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Abstract
In recent years, multi-objective evolutionary optimization algorithms have shown success in different areas of research.

Due to their efficiency and power, many researchers have concentrated on adapting evolutionary algorithms to generate

Pareto solutions. This paper proposes a new memetic adaptive multi-objective evolutionary algorithm that is based on a

three-term backpropagation network (MAMOT). This algorithm is an automatic search method for optimizing the

parameters and performance of neural networks, and it relies on the use of the adaptive non-dominated sorting genetic

algorithm-II integrated with the backpropagation algorithm, being used as a local search method. The presented MAMOT

employs a self-adaptive mechanism toward improving the performance of the proposed algorithm and a local optimizer

improving all the individuals in a population in order to obtain better accuracy and connection weights. In addition, it

selects an appropriate number of hidden nodes simultaneously. The proposed method was applied to 11 datasets repre-

senting pattern classification problems, including two-class, multi-class and complex data reflecting real problems.

Experiments were performed, and the results indicated that the proposed method is viable in pattern classification tasks

compared to a multi-objective genetic algorithm based on a three-term backpropagation network (MOGAT) and some of

the methods mentioned in the literature. The statistical analysis results of the t test and Wilcoxon signed-ranks test also

show that the performance of the proposed method is significantly better than MOGAT.

Keywords Self-adaptive � Artificial neural networks � Three-term backpropagation � Multi-objective evolutionary �
Non-dominated sorting genetic algorithm-II

1 Introduction

The artificial neural network (ANN) is a machine learning

method; this method has an architecture that uses mathe-

matical models. The growth in ANNs and their achieve-

ments in the previous research show that they are a reliable

solution for many computational applications and models

in different application areas [1], especially when

addressing very large datasets that have many dimensions

[2]. Despite their success with different problems, ANNs

cannot reach optimum performance in many nonlinear

problems [3], due to the problem of choosing appropriate

values for the initial value of the connection weights,

structure of the networks (number of hidden nodes),

training error and convergence of the learning algorithms.

Although the choice of parameters is a very important
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aspect of ANNs, this task is not easy because one param-

eter can affect the network performance and the adjustment

of all of the parameters depends on the user experience.

Thus far, the difficulty in determining optimal network

parameters is still a major challenge that is faced by users

of ANNs. In other words, there is a question of which

parameter should be optimized to make the best use of the

ANNs and the optimum value of that parameter. Therefore,

the optimization of the connection weights, training pro-

cess and structure of the network has become more

attractive in the past few years.

Because ANNs suffer from these problems, evolutionary

algorithms (EAs) are used to solve the above problems,

evolve the ANNs efficiently and improve network perfor-

mance. Moreover, they can choose the best connection

weights and also reduce the number of hidden nodes with

an effective structure for the network size and with positive

effects on the network performance [4, 5]. Recent studies

have proposed exploiting EA techniques to overcome the

above problems [4–9]. Most of these studies utilize EAs for

evolving ANNs to gain simple and accurate ANNs. More

importantly, the integration of EAs and ANNs is still under

research; combining the advantages of each can yield a

more efficient method. One of the most successful appli-

cations of EAs is their use for evolving ANNs, as shown in

[10]. Due to modern applications in many fields in which

there are many incompatible objectives, as an alternative to

addressing a single optimal solution, a set of optimal

solutions called the Pareto optimal set exists for problems,

such as multi-objective optimization problem (MOP) [11].

The corresponding objective functions, of which non-

dominated solutions are in the Pareto optimal set, are called

a Pareto front.

The multi-objective evolutionary algorithms (MOEAs)

research area is one of the most active areas in the field of

evolutionary computation [12]. Therefore, MOEAs are

used to produce and optimize ANN parameters with the

optimization of two conflicting objectives, namely the

minimization of the ANNs’ structural complexity and the

maximization of the network’s capacity. These types of

algorithms are applied to improve the generalization abil-

ity, from the training data to the network unseen data.

Moreover, MOEAs are suitable to produce and design

appropriate and accurate ANNs from the simultaneous

optimization of two or more conflicting objectives. Hence,

due to their ability to improve the structural performance,

recently, MOEAs have been applied successfully to opti-

mize the network structure and connection weights

[13–16]. Furthermore, in a single run, they can find mul-

tiple solutions [17–20]. However, a considerable number of

studies in the literature were applied using these tech-

niques. As an example, multi-objective genetic algorithm

optimization was used by [21, 22] to train a feedforward

neural network. Similarly, there are hybrid methods that

use ANNs with evolutionary Pareto-based algorithms, and

this type of research is known as multi-objective evolu-

tionary artificial neural networks (MOEANNs) [23].

Another method based on the generalized multilayer per-

ceptron (MLP) improved the performance of the evolu-

tionary model [24]. A major study [25] proposed a hybrid

multi-objective genetic algorithm (MOGA), which is based

on the Strength Pareto Evolutionary Algorithm 2 (SPEA2)

and non-dominated sorting genetic algorithm-II (NSGA-II)

algorithms to optimize the training and topology of the

recurrent neural network (RNN) simultaneously. Recently,

[15] applied a non-dominated sorting genetic algorithm-II

as a MOGA to train the neural network and optimize its

weights and biases with respect to the maximum accuracy

and minimum dimension.

On the other hand, memetic algorithms (MAs) have

been developed over the past few years. Recently, several

studies in the literature have used ANNs, MOEAs and local

optimizers to speed up convergence [17, 26, 27]. In addi-

tion, Abbass [28] concludes that his proposed memetic

Pareto artificial neural network (MPANN), which is based

on a Pareto optimal solution, has better generalization and

lower computational cost. Almeida and Ludermir [29]

proposed a multi-objective memetic and hybrid approach

for optimizing the parameters and performance of the

ANNs, by using a combination of evolutionary strategies,

genetic algorithms and particle swarm optimization.

Another study proposed a memetic multi-objective evolu-

tionary neural network algorithm to automatically design

ANN models with sigmoid basis units for multi-classifi-

cation problems [30]. Likewise, [18] is considered to be a

memetic Pareto evolutionary approach that is based on the

NSGA2 evolutionary artificial neural network algorithm to

optimize two conflicting main objectives: a high correct

classification rate and a high classification rate for each

class. Qasem and Shamsuddin [31] presented a new

memetic multi-objective evolutionary algorithm for the

design of radial basis function networks (RBFNs) for

classification tasks. Recent work in [32] introduced a multi-

objective evolutionary learning algorithm using an

improved version of the NSGA2 algorithm hybridized with

a local search algorithm for training ANNs with general-

ized radial basis functions.

Modern studies on self-adaptive properties for multi-

objective optimization algorithms in the literature indicate

that the self-adaptive method can improve performance.

