sk=3/2
k+1

; (d) pk=-1 and sk=5/2
k+1

 

We preferred this way of finding an adequate value for sk 

due to the fact that at each iteration the purpose is to 

improve the value of the function by optimizing the 

newly obtained point. Since sometimes it can be time 

consuming to find the right value for sk, we applied the 

random procedure to generate another step until the value 

of the function in the newly obtained point is improved. 

This way, we ensure that we are moving in a better 

position which can help in finding the global optimum 

point. The modified line search method (pseudo code) is 

described below: 

 

Begin 

Generate N points ni, i=1,…, N over the search space. 

k:=1; 

Repeat 

For i=1 to N do 

    repeat  
            pk:=random; 

      

 

 

 if odd(i) then pk:=(-1) pk; 

       sk :=random; 

  until  f(ni+ pk sk)<f(ni); 

               k:=k+1; 

  for all i ni:= ni+ pk sk 

Until condition 

Print the best solution. 

End 

 
The MLS may be run for a specified number of iterations 

or when the best solution is found. The algorithm may be 

also terminated if the solutions found are close to the 

optimal value with the known optimal value. In Figure 2, 

we illustrate how the MLS works for 10 iterations. 

3. Techniques Used for Comparisons 

The results obtained by MLS are compared with the 

results obtained by line search and Genetic Algorithms 

for all the considered test functions. The obtained results 

are also compared with Differential Evolution but only 

for two of the considered test functions [5]. 
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Figure 2. Example of the LMS behaviour after 10 

iterations with random pk and sk. 

 

3.1 Genetic Algorithms 

 
Genetic algorithms (GA) consider a population of 

chromosomes (individuals) encoding potential solutions 

to a given problem [2]. Each chromosome represents a 

point in the search space. The individuals in the 

population then go through a process of simulated 

evolution. The search progress is obtained by 

modification of the chromosome population. The most 

important search operator is traditionally considered to be 

recombination (crossover). Random mutation of newly 

generated offspring induces variability in the population 

preventing the premature convergence. A fitness function 

is used to measure the quality of each individual. The 

selection for crossover is based on the fitness value. A 

probabilistic selection operator ensures the 'fittest' 

individuals the highest probability to produce offspring. 

One iteration of the algorithm is referred to as a 

generation. The basic GA is very generic and there are 

many aspects that can be implemented differently 

according to the problem (example, representation of 

solution (chromosomes), type of encoding, selection 

strategy, type of crossover and mutation operators, etc.). 

In practice, GA's are implemented by having arrays of 

bits or characters to represent the chromosomes The basic 

genetic algorithm is described below: 

 

begin 
Step 1. Set t= 0; 

Step 2. Randomly initialize the population P(t); 

Step 3. Repeat 

  Step 3.1. Evaluate individuals from 

P(t); 

  Step 3.2. Selection on P(t). Let P’(t) 

be the set of selected individuals. 

  Step 3.3. Crossover on P’(t); 

  Step 3.4. Mutation on P’(t); 

  Step 3.5. Survival on P’(t); 

  Step 3.6. t=t+1; 

    P(t)=P’(t-1) 

Until t=Number_of_generations 

End 

 

3.2 Differential Evolution 

 
DE is a population based, stochastic function minimizer. 

A population of solution vectors is successively updated 

by the addition, subtraction, and component swapping, 

until the population converges to the optimum.  

Vi= xr1+F(xr2- xr3). 
The algorithm starts with NP randomly chosen solution 

vectors. For each i∈(1, …,NP) a ‘mutant vector’ is 

formed: 

Where r1, r2, and r3 are three mutually distinct randomly 

drawn indices from (1, …NP), and also distinct from i, 

and 0<F<=2 
Mutation and recombination are the operators used to 

improve the quality of solutions. 
 

3. Experiment Setup and Results  

We performed several experiments by considering well 

known test functions. In order to illustrate the 

performance of the algorithms used, we consider a high 

number of dimensions (50 in our case) because all these 

algorithms were tested for a small number of dimensions 

and the conclusion is that they all work pretty well. 

