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Abstract
Swarm intelligence (SI) is an innovative distributed intelligent paradigm whereby the collective behaviors of unsophisticated individuals

interacting locally with their environment cause coherent functional global patterns to emerge. The intelligence emerges from a chaotic balance

between individuality and sociality. The chaotic balances are a characteristic feature of the complex system. This paper investigates the chaotic

dynamic characteristics in swarm intelligence. The swarm intelligent model namely the particle swarm (PS) is represented as an iterated function

system (IFS). The dynamic trajectory of the particle is sensitive on the parameter values of IFS. The Lyapunov exponent and the correlation

dimension are calculated and analyzed numerically for the dynamic system. Our research results illustrate that the performance of the swarm

intelligent model depends on the sign of the maximum Lyapunov exponent. The particle swarm with a high maximum Lyapunov exponent usually

achieves better performance, especially for multi-modal functions.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Swarm intelligence (SI) is mainly inspired by social behavior

patterns of organisms that live and interact within large groups of

unsophisticated autonomous individuals. In particular, it

incorporates swarming behaviors observed in flocks of birds,

schools of fish, or swarms of bees, colonies of ants, and even

human social behavior, from which the intelligence is emerged

[1–3]. SI provides a framework to explore distributed problem

solving without centralized control or the provision of a global

model. The particle swarm model helps to find optimal regions of

complex search spaces through interaction of individuals in a

population of particles [4]. It has exhibited good performance

across a wide range of applications [5–11].

In the swarm dynamic system, the intelligence emerges from

a chaotic balance between individuality and sociality. The

chaotic balances are a characteristic feature of the complex
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system. Many studies on swarm intelligence have been

presented and even some improved algorithms were proposed

based on the chaotic search behavior. For a given energy or cost

function, by following chaotic ergodic orbits [12], a chaotic

dynamic system may eventually reach the global optimum or its

good approximation with high probability. To enhance the

performance of particle swarm optimization (one of the swarm

intelligent models), Liu et al. [13] proposed hybrid particle

swarm optimization algorithm by incorporating chaos. The

proposed chaotic particle swarm optimization combined the

population-based evolutionary searching ability of particle

swarm optimization and chaotic search behavior. Simulation

results and comparisons with the standard particle swarm

optimization and several other meta-heuristics have shown that

the approach could effectively enhance the search efficiency

and greatly improve the searching quality. Since chaotic

mapping possesses properties of certainty, ergodicity and

stochastic property, Jiang and Etorre [14,15] introduced chaos

mapping into the particle swarm optimization algorithm for

reactive power optimization and short term hydroelectric

system scheduling in a deregulated environment. Empirical

results demonstrated that the performance of the algorithms
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was improved obviously owing to its fast convergence and high

precision.

However, not much work has been reported in the literature

on the chaotic characteristics in swarm intelligence. In fact,

several other studies in diverse fields indicated the analysis of

the chaotic characteristics contributed to the understanding and

applications of those complex systems. Chen [16] investigated

the chaotic phenomena in macroeconomic systems, and offered

an explanation of the multi-periodicity and irregularity in

business cycles and of the low-dimensionality of chaotic

monetary attractors. The empirical and theoretical results

improved monetary control policy and the approaches to

forecasting business cycles. Chialvo et al. [17] studied chaotic

patterns of activation and action potential characteristics in the

cardiac tissues. Their results indicated an apparent link between

the mechanism of low dimensional chaos and the occurrence of

reflected responses which could lead to more spatially

disorganized phenomena. Frank et al. [18] analyzed the chaotic

characteristics in the brain dynamics to predict changes of

epileptic seizures. Goldberger et al. [19], Freeman [20] and

Sarbadhikari and Chakrabarty [21] illustrated that chaos has a

great important influence on brain and the evolutionary

relationship between species. The investigations of chaotic

dynamics in neural networks [22] promoted the development of

neural networks and chaotic neural networks [23,24]. The

chaotic balances and their characteristic in swarm intelligence

has become very importance for its deeper understanding,

application development and designing new computational

models.