Abbass [33] presented a self-adaptive Pareto differential

evolution algorithm for multi-objective optimization

problems (SPDE) that self-adapts the crossover and

mutation rates. In conducted experiments, the SPDE

algorithm outperforms the other evolutionary multi-objec-

tive optimizations. A multi-objective self-adaptive

4946 Neural Computing and Applications (2019) 31:4945–4962

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



differential evolution algorithm with objective-wise learn-

ing strategies (OW-MOSaDE) is introduced to solve

numerical optimization problems with multiple conflicting

objectives [34]. Another mechanism used self-adaptive

features for MOEAs, which suggested that the dynamic

adjustment of the distribution index of the simulated binary

crossover (SBX) operator has been shown [35]. Lately,

[36] introduced a study about adaptive memetic computing

applied in multi-objective optimization that yielded better

results in optimization performance. The results showed

the strengths of the proposed technique and proved the

efficiency of the proposed adaptive memetic technique.

The memetic adaptive techniques that were applied in

multi-objective optimization in a different application

benefited from two techniques that improved the process

and also led to better accuracy in the final solutions. When

using an adaptive and local search technique, the adaptive

method can cause dynamic behavior to adjust to the dis-

tribution index of the SBX crossover at each generation in

the genetic process. This arrangement led the algorithm to

produce much better results than the original or fixed SBX

crossover. On the other hand, the local search technique

includes speeding up the convergence and increasing the

quality of the Pareto optimal solutions. It has been

observed that both of the mentioned techniques during the

evolutionary process can improve the MOEA’s perfor-

mance by exploiting and optimizing the balance between

the exploration and exploitation during the various stages

of the evolutionary search.

Motivated by this observation, in this study, we present

a new memetic adaptive multi-objective evolutionary

algorithm that is based on a three-term backpropagation

(TBP) network (MAMOT) to optimize the parameters of

the TBP network and improve the network accuracy. The

adaptive non-dominated sorting genetic algorithm

(ANSGA-II) is utilized to optimize three objectives (pa-

rameters) simultaneously, namely the number of hidden

nodes in the hidden layer, the norm of connection weights

and the error of the network, to solve a pattern classifica-

tion problem. For performance metrics, we used some of

the performance metrics that are used for classification

problems [37, 38], namely the accuracy, sensitivity,

specificity and mean squared error (MSE).

Although EAs have several advantages, these algorithms

are slow to converge, which is a major setback [39], and

there is difficulty in tuning the final solutions in the search

space [40]. To overcome these setbacks, a global search

algorithm combined with a local search technique (a

memetic process) offers a better speed of convergence for

the evolutionary approach and better accuracy of the final

solutions. This approach has yielded very promising results

in other complex problem solving. At the same time, the

flexibility of the crossover operator brought about a

dynamic nature to the proposed method and has been the

motivation for this study. However, previous studies indi-

cate that the memetic adaptive methods applied to multi-

objective evolutionary algorithms have achieved success in

diverse applications. At the same time, no measure has

been taken for using this method in the literature, which

optimizes and automatically designs the ANNs. Therefore,

it can be argued that such an action is a novel approach in

this research area.

The novelty of the proposed method came from using an

adaptive method with local search technique for designing an

artificial neural network. The adaptive method can cause

dynamic behavior to adjust to the distribution index of the

SBX crossover at each generation in the genetic process.

This arrangement led the algorithm to produce much better

results than the original or fixed SBX crossover. On the other

hand, the local search technique includes speeding up the

convergence and increasing the quality of the Pareto optimal

solutions. The goal of this proposed method is to generate an

automatic design of the ANN structure and to reduce the

error rate of the TBP network achieving better performance

as well as a better architecture in terms of the hidden nodes.

The remainder of this study is organized as follows:

Sect. 2 introduces the materials and methods used in this

study. The proposed method and flowchart of the algorithm

are illustrated in Sect. 3. The experimental results, datasets,

experimental setup, results, discussion and statistical testing

are given in Sect. 4. Finally, Sect. 5 concludes the study.

2 Materials and methods

In this section, we highlight the main methods that are used

in this paper. The hybrid method is to train the three-term

backpropagation neural network, which is dependent on

self-adaptive simulated binary crossover method of multi-

objective evolutionary algorithm combined with local

search technique which can significantly speed up the

multi-objective evolutionary algorithm performance.

2.1 Multi-objective evolutionary artificial neural
network

The use of evolutionary approaches for ANN training,

known as evolutionary artificial neural networks (EANNs),

has been a key research area for the past few years [17].

Researchers have developed methods and techniques to find

better approaches to evolve ANNs, attempting to find a

simple architecture and accurate ANNs with good gener-

alization capabilities. Moreover, there are many advantages

of evolutionary approaches for ANN training, with the main

advantages being the ability to escape a local optimum,

robustness and ability to adapt in a changing environment.
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Research into EANNs has usually taken one of three

approaches: first, evolving the weights of the network;

second, evolving the network architecture; and last, evolv-

ing both the weight and architecture simultaneously [10].

The preliminary work of [17] has succeeded in designing

networks that have a good generalization capability. How-

ever, finding a good ANN architecture has also been dis-

cussed in the ANN research literature. The main advantages

of the evolutionary approach to ANN training are the ability

to escape a local optimum, robustness and the ability to

adapt to a changing environment [4, 13, 41]. Multi-objec-

tive evolutionary algorithms (MOEAs) represent a popula-

tion-based search approach, and hence, in a single run,

many Pareto optimal sets (solutions) can be obtained, and

these are attractive when using this type of algorithm. The

current research focuses on the application of multi-objec-

tive evolutionary algorithms to solve multi-objective opti-

mization problems in different fields [32, 42–44].

2.2 Parameter optimization

To evaluate the three-term backpropagation network per-

formance of the proposed method, three objective functions

were used in this study, as follows:

1. The performance of the network (accuracy) is based on

the mean squared error (MSE) on the training set. This

performance involves the first objective function and is

given below:

f1 ¼ 1

N

XN

j¼1

ðtj � ojÞ2 ð1Þ

where oj is the network output value of the output unit,

tj is the target value of the output, and N is the number

of samples.

2. The complexity of the network is based on the number

of hidden nodes in the hidden layer of the TBP network

and is a second objective function. This function is

computed as follows:

f2 ¼
XH

h¼1

qh ð2Þ

where q is the dimension of H and H is the maximum

number of hidden nodes in the network. qh 2 q is a

binary value {0,1} used to refer to the hidden node

with respect to whether it exists in the network or not.

Turning a hidden unit ON or OFF works like a switch;

this mechanism is involved in determining the maxi-

mum number of hidden nodes in the TBP network.