 

3.1. Test functions used 

 
There are several test functions for global optimization 

available in the literature. We used four test functions 

which is found in [1] [6] and [7]. 

Although the objective functions are build in a way that 

the optimal solutions are known, the optimization 

problems cannot be trivially solved by search procedures 

that do not exploit the special structure associated with 

each function [4]. 
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Figure 3. Convergence toward the optimum solutions of the algorithms MLS, GA and LS: (a) Sphere test function; 

(b) Dixon and Price test function; (c) Ackley test function; (d) Griewank test function. 

 

The following test functions were considered: 

 

Sphere function (f1) 

f(x)=∑
=

n

i

ix
1

2
 

Number of dimensions: n; Range of initial points: -

10≤xi ≤ 10 for i=1. . .n; Global minimum: x* = (0, 0,. 

. . ,0), f(x*) = 0 

Dixon and Price function (f2) 

f(x)=
2

1

2

1

2

1

)1()2( ++− −

=

∑ xxxi ii

n

i

 

Number of dimensions: n; Range of initial points: -

10≤xi ≤ 10 for i=1. . .n; Global minimum: z

z

ix

1

2

−

= , 

z=2
i-1

,  f(x*) = 0 
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Function Algorithm No of 

dimensions 

No of initial points 

(for MLS) and 

population size for 

GA 

No of 

iterations 

Optimum 

found 

Actual 

optimum 

MLS 50 500 20,000 2.483 0 

GA 50 500 20,000 7.99 0 

DE 50 500 20,000 93.77 0 
f1 

LS 50 500 20,000 9.68 0 

MLS 50 500 30,000 76.222 0 

GA 50 500 30,000 1129.78 0 

DE  
f2 

LS 50 500 30,000 28.3 0 

MLS 50 500 30,000 2.4125 0 

GA 50 500 30,000 3.530 0 

DE 50 500 30,000 18.17 0 
f3 

LS 50 500 30,000 6.43 0 

MLS 50 500 30,000 1.0006 0 

GA 50 500 30,000 1.001 0 

DE  
f4 

LS 50 500 30,000 1.03 0 

 
Table 1. Parameters used and results obtained by the considered techniques for all the four test functions.

 

 

Ackley function (f3) 

f(x)=20 + e – 20
∑

=

⋅−

n

i
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Number of dimensions: n; Range of initial points: -

5.12≤xi ≤ 5.12 for i=1. . .n; Global minimum: x* = (0, 

0,. . . ,0), f(x*) = 0 

 

Griewank function (f4) 

 

f(x)=∑ ∏
= =
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Number of dimensions: n; Range of initial points: -

10≤xi ≤ 10 for i=1. . .n; Global minimum: x* = (0, 0,. 

. . ,0), f(x*) = 0 

 

 

 

 

3.1. Results and discussions 

 
Table 1 depicts the values of the parameters used for 

each technique and the results obtained for the four 

test functions.  In Figure 3, the convergence of the 

test functions towards the optimum point is depicted. 

Comparisons between MLS, GA and LS are 

performed. As evident from Table 1 and from Figure 

3, MLS obtained the best results for all the test 

functions (except for Dixon and Price function where 

the standard LS performed well). Also, there is a big 

difference between results obtained by MLS and the 

results obtained by the other techniques used 

(example: GA and DE).  
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4. Conclusions 

 
In this paper, we proposed a modified version of a 

well known mathematical technique used for global 

optimization: line search. The modified version uses 

random generated values for direction and step. Some 

numerical experiments were performed using popular 

optimization functions involving 50 dimensions.  

Comparisons with standard line search, genetic 

algorithms and differential evolution were performed. 

Empirical results illustrate that the modified line 

search algorithm performs better than the other 

considered techniques and better that the standard 

line search for three of the four test functions 

considered. The proposed approach can be extended 

for other classes of optimization problems and for 

high dimension problems.  
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