This paper investigates the chaotic dynamic characteristics

in swarm intelligence, and analyzes their relationship with the

performance of SI. Particle swarm model is investigated as a

case study. The swarm intelligent model is represented as an

iterated function system (IFS) [25]. We simulate and analyze

the dynamic trajectory of the particle based on the IFS. The

Lyapunov exponent and the correlation dimension are

calculated and analyzed numerically for the dynamic system.

The dependence of the parameters is discussed analytically

using function optimization experiments.

The rest of the paper is organized as follows. Particle swarm

model is presented in Section 2 and the concepts of iterative

function system and its sensitivity is illustrated in Section 3.

Dynamic chaotic characteristics are depicted and discussed in

Section 4 and finally conclusions are made in Section 5.

2. Particle swarm model

A particle swarm model consists of a swarm of particles

moving in a d-dimensional search space where the fitness f can

be calculated as a certain quality measure. Each particle has a

position represented by a position-vector~xi (i is the index of the

particle), and a velocity represented by a velocity-vector ~vi.

Each particle remembers its own best position so far in a vector

~pi, and its jth dimensional value is pi; j. The best position from

the swarm thus far is then stored in a vector ~pg, and its jth

dimensional value is pg; j. During the iteration time t, the update

of the velocity from the previous velocity is determined by (1).
Subsequently, the new position is determined by the sum of the

previous position and the new velocity by (2):

vi; jðtÞ ¼ wvi; jðt � 1Þ þ c1r1ð pi; jðt � 1Þ � xi; jðt � 1ÞÞ

þ c2r2ð pg; jðt � 1Þ � xi; jðt � 1ÞÞ (1)

xi; jðtÞ ¼ xi; jðt � 1Þ þ vi; jðtÞ (2)

where r1 and r2 are the random numbers, uniformly distributed

within the interval [0, 1] for the jth dimension of ith particle. c1

is a positive constant termed as the coefficient of the self-

recognition component; c2 is a positive constant termed as the

coefficient of the social component. The variable w is the inertia

factor, for which value is typically setup to vary linearly from 1

to 0 during the iterated processing. From (1), a particle decides

where to move next, considering its own experience, which is

the memory of its best past position, and the experience of its

most successful particle in the swarm. In the particle swarm

model, the particle searches the solutions in the problem space

within a range ½�s; s� (if the range is not symmetrical, it can be

translated to the corresponding symmetrical range). In order to

guide the particles effectively in the search space, the maximum

moving distance during one iteration is clamped in between the

maximum velocity ½�vmax ; vmax � given in (3), and similarly for

its moving range given in (4):

vi; j ¼ signðvi; jÞmin ðjvi; jj; vmax Þ (3)

xi; j ¼ signðxi; jÞmin ðjxi; jj; xmax Þ (4)

The value of vmax is r� s, with 0:1 � r � 1:0 and is usually

chosen to be s, i.e. r ¼ 1. The pseudo-code for particle-search

is illustrated in Algorithm 1.

Algorithm 1. Particle swarm model

01. Initialize the size of the particle swarm n, and other

parameters.

02. Initialize the positions and the velocities for all the particles

randomly.

03. While (the end criterion is not met) do

04. t ¼ t þ 1;

05. Calculate the fitness value of each particle;

06. ~pgðtÞ ¼ argminn
i¼1ð f ð~pgðt � 1ÞÞ; f ð~x1ðtÞÞ; f ð~x2ðtÞÞ; . . . ;

f ð~xiðtÞÞ; . . . ; f ð~xnðtÞÞÞ
;

07. For i ¼ 1 to n

08. ~piðtÞ ¼ argminn
i¼1ð f ð~piðt � 1ÞÞÞ; f ð~xiðtÞÞ;

09. For j ¼ 1 to d

10. Update the jth dimension value of~xi and ~vi

according to (1), (3), (2), (4);