3. The complexity of the TBP network is based on the

weights of the network, which is based on the notion of

regularization and represents the smoothness of the

model. This function is the last objective of this study

(f3) and is given as:

f3 ¼ jjxjjf g ð3Þ

where x is a matrix of weights in the network.

In this study, three fitness functions were analyzed to

optimize the performance of the network (f1), to minimize

the structure of the network (hidden nodes) (f2) and (f3) to

minimize the connections (weights) of the TBP network.

2.3 Three-term backpropagation algorithm

The three-term backpropagation network (TBP) is a type of

ANN and has been proposed by Zweiri et al. [45] to speed

up the weight adjustment process by increasing the con-

vergence rate of the algorithm and reducing the learning

stalls. The TBP network modifies the architecture and

procedure of the standard backpropagation (BP) algorithm

by adding an extra term to increase the BP learning speed

[46]. The neurons in all of the layers are connected with

connection links. A weight is associated with each con-

nection link and is multiplied with the signal that exits

within each neuron in the network (from input to hidden

and from hidden to output layer), see Fig. 1.

In TBP network, in addition to the learning rate and

momentum parameters, a third parameter, called the propor-

tional factor (PF), is introduced. This presentation of PF has

proven to be successful in improving the convergence rate of

the algorithm and speeding up the weight adjustment process.

netj ¼
XM

i¼1

WijOi þ hi ð4Þ

Oj ¼
1

1 þ e�netj
ð5Þ

where netj is the summation of the weighted inputs added

to the bias, Wij is the weighted value between input layer i

and hidden layer j, Oi is the output from the input layer i at

Fig. 1 ANN architecture
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the same time that it is the input to the hidden layer j, and hi
is the bias associated with each connection link between

the two respective layers. Equation (5) shows the calcula-

tion of Oj, which is the output of the activation function at

the hidden layer j.

E ¼ 1

L

XL

k¼1

ðtk � okÞ2 ð6Þ

where E is the error function of the network mean squared

error, tk is the target output at output layer k, and the net-

work has L output neurons.

Consider W as network weights vector, k as iteration

number of the weight vector, and DW(k)= W(k ? 1) -

W(k). The weight adjustment in Eq. (7) is modified to

include the proposed third parameter, which is proportional

to the difference between the desired and calculated output

in Eq. (8). Thus, we can say that Eq. (7) presented the two-

term backpropagation, while Eq. (8) shows the three-term

backpropagation.

DWðkÞ ¼ að�rEðWðkÞÞÞ þ bDWðk � 1Þ ð7Þ
DWðkÞ ¼ að�rEðWðkÞÞÞ þ bDWðk � 1Þ þ ceðWðkÞÞ

ð8Þ

where a and b are the learning rate and momentum,

respectively; c is the proportional factor; and eðWðkÞÞ
represents the difference between the output and the target

at each iteration.

2.4 Adaptive NSGA-II

The genetic algorithm (GA) is based on simulating the

biological evolution of the search space in the search

process automatically, and it is a parallel global search

method [47]. The non-dominated sorting genetic algo-

rithm-II (NSGA-II) is proposed in [48] because of its good

performance in global searching. The NSGA-II method

proposes a new method and a new arithmetic operator by

improving the first version of the NSGA [43]: the fast non-

dominated sorting approach and the crowded comparison

operator. Thus far, many studies regarding optimization

and design have been performed [4, 32, 49, 50]. All of

these studies prove that the genetic algorithm and its

upgraded derivatives are feasible for optimal design.

Recently, many studies have proven that the adaptive

multi-objective optimizations are valuable and able to

achieve better results in a variety of applications

[35, 51, 52]. Using the self-adaptive crossover operator can

dynamically adapt the solution and can create children

solutions in an appropriate way from the parents. The

update process for the distribution index can be increased

or decreased for the next generation depending on how the

child outperforms (has a better fitness value than) the

parents. These processes comprise the NSGA-II Adaptive

algorithm, which is called ANSGA-II. This methodology

guarantees improving the solution.

The main idea for the crowding distance is to find the

Euclidian distance between every individual front, using

the objectives in the dimensional hyperspace. Individuals at

the boundary with infinite distance are always selected. The

crowding distance is assigned once the non-dominated sort

is completed. Having picked individuals based on crowd-

ing distance ranking, individual populations are assigned to

the crowding distance value. Thus, reversing the labels by

assigning front wise and comparing the crowding distance

between two individuals is meaningless, see Fig. 2.

2.5 Self-adaptive simulated binary crossover

Self-adaptation techniques are based on a population’s

diversity. Whereas the adaptation of the operator ensures a

good convergence speed, the degree of diversity determi-

nes the convergence reliability. Generally, the relationship

between the parent and offspring population is controlled

with a self-adaptation technique. A self-adaptive simulated

binary crossover (SA-SBX) was proposed by [51] to adjust

the distribution index of the simulated binary crossover

(SBX) operator dynamically at each generation in NSGA-

II. Compared to the SBX, several studies have reported that

the SA-SBX produces better solutions when applied to both

single- and multi-objective optimization problems [35, 51].

The important factor in the SBX crossover is finding the

appropriate value of the distribution index (gc) because it

has an effect on the convergence speed and local/global

optimum solution, and thus, the self-adaptive SBX adap-

tively updates the distribution index to solve these prob-

lems. Moreover, self-adaptive simulated binary crossover

(SA-SBX) at each generation in the NSGA-II procedure

can dynamically adjust the distribution index gc of the

crossover operator adaptively. As is well known, the

crossover operator in genetic algorithms produces children

by recombining the information from the parents. If the

child is better than the parent, then the child is extended

Fig. 2 Standard NSGA-II technique
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further in the hope of creating a better solution, while the

opposite occurs if a worse solution is created.

The process of calculating offspring solutions x
ð1;tþ1Þ
i

and x
ð2;tþ1Þ
i from the parent solutions x

ð1;tÞ
i and x

ð2;tÞ
i appear

in Eq.(9). In addition, the spread factor bi is defined as the

ratio of the absolute difference in the offspring values to

that of the parents and described in Eq. (9) as well:

bi ¼
x
ð2;tþ1Þ
i � x

ð1;tþ1Þ
i

x
ð2;tÞ
i � x

ð1;tÞ
i

�����

����� ð9Þ

A random number, ui, is created and ranges between 0

and 1, which establishes a probability distribution function.

The probability distribution in Eq. (10) is graphically

shown in Fig. 3 for gc = 2 and 5, which is used for making

offspring from two parent solutions (x
ð1;tÞ
i ¼ 2:0 and

x
ð2;tÞ
i ¼ 5:0). In expression (10), gc is any nonnegative real

number. From Fig. 3, it can be seen that a large value for gc

yields a higher probability for creating (near parent) solu-

tions and, consequently, for providing a pathway for a

focused search. Moreover, a small value of gc permits

distant solutions to be chosen as offspring, which permits

diverse searches. Please see [51] for more details about this

technique.

PðbiÞ ¼
0:5ðgc þ 1Þbgci ; if bi � 1;

0:5ðgc þ 1Þ 1

bgcþ2
i

; otherwise:

8
<

: ð10Þ

2.6 Local search algorithm

A local search algorithm is a meta-heuristic approach that

is used to solve hard optimization tasks. In a local search

method, the algorithm moves through the search space and

searches for a solution from a number of solutions by

applying local changes; this process is continued until one

of the solutions is considered to be optimal or after the

expiration of a specified amount of time.

Local search algorithms are widely used for several

problems in different areas, but they have received more

attention in computer science and engineering, especially

in artificial intelligence applications. It is known that the

local methods can find a local optimum when searching in

a small area of space. Therefore, with a combination of EA

and local search algorithms, EAs perform a global search

within the space of solutions and use ANNs to locate

solutions near the global optimum and to apply a local

search method to quickly and efficiently find the best

solution. This type of hybrid algorithm is known as a

memetic algorithm (MA). MAs can provide not only the

best speed of convergence to the evolutionary approach but

also the best accuracy for the final solutions [53].

There are several studies [14, 28] that use MOEAs along

with ANN local optimizers to adjust the weights. This

approach is called lifetime learning, and it consists of

updating each individual with respect to the approximation

error. The main problem with this type of algorithm is the

computational cost. Some studies used a local search

algorithm after the crossover and mutation operations for

all of the individuals in the population in each iteration

[17, 28, 54]. As is well known, the BP algorithm is a

learning heuristic for supervised learning in ANNs.

Therefore, in this study, we used a classical BP algorithm

as a local search method.

3 The proposed memetic adaptive multi-
objective genetic evolutionary algorithm

This section introduces a memetic adaptive multi-objective

genetic evolutionary algorithm (MAMOGEA) that is

basically adapted from the non-dominated sorting genetic

algorithm-II (NSGA-II) [48] and modifies the crossover

operator to self-adaptive crossover, hybridized with BP as a

local search algorithm to optimize TBP network parame-

ters being implemented for solving pattern classification

problems. The network architecture and accuracy are

evolved simultaneously, with each individual being a fully

specified TBP network. In this study, MAMOGEA based

on the TBP network has been proposed to determine the

best parameters, performance and corresponding architec-

ture of the TBP network, which we call MAMOT.

In addition, self-adaptive simulated binary crossover

(SA-SBX) [51] gives the proposed method the property of

having a dynamic nature to the distribution index; it can

automatically update the crossover operator, providing the
Fig. 3 Probability density function for creating offspring solutions

with the SBX operator [51]
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ability to create child solutions in the true direction from

the parents. If the child solutions that are produced by this

process are worse than the parent solutions, then it can

provide a move to obtain a modified child to move very

near to the parents’ results. This process can optimize the

balance between exploration and exploitation during the

various stages of the evolutionary search. The ANSGA-II

is hybridized with the BP algorithm as a local search

algorithm to enhance all of the individuals in the popula-

tion to improve the classification accuracy. At the same

time, the above scenario helps the proposed method to

produce good final solutions. These solutions represent

three objectives and the following analysis: (1) optimize

the performance of the network (f1); (2) minimize the

network complexity based on the number of hidden nodes

in the hidden layer of the TBP network (f2); and (3) min-

imize the connection weights of the TBP network (f3),

which is based on the notion of regularization and repre-

sents the smoothness of the model. To measure the network

complexity, the study uses both of the objectives, f2 and f3.

Evaluation Fitness function  

Read dataset file 

Determine TBP 
parameters 

Set number of hidden 
node and maximum 

generation 

Initialize the population 
N, and set generation =1 

Start 

Is Maximum 
Generation 
Reached? 

Optimal output of 
Pareto solutions 

Stop 

Yes 

No 

Tournament binary 
Selection 

Fast Non-dominating sort 
and crowding distance 

Perform Local search and 
Evaluation 

Parents 

Binary GA for structure, 
self-adaptive crossover and 

mutation for parameters 

Offspring

Join parents and offspring

Fast Non-dominating sort 
and crowding distance 

Sort population and select 
the N first individuals 

Distance 

Perform Local search and 
Evaluation 

Fig. 4 Flowchart of the proposed MAMOT
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The attempt to minimize f2 leads to a lower number of

hidden nodes in the hidden layer of the TBP network, while

an attempt to minimize f3 leads to a lower matrix of

weights. However, to assist in the TBP network design, GA

and MOEA are combined as a rank-density-based GA to

perform the fitness evaluation and mating selection

schemes. Similarly, the MAMOT begins by collecting,

normalizing and reading the dataset. The result determines

the dataset. Then, the number of hidden nodes and the

maximum number of iterations are set. Additionally, the

individual dimension is determined. Furthermore, it

generates and initializes a population of the TBP network,

and during the experiment, the initialization is set before

each TBP training generation.

Every individual is evaluated for every iteration based

on the objective functions. After the maximum iterations

are reached, the proposed method stops and outputs a set of

non-dominated TBP networks. Figure 4 shows the

flowchart of the MAMOA based on the TBP network.

Furthermore, the proposed method is given in the following

steps:
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Pseudo-code of proposed memetic adaptive multi-ob-

jective genetic evolutionary algorithm.

The method starts by generating a random population

P(g), g = 0, of size N. Evaluation of the individuals

P(g) based on three objectives was mentioned in the section

on parameter optimization. Then, the population is sorted

according to the non-domination aspect, and the solution

ranks are provided based on the non-domination levels and

a crowding distance value. The procedure is described as

follows: First, the usual binary tournament selection and the

SA-SBX crossover and mutation are used for binary

encoding, and also, the mutation and SA-SBX crossover

operators are used for real encoding to create an offspring

population Q(g) of size N. Second, apply the BP local

method to each individual of the offspring population

Q(g) and evaluate the individuals of the population

Q(g) based on their accuracy and complexity. Because

elitism is introduced by comparing the current population

with the previously found best non-dominated solutions, the

procedure is presented in each generation as a combined

population RðgÞ ¼ PðgÞ [ QðgÞ that is formed, with the size

of the R(g) population being equal to 2 N. Afterward,

according to the non-domination criteria, the population

R(g) is sorted, and the best solutions in the population are

those that belong to the best non-dominated set F1. If the

size of F1 is smaller than N, then all of the members of the

set F1 are definitely chosen for the new population P(g ?1).