11. Next j

12. Next i

13. End While.
3. Iterated function system and its sensitivity

Clerc and Kennedy have stripped the particle swarm model

down to a most simple form [26]. If the self-recognition



Fig. 1. Norm of A.
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component c1 and the coefficient of the social-recognition

component c2 in the particle swarm model are combined into a

single term c, i.e. c ¼ c1 þ c2, the best position ~pi can be

redefined as follows:

~pi 
c1~pi þ c2~pg

c1 þ c2

(5)

Then, the update of the particle’s velocity is defined by

~viðtÞ ¼~viðt � 1Þ þ cð~pi �~xiðt � 1ÞÞ (6)

The system can be simplified even further by using ~yiðt � 1Þ
instead of ~pi �~xiðt � 1Þ. Thus, the reduced system is then

~vðtÞ ¼~vðt � 1Þ þ c~yðt � 1Þ;

~yðtÞ ¼ �~vðt � 1Þ þ ð1� cÞ~yðt � 1Þ
Fig. 2. Trajectory of the particle: (a) c ¼ 2:9; (b
This recurrence relation can be written as a matrix-vector

product, so that

~vðtÞ<myslash>~yðtÞ½ �

¼ 1<myam p> c<myslash> � 1<myam p> 1� c½ �

� ~vðt � 1Þ<myslash>~yðt � 1Þ½ �

Let

~Pt ¼ ~vt <myslash>~yt½ �

and

A ¼ 1<myam p> c<myslash> � 1<myam p> 1� c½ �

we have an iterated function system for the particle swarm

model:

~Pt ¼ A �~Pt�1 (7)

Thus, the system is completely defined by A. Its norm kAk2

(also written kAk) is determined by c. The relationship of A and

its dependence on c is illustrated in Fig. 1.

IFS is sensitive to the values of c. It is possible to

find different trajectories of the particle for various values of c.

Fig. 2 (a) illustrates the system for a torus when c ¼ 2:9;

Fig. 2(b), a hexagon with spindle sides when c ¼ 2:99; Fig. 2(c),

a triangle with spindle sides when c ¼ 2:999; Fig. 2(d), a

simple triangle when c ¼ 2:9999. As depicted in Fig. 2, the

iteration time step used is 100 for all the cases. Another system

sensitivity instance is illustrated in Fig. 3. It is to be noted that

Figs. 2 and 3 illustrate only some 2D representations of the

iterated process. A comparison between 2D and 3D is illustrated

in Fig. 4.
) c ¼ 2:999; (c) c ¼ 2:999; (d) c ¼ 2:9999.



Fig. 3. Trajectory of the particle: (a) c ¼ 3:7321; (b) c ¼ 3:8; (c) c ¼ 3:9; (d) c ¼ 3:999.
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4. Dynamic chaotic characteristics

Chaotic dynamics is defined by a deterministic system with

non-regular, chaotic behavior [27]. They are both sensitive to

initial conditions and computational unpredictability. The

Lyapunov exponent and correlation dimension are most

accessible in numerical computations based on the time-series

of the dynamical system [28]. In this section, we introduce the

algorithm to compute the Lyapunov exponent and correlation

dimension for quantitative observation of dynamic character-

istics of the particles, and then analyze the relation between

chaos and the swarm intelligent model.

4.1. Lyapunov exponent

Lyapunov exponents provide a way to identify the

qualitative dynamics of a system, because they describe the
Fig. 4. 2D vs. 3D—(a) 2D: c ¼
rate at which neighboring trajectories converge or diverge (if

negative or positive, respectively) from one another in

orthogonal directions. If the dynamics occur in an n-

dimensional system, there are n exponents. Since the maximum

exponent will dominate, this limit is practically useful only for

finding the largest exponent. Chaos can be defined as the

divergence between neighboring trajectories and the presence

of a positive exponent could be considered as the diagnostic of

chaos. For an IFS, Lyapunov exponents measure the asymptotic

behavior of tangent vectors under iteration. The maximum

Lyapunov exponent can be found using [29]:

Le1 ¼ lim
N!1

1

N

XN

n¼1

ln

�
dn

d1

�
(8)

where dn is the distance between the n th point-pair. Le1 can be

calculated using a programmable calculator to a reasonable
1:3820, (b) 3D: c ¼ 1:3820.