The remaining members of the population P(g ?1) are

Table 1 A summary of the methods used in the literature

References Description Notes Method

Abbass [26] Memetic Pareto artificial neural network

(MPANN)

Based on a Pareto optimal solution, MPANN

has better generalization and good results

Memetic

Abbass [31] A self-adaptive Pareto differential evolution

algorithm for multi-objective optimization

problems (SPDE). that self-adapts the crossover

and mutation rates

In the experiments that were conducted, the

SPDE algorithm outperforms the other

evolutionary multi-objective optimizations

Self-adaptive

Huang et al.

[32]

Multi-objective self-adaptive differential evolution

algorithm with objective-wise learning strategies

(OW-MOSaDE)

To solve numerical optimization problems with

multiple conflicting objectives

Multi-objective self-

adaptive

Pettersson

et al. [19]

Multi-objective genetic algorithm optimization to

train a feed forward neural network

Using noisy data from an industrial iron blast

furnace

Multi-objective

Almeida and

Ludermir

[27]

Multi-objective memetic and hybrid of

evolutionary strategies, genetic algorithms and

particle swarm optimization

By using for optimizing the parameters and

performance of the ANNs

Multi-

objective ? memetic

Cruz-Ramı́rez

et al. [28]

Memetic multi-objective evolutionary neural

network algorithm to automatically design ANN

models with sigmoid basis units

Used for multi-classification problems Memetic ? multi-

objective

Fernandez

Caballero

et al. [16]

Memetic Pareto evolutionary approach that is

based on the NSGA2 evolutionary artificial

neural network algorithm

Use to optimize two conflicting main

objectives: a high correct classification rate

and a high and for classification rate for each

class

Memetic

Delgado et al.

[23]

Hybrid multi-objective genetic algorithm

(MOGA), which is based on the Strength Pareto

Evolutionary Algorithm 2 (SPEA2) and non-

dominated sorting genetic algorithm-II (NSGA-

II) algorithms to optimize the training and

topology of the recurrent neural network (RNN)

simultaneously

Applied for time-series (CATS) benchmark Hybrid multi-objective

Ak et al. [14] A non-dominated sorting genetic algorithm-II to

train the artificial neural network. They optimize

its weights and biases with respect to the

maximum accuracy and minimum dimension

Used to estimation of prediction intervals of

scale deposition rate in oil gas equipment

Multi-objective

Qasem and

Shamsuddin

[29]

Memetic multi-objective evolutionary algorithm

(Elitist Pareto Differential Evolution algorithm)

for the design of radial basis function networks

(RBFNs)

Used for classification tasks Memetic ? multi-

objective

Cruz-Ramı́rez

et al. [30]

A multi-objective evolutionary learning algorithm

using NSGA2 algorithm hybridized with a local

search algorithm for training ANNs with

generalized radial basis functions

Used for donor–recipient decision system in

liver transplants

Multi-objective
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chosen from subsequent non-dominated fronts in their order

of ranking. Thus, solutions from the set F2 are chosen next,

followed by solutions from the set F3, and so on. This

procedure is continued until no more sets can be accom-

modated. Then, the new population P(g ?1) is sorted

according to the rank and crowding values, and the first

N individuals are selected. Finally, we use a binary tour-

nament on P(g ?1) to obtain N individuals (Table 1).

4 Experiments

4.1 Datasets

For the experimental design, we consider 11 real-world

datasets for classification tasks. The datasets include two-

class, multi-class and complex real problem pattern clas-

sification tasks. The breast cancer, diabetes, heart, hepatitis

and liver datasets represent two-class datasets, while the

iris, lung cancer, QAC, segment, wine and yeast data

represent multi-class datasets. All of the datasets are

obtained from the UCI machine learning repository [55],

except for the Qualitative Analytical Chemistry (QAC)

dataset, which is sometimes called BTX, and it is consid-

ered to also be a complex problem. More information can

be found about QAC in [56]. Table 2 shows the number of

features, classes and instances for all of the datasets. For

each dataset, 75% of the dataset is used for the training set,

and the remaining 25% is used for the testing set. In

addition, all of the dataset values are normalized in the

range [0, 1].

4.2 Experimental setup

The experiments are conducted to test the efficiency of the

proposed method for all of the datasets. The proposed

method is evaluated by using the tenfold cross-validation

technique. In tenfold cross-validation, the dataset is split

into ten equally sized subsets. Nine of those subsets are

used as the training dataset, and the one remaining subset is

used as the testing dataset. This train and test process is

repeated in such a way that all of the subsets are used as a

test dataset. The results of MAMOT for each dataset are

compared to MOGAT. The number of input and output

nodes is dependent on the dataset, and it is different from

one dataset to another. The maximum number of hidden

nodes is set to 10 [17, 23, 54]. The maximum number of

neural network training iterations is set to 1000 [2, 46] for

all of the datasets. For the local search algorithm, the

learning rate is set to 0.01 and the number of iterations is

set to 5 [17, 54]. Table 3 presents the other various

parameter settings. From Table 3, the ‘‘N’’ refers to the

dimension of the individual. Moreover, there are some

parameters of the TBP network that must be specified by

the user. In the MAMOT, we assign a distribution index gc

value in the initial population using gc = 2. Afterward, this

value is updated depending on the creation of a better child

or a worse child than both parents.

4.3 Results and discussion

This section presents the results of MAMOGEA and

MOGA applied to the TBP network (called MAMOT and

MOGAT, respectively). MAMOT is the proposed method

in this paper, it is a new memetic adaptive multi-objective

evolutionary algorithm based on a three-term backpropa-

gation network. It used self-adaptive NSGA-II combined

with the local search method to optimizing the parameters

and performance of neural networks. On the other hand,

MOGAT is proposed in [14] and implemented in this for

comparison to MAMOT. It used non-dominated sorting

genetic algorithm-II based on TBP network. Both

Table 2 Summary of datasets

used in the experiments
Dataset Number of features Number of classes Number of instances

Breast cancer 9 2 683

Diabetes 8 2 768

Heart 13 2 297

Hepatitis 19 2 155

Iris 4 3 150

Liver 6 2 345

Lung cancer 56 3 32

QAC 3 7 63

Segment 19 7 2310

Wine 13 3 178

Yeast 8 10 1484
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MAMOT and MOGAT are based on TBP network. The

main differences between them are the MAMOT used self-

adaptive method to improve the performance of the algo-

rithm and a local search technique to improve all of the

individuals in a population.

The results of these algorithms are Pareto optimal

solutions to improving generalization on unseen data. The

training set is used to train the TBP network to obtain the

Pareto optimal solutions, while the testing set is used to test

the generalization performance of the Pareto TBP network.

The result for each dataset focused on the analysis of the

hidden nodes, network error and accuracy, and the results

are analyzed based on the convergence to the Pareto front

with their classification performance. In Tables 4, 5, 6 and

7, the best results are the highlighted bold entries.

The hybrid of the local search algorithm with evolu-

tionary algorithms is a good choice in the problems studied

because the hybrid algorithms achieve the best perfor-

mance in all of the datasets. In addition, self-adaptive

crossover helped the algorithms in MAMOT to obtain

better solutions than MOGAT in most cases. Therefore, the

crossover operator benefited from the adaptive process. In

fact, the algorithm MAMOT has obtained the best per-

forming networks in all of the problems. Moreover, the size

of the networks obtained by this algorithm is, in general,

smaller than MOGAT because of the selective pressure

produced as a result of the objectives in Eqs. (2) and (3)

working together. To evaluate the classification capabilities

of the proposed method, the performance of the MAMOT

and MOGAT in the average sensitivity, specificity and

accuracy was performed with the results shown in Tables 6

and 7 in addition to Figs. 8, 9 and 10.

Tables 8 and 9 show the robust tests for normality and a

paired sample test, respectively. Robust tests for normality

used to check the normality assumption and a paired

sample t test are used after the normality test to compare

the proposed methods (MAMOT with the MOGAT). This

test is to ensure that there is no statistically significant

difference in the means between the accuracy obtained by

the proposed methods.

Sensitivity ¼ TP

TP þ FP
% ð11Þ

Table 3 Parameter settings for the proposed algorithms

Algorithm Value

Local search algorithm

Learning rate 0.01

Number of iterations 5

TBP network

Maximum number of hidden nodes 10

Learning rate 0.7

Momentum 0.7

Proportional Factor 0.9

MAMOT

Maximum number of iterations 1000

Population size 100

Probability of crossover (Pc) 0.9

Probability of mutation (Pm) 1/N

Distribution indices for crossover (gc) 20

Distribution indices for mutation (gm) 20

Table 4 Statistical evaluation of the testing errors for MAMOT and

MOGAT methods

Dataset MAMOT Testing error MOGAT Testing error

Breast cancer

Mean 0.0192 0.0241

SD 0.0064 0.0082

Diabetes

Mean 0.1642 0.1719

SD 0.0134 0.0157

Heart

Mean 0.1077 0.1219

SD 0.0288 0.0255

Hepatitis

Mean 0.1166 0.1311

SD 0.0249 0.0251

Iris

Mean 0.1087 0.1196

SD 0.0099 0.0114

Liver

Mean 0.2128 0.2212

SD 0.0288 0.0128

Lung cancer

Mean 0.1674 0.1987

SD 0.0191 0.0291

QAC

Mean 0.1181 0.1181

SD 0.0057 0.0066

Segment

Mean 0.0963 0.1309

SD 0.0187 0.0144

Wine

Mean 0.1459 0.1563

SD 0.0337 0.0242

Yeast

Mean 0.0805 0.0816

SD 0.0094 0.0088
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Sepecifity ¼ TN

TN þ FP
% ð12Þ

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
% ð13Þ

where TP = true positives, FN = false negatives, TN =

true negatives, and FP = false positives.

The performance measures used in this study for the

classification of the datasets are the sensitivity, specificity

and accuracy. Sensitivity is the measure of the classifier

according to its ability to identify the correct positive

samples, and it depends on the number of true positives and

false negatives, as shown in Eq. (11). Specificity is a

measure of the classifier’s ability to predict correctly the

negative samples; it depends on the number of the true

negatives and false positives, as shown in Eq. (12). Addi-

tionally, accuracy is a measure of the classifier’s ability to

produce a level of accurate diagnosis; Eq. (13) shows the

accuracy formula.

The results in Table 4 demonstrate the performance of

the proposed method (training and testing error) for all

eleven datasets used. The average of the results values and

the sample standard deviations determine how far each

value in the results varies from the average value of the

result and the maximum value and minimum value, which

Table 5 Average numbers of the hidden nodes in TBP network

obtained by MAMOT and MOGAT methods

Dataset Network complexity (Hidden nodes)

MAMOT MOGAT

Breast cancer

Mean 3.80 4.70

SD 1.23 1.64

Diabetes

Mean 4.40 5.60

SD 2.01 2.72

Heart

Mean 3.60 4.60

SD 1.17 1.26

Hepatitis

Mean 4.60 5.20

SD 2.11 2.53

Iris

Mean 4.70 5.20

SD 2.41 2.82

Liver

Mean 4.70 4.60

SD 1.70 1.70

Lung cancer

Mean 2.00 2.00

SD 0.00 0.00

QAC

Mean 3.40 4.10

SD 1.17 1.20

Segment

Mean 4.10 4.80

SD 0.99 1.14

Wine

Mean 4.10 4.90

SD 1.37 2.18

Yeast

Mean 3.4 3.50

SD 0.84 0.85

Table 6 Statistical evaluations for the testing accuracy of the

MAMOT and MOGAT methods

Dataset MAMOT testing accuracy MOGAT testing accuracy

Breast cancer

Mean 97.94 96.69

SD 0.75 1.01

Diabetes

Mean 76.29 73.98

SD 3.05 3.46

Heart

Mean 85.16 82.78

SD 4.76 3.81

Hepatitis

Mean 84.01 80.82

SD 5.01 3.73

Iris

Mean 85.13 79.26

SD 2.76 5.80

Liver

Mean 64.16 61.35

SD 5.62 4.40

Lung cancer

Mean 73.96 69.26

SD 5.03 9.17

QAC

Mean 85.95 85.78

SD 0.75 0.20

Segment

Mean 87.20 85.71

SD 1.93 0.00

Wine

Mean 78.84 73.74

SD 6.55 1.34

Yeast

Mean 90.03 90.01

SD 0.06 0.03
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appear in Table 4 as the mean, SD, max and min, respec-

tively. The average of the mean squared error (MSE) of the

proposed methods for all of the datasets is presented in this

Table. The error rates for all of the results are shown in the

same Table, as obtained by MAMOT and MOGAT. The

results show the generalization error of the proposed

methods. From Table 4, we can observe that in all of the

datasets on the mean rows, MAMOT gives promising

results regarding the performance (testing error) compared

to MOGAT. Additionally, MAMOT produced the smallest

error on all of the datasets. Furthermore, the testing errors

that are shown in the same Table are the average of the

errors obtained in a single run of the MAMOT and

MOGAT applied to the TBP network.

Moreover, Fig. 5 shows the comparison of all of the

errors obtained in the training and testing set, respectively,

using MAMOT and MOGAT. From the same Figure, the

Y-axis plots the MSE, while the X-axis plots the datasets

used in this study. We can see that the error rates are

reasonable and small in all of the datasets, especially in the

breast cancer dataset, which has the lowest amount of error,

followed by the yeast data.