Fig. 5. Maximum Lyapunov exponent in PS. Fig. 6. Plot of ln CðrÞ vs. ln ðrÞ for c ¼ 3:9.

Fig. 7. Correlation dimension for varying values of c.
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degree of accuracy by choosing a suitably large value of ‘‘N’’.

Using the time-series generated from the IFS (7), the maximum

Lyapunov exponent Le1 of the particle swarm model is calcu-

lated. The results are illustrated in Fig. 5. The maximum

Lyapunov exponent steadily increases with the value of c in

the interval [0.5, 4] and it bounds to reach a very high level

when the value of c falls within the [0, 4] interval.

4.2. Correlation dimension

The dimension in a chaotic system is a measure of its

geometric scaling property or its ‘‘complexity’’ and it has been

considered as one of the most basic properties. Numerous

methods have been proposed for characterizing the dimension

produced by chaotic flows and one of the most common metrics

is the correlation dimension, popularized by Grassberger and

Procaccia [30]. It measures the probability that two points

chosen at random will be within a certain distance of each other,

and examines how this probability changes as the distance is

increased. During the past decades, several investigators have

undertaken nonlinear analysis using Grassberger and Procac-

cia’s algorithm (GP algorithm) to evaluate the correlation

dimension of time-series data [31,32].

Given by N points f~x1;~x2; . . . ;~xNg from the iterated

processes of IFS, the definition of the correlation integral is

CðrÞ ¼ lim
N!1

1

N2

XN

i; j¼1
i 6¼ j

Hðr � j~xi �~x jjÞ (9)

where HðxÞ is the Heaviside step function. When the limit

exists, the correlation dimension is then defined as (10):

D2 ¼ lim
r;r0 !þ0

ln ðCðrÞ=Cðr0ÞÞ
ln ðr=r0Þ (10)

In practice, CðrÞ is calculated for several values of r and then a

plot is constructed for ln CðrÞ versus ln ðrÞ to estimate the slope,

which then approximates the correlation dimension D2. In the

particle swarm model, for c ¼ 3:9, the slope, i.e. D2 is illu-

strated in Fig. 6 in the interval [0, 4]. The correlation dimension
is depicted in Fig. 7. There are no obvious differences for c

values increasing within the interval of [0, 4]. D2 is fluctuating

mainly within 1� 0:2 and it is to be noted that the correlation

dimension is very small when c is close to 3. Our experiment

results also further validates the constant constriction coeffi-

cient w using the ‘‘classical’’ value w ¼ 1=ð2 ln ð2ÞÞ ¼ 0:7213

and the recommended value for c ¼ ðwþ 1Þ2 ¼ 2:9630 [26].

For the iterated system determined by (7), the eigenvalues of

A are l1 and l2. We are looking for pair of values ðc; kÞ so that

Ak ¼ I (11)

where I is the identity matrix. We have detðAÞ> 0 (equal to 1, in

fact), so it exists P so that

P�1AP ¼ L (12)

where

L ¼ l1 <myam p> 0<myslash> 0<myam p> l2½ �

Eq. (11) can then be rewritten

ðPLP�1Þk ¼ Lk ¼ I (13)



Fig. 8. The performance for 5D Rastrigrin’s function.

Fig. 9. The performance for 5D Zakharov’s function.
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It means we must have

lk
1 ¼ lk

2 ¼ 1 (14)

But we have

l1 ¼ 1� c

2
þ

ffiffiffiffi
D
p

; l2 ¼ 1� c

2
�

ffiffiffiffi
D
p

(15)

with c is strictly positive, and

D ¼
�

1� c

2

�2

� 1

So it is possible for (14) only if the eigenvalues are true complex

numbers, i.e. if D is strictly negative. It implies that c must be

smaller than 4. It is easy to see that we have jl1j ¼ jl2j ¼ 1. So

finally the only condition to have a perfect cycle of size k:

1� c

2
¼ cos

�
2p

k

�
(16)

i.e.:

c ¼ 2

�
1� cos

�
2p

k

��
(17)

There are an infinity of such cycles for small c values

(smaller than 1), but in [1,4] the only possible ones are for cycle

sizes k ¼ 6; 5; 4; 3, i.e. c ¼ 1; 1:382; 2; 3. It means in particular

that if we generate a sequence of points in the particle swarm

model by using one of these c values, the correlation dimension

will be very small. On the contrary for other values we obtain a

correlation dimension near to 1, which is the value for pure

random distribution.