Regarding complexity, Table 5 presents the results of

the complexity or the average number of hidden nodes in

the TBP network structure. Of all of the datasets, the

MAMOT achieved a better network structure with the

lowest complexity and lower average results for the hidden

nodes than MOGAT. In addition, from Table 5, we can

observe very clearly that the average number of hidden

nodes in the structure of the TBP network in all of the

datasets is not more than 4.7 when using MAMOT. Pre-

cisely, two datasets obtained 4.7, which are the iris and the

liver datasets, while the average number of hidden nodes of

the MOGAT is not more than 5.60, which was achieved by

the diabetes dataset. On the other hand, the minimum

average number of hidden nodes when using the lung

cancer dataset is 2.00 in both algorithms. If there are more

hidden nodes in the network, we can learn a training set

more quickly, but it might not generalize well on a testing

set. Therefore, Table 5 and Fig. 6 show that MAMOT has

the capability to design simple TBP networks with the

lowest number of hidden nodes.

In terms of the classification accuracy rate for all of the

datasets, the accuracy rates demonstrate very good results

in general, especially in the breast cancer and yeast dataset.

As shown in Table 6, the two mentioned datasets obtained

97.94 and 90.03%, respectively, in MAMOT, while using

MOGAT they obtained an accuracy rate on the same two

datasets of 96.69 and 90.01%, respectively. Table 6 shows

the highest testing accuracy highlighted with bold font for

all of the datasets. In general, the best results for classifi-

cation accuracy in the testing sets are obtained through the

MAMOT approach for all datasets. Figure 7 clearly shows

the average percentage of accuracy obtained in the testing

accuracy for all datasets.

Table 7 shows the statistical results for the sensitivity,

specificity and classification accuracy of the proposed

methods on the training set and testing set for all datasets.

In terms of the sensitivity, MAMOT produced the best

results on the training and testing set for all of the datasets

and on average as well, except for the lung cancer dataset,

which had better results using MOGAT for the training and

testing set, although the breast cancer dataset had the best

values for sensitivity among all of the datasets, obtaining

Table 7 Sensitivity and specificity for the testing sets for MAMOT

and MOGAT methods

Dataset MAMOT testing MOGAT testing

Sensitivity Specificity Sensitivity Specificity

Breast cancer

Mean 97.07 97.80 96.67 97.30

SD 2.63 1.54 2.64 1.77

Diabetes

Mean 50.43 90.10 48.43 89.20

SD 9.58 3.75 10.92 4.34

Heart

Mean 80.25 89.73 78.85 88.13

SD 8.03 7.82 7.94 8.04

Hepatitis

Mean 35.34 95.83 30.83 94.23

SD 23.34 5.83 25.47 6.84

Iris

Mean 55.36 98.21 52.67 97.00

SD 14.79 3.59 15.54 5.76

Liver

Mean 26.38 91.20 21.38 90.50

SD 20.26 9.25 19.95 9.85

Lung cancer

Mean 42.03 92.78 55.00 71.11

SD 17.89 9.46 27.27 14.30

QAC

Mean 0.00 99.76 0.00 100.00

SD 0.00 0.75 0.00 0.00

Segment

Mean 1.67 99.18 0.00 100.00

SD 5.27 2.58 0.00 0.00

Wine

Mean 52.96 96.88 45.96 96.15

SD 19.57 5.91 22.12 6.00

Yeast

Mean 0.00 100.00 0.00 100.00

SD 0.00 0.00 0.00 0.00
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98.87% for the training set and 97.07% for testing set. The

yeast dataset achieved the lowest sensitivity value (which

was 0.00%) for both the training and testing set. Some of

the datasets, such as QAC, segment and yeast, achieved

very low values in the sensitivity and did not exceed

6.50%. We infer that the improvement in the sensitivity is

very difficult in these datasets because there are difficult

classification problems in these datasets and because the

datasets are extremely unbalanced. Thus, this difficulty

leads to lower sensitivity in these datasets. Moreover,

Fig. 8 shows the comparison of MAMOT and MOGAT

with respect to the sensitivity results obtained in the testing

set.

With regard to the specificity in Table 7, MAMOT

provided the best results on the training and testing sets for

all of the datasets and on average as well, except for two

datasets, which are the QAC and Segment datasets. The

results reported in Table 7 and the histogram in Fig. 9

show that MAMOT and MOGAT produced the same

specificity results only for the yeast dataset. MAMOT has

better results in training and testing, especially in the iris

and yeast datasets, which obtained 98.18% in training and

98.21% in the testing set for the iris data, while the yeast

Table 8 Results of the normality tests

Test Accuracy Complexity

MAMOT MOGAT MAMOT MOGAT

Statistic p value Statistic p value Statistic p value Statistic p value

RJB X2 = 0.90 0.64 X2 = 0.12 0.94 X2 = 3.87 0.14 X2 = 19.74 \ .005

JB X2 = 0.36 0.84 X2 = 0.18 0.91 X2 = 2.76 0.25 X2 = 5.03 0.08

SJ Standardized

SJ = 1.77

0.09 Standardized

SJ = 0.60

0.29 Standardized

SJ = 1.323

0.14 Standardized

SJ = 3.31

0.02

SK v2 = 1.69 0.43 v2 = 0.21 0.90 v2 = 5.98 0.05 v2 = 8.31 0.02

SW W = 0.99 0.76 W = 0.99 0.99 W = 0.88 0.09 W = 0.84 0.03

AD A = 0.39 0.30 A = 0.14 0.96 A = 0.47 0.20 A = 0.73 0.04

Table 9 Results of paired t test and Wilcoxon’s signed-ranks test

Algorithm Measure Mean SD Mean positive

rank

Mean negative

rank

Test

Statistic

p value

t test

p value signed

rank

MOGAT versus

MAMOT

Accuracy - 2.66182 1.93539 – – 4.561 0.001 –

Complexity – – 5.94 1.5 - 2.654 – 0.008
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Fig. 5 Comparison of training and testing average error results

obtained by MAMOT and MOGAT
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Fig. 6 Comparison of MAMOT and MOGAT for the average number

of hidden nodes for all of the datasets
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data achieved 100.00% in both the training and testing set.

MOGAT achieved successful results, which means

100.00% specificity in the QAC, segment and yeast data-

sets. In general, it can be clearly seen from the data in

Table 7 that the specificity results for all of the datasets

obtained high specificity rates.

Based on the evaluation viewpoint that was utilized in

this study, it can be concluded that the MAMOT is more

suitable to be employed as a classifier, whereas the pro-

posed method shows the best performance to some extent.

However, the optimal parameters are very important for

ensuring the accuracy of the ANNs. Hence, the MAMOT

has facilitated the searching process for the optimal

parameters of the TBP network and is thus able to produce

more accurate results. The results of this study also

demonstrated that the use of the adaptive method in esti-

mating the parameters of the TBP network was able to

improve the accuracy of the proposed method in all of the

datasets used.

4.4 Statistical test

To compare two or more classifiers on multiple datasets in

this study, we used statistical tests to determine whether the

algorithms are significantly different or not. Several known

statistical tests are examined, and their suitability was

studied to determine the significance of the proposed

methods based on the complexity of the TBP network and

its accuracy. To test the difference between two classifiers’

results over various datasets, a paired t test was used, which

determines whether the average difference in their perfor-

mance over the datasets is significantly different from zero.

On the other hand, the Wilcoxon signed-ranks test was also

used to detect significant differences between the behaviors

of the algorithms’ pair.

Before we used such statistical tests, we performed some

statistical analysis so as to check the normality assumption.

The used tests were Robust Jarque–Bera test (RJB), the

Jarque–Bera (JB) test, the SJ test (SJ), the popular Shapiro–

Wilk test (SW) and the Anderson–Darling test (AD); these

tests are robust tests for normality with reference to the

study [59] and Skewness Kurtosis test (SK). We used such

robust tests for normality to investigate whether the dif-

ferent values for accuracy and complexity are normally

distributed or not. Table 8 shows the statistical tests results

and proved that the accuracy results of MAMOT and

MOGAT follow the normal distribution assumption. Fur-

thermore, the results proved that the complexity results of

MAMOT are normally distributed, while the MOGAT

method violates the normality assumption. Based on our

results of the robust tests for normality, we used a paired

sample t test to test difference of the accuracy for the

MAMOT and MOGAT. On the other hand, we used Wil-

coxon signed-ranks test for the difference of the com-

plexity for MAMOT and MOGAT.

The MAMOT and MOGAT were tested using the t test

and Wilcoxon signed-ranks test for testing the model

accuracy difference and complexity, respectively. Let us

first construct the null hypothesis to test the significance of

0
10
20
30
40
50
60
70
80
90

100
A

cc
ur

ac
y 

%
 

Dataset 

MAMOT

MOGAT

Fig. 7 Comparison of MAMOT and MOGAT with respect to the
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specificity results obtained on the testing set
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MAMOT in relation to MOGAT in accuracy. The null

hypothesis is that there is no difference between the aver-

age accuracy of MAMOT versus MOGAT. The results of

the applied paired t test are shown in Table 9. The p value

of the t test is less than a = 0.05 significance level, which

implies the rejection of the null hypothesis. Therefore,

there were significant differences; furthermore, MAMOT

was significantly better than MOGAT. On the other hand,

the p value resulted from the Wilcoxon signed rank of

testing the differences of the algorithms complexity also

was lower than a, which implied the rejection of the null

hypothesis. Thus, there were significant differences. As we

can see below, the results from Table 9 show that there

were statistically significant differences between MAMOT

and MOGAT.

4.5 Comparisons with other studies

The performance of the proposed methods can be com-

pared with MOGAT and other memetic and multi-objec-

tive genetic algorithm-based ANN algorithms found in the

literature (which used the same datasets) and some baseline

methods, such as (HMOEN L2 and HMOEN HN [57],

MPENSGA2E and MPENSGA2S [18], MEPGANf1f2 and

MEPGANf1f3 [54] and also SVM [54]). Table 10 and

Fig. 10 show a summary of the comparison results. Our

proposed method, MAMOT, is the best of all of the

methods reported in Table 10 on all of the datasets, except

for diabetes, iris and liver, in which MPENSGA2E [18] is

better than our algorithm in diabetes, while [57] there are

two methods, HMOEN L2 and HMOEN HN, which are

better than our algorithm for the iris and liver datasets,

respectively. Additionally, on the breast cancer data,

MAMOT achieved a better accuracy value than the other

methods.

5 Conclusions

This paper introduces a new memetic adaptive multi-ob-

jective evolutionary algorithm that is based on the TBP

network, MAMOT, for optimizing the TBP network

parameters by using an adaptive non-dominated sorting

genetic algorithm, ANSGA-II. The memetic process

introduces the BP algorithm as a local optimizer hybrid

with ANSGA-II, which was used to enhance all of the

individuals in the population. On the other hand, the self-

Table 10 Classification accuracies of the proposed method and some of the other methods in the literature

Dataset Method/References

MAMOT MOGAT MEPGAN

f1f2 [54]

MEPGAN f1–

f3 [54]

SVM

[54]

HMOEN L2

[57]

HMOEN HN

[57]

MPENSGA2E

[18]

MPENSGA2S

[18]

Breast

cancer

97.94 96.69 96.78 97.80 96.49 96.26 96.82 95.87 95.60

Diabetes 76.28 73.98 72.78 68.35 65.10 78.48 75.36 78.99 76.96

Iris 85.13 79.26 83.78 84.44 96.67 98.00 91.03 97.18 96.50

Heart 85.16 82.78 79.07 80.79 54.88 79.69 81.06 – –

Hepatitis 84.01 80.82 80.04 79.38 79.36 80.30 75.51 – –

Liver 64.16 61.35 62.63 63.50 59.42 68.00 68.94 – –

QAC 85.95 85.78 85.71 85.71 80.95 – – 85.56 85.40

Yeast 90.03 90.01 90.00 90.01 43.26 – – 59.91 53.21

Lung

cancer

73.96 69.26 66.67 66.67 50.00 – – – –

Segment 87.20 85.71 86.90 86.22 65.37 – – – –

Wine 78.84 73.74 72.18 72.04 44.38 – – – –
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Fig. 10 Performance comparisons of the proposed and existing

methods on the testing set for all of the datasets
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adaptive SBX crossover was used to improve the perfor-

mance of the ANSGA-II. The new memetic adaptive multi-

objective evolutionary algorithm simultaneously optimizes

the neural network parameters, specifically the connection

weights, error rate and optimal structure in terms of the

number of nodes in the hidden layer. This MAMOT-based

algorithm not only helps to improve the classification

accuracy, but also automatically designs and reduces the

network structure during the classification phase of the

neural classifier. To assess the performance of the

MAMOT, experiments were conducted with 11 different

dataset types for classification problems, 10 datasets

obtained from UCI repository and another complex envi-

ronment problem from qualitative analytical chemistry.

The experimental results obtained show that the proposed

method (MAMOT) was able to obtain a TBP network with

better classification accuracy and a simpler network

structure on the classification tasks compared with the

other algorithms found in the literature. Based on an

evaluation and statistical tests that were conducted, it can

be concluded that the proposed MAMOT is suitable to be

employed as a classifier for classification problems. As a

future work, we plan to integrate a preferential local search

with adaptive weights, as proposed in [58], to improve the

performance of the algorithm and obtain better results. Our

future work also will include the investigation of the pro-

posed method and the effectiveness with larger datasets. In

addition, we are planning to check the performance of the

proposed method in other types of artificial neural

networks.
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