4.3. Discussions

In order to analyze the relationship between chaos and the

swarm intelligent model, we optimized three unconstrained

real-valued benchmark functions, and then investigated the

performance of the model against the dynamic chaotic

characteristics.

First, we considered the Rastrigin’s function ( f 1), given by

(18). It is a continuous, multi-modal function with multiple

local minima. The function has a ‘‘large scale’’ curvature which

guides the search towards the global minimum,~x� ¼ ð0; . . . ; 0Þ,
with f ð~x�Þ ¼ 0 in the interval ½�5:12; 5:12�.

Next, we considered the Zakharov’s function ( f 2), given by

(19). It is a continuous, multi-modal function, and has the

minimum, ~x� ¼ ð0; . . . ; 0Þ, with f ð~x�Þ ¼ 0 in the interval

½�10; 10�.
Finally, we also evaluated the Levy’s function ( f 3), given by

(20). It is a continuous, multi-modal function with an offset,

since it has the minimum,~x� ¼ ð1; . . . ; 1Þ, with f ð~x�Þ ¼ 0 in

the interval ½�10; 10�:

f 1ð~xÞ ¼
Xn

i¼1

½x2
i � 10 cos ð2pxiÞ þ 10� (18)
f 2ð~xÞ ¼
Xn

i¼1

x2
i þ

�Xn

i¼1

1

2
ixi

�2

þ
�Xn

i¼1

1

2
ixi

�4

(19)

f 3ð~xÞ ¼
p

n

�
k sin 2ðpy1Þ þ

Xn�1

i¼1

ððyi � aÞ2ð1þ k sin 2ðpyiþ1ÞÞÞ

þ ðyn � aÞ2
�

;

yi ¼ 1þ 1

4
ðxi � 1Þ; k ¼ 10; a ¼ 1

(20)

The goal of the particle swarm algorithm is to find the global

minimum for functions (18) and (19). All experiments for the

functions were run 10 times, and the average fitness were

recorded. The swarm size was set at 20, and 1000 iterations for

the trials. The results are illustrated in Fig. 8 for Rastrigin’s

function, Fig. 9 for Zakharov’s function and Fig. 10 for Levy’s

function, respectively. It is obvious that the values of c within

the interval [0, 4] is fit for the model because the performance is

much better than the other values of c. It is consistent with the

Lyapunov exponent and the correlation dimension of the model

as illustrated in Figs. 5 and 7. In the interval [0, 4], the particle

swarm with a high maximum Lyapunov exponent usually

achieved better performance. The positive Lyapunov exponent

puting 7 (2007) 1019–1026



Fig. 10. The performance for 5D Levy’s function.
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describes the rate at which neighboring trajectories diverge. A

high Lyapunov exponent in the particle swarm system implies

that the particles are inclined to explore different regions and

find better fitness values. But the big Lyapunov exponent would

lead the system not to converge. The particles usually have to

search solutions randomly because of the clamping of velocity

and position. Compared to the correlation dimension of the

system, the performance of the system is better when the c is

close to 3.

5. Conclusions and future work

In this paper, we focused on the chaotic dynamic

characteristics in swarm intelligence. Particle swarm was

investigated as a case and the swarm model was represented by

the iterated function system (IFS). The dynamic trajectory of

the particle was sensitive on the value of the IFS parameters and

the sensitivity of the system is illustrated. We introduced the

algorithms to compute numerically the Lyapunov exponent and

correlation dimension for quantitative observation of dynamic

characteristics of the particles, and then analyzed the

dependence of the parameters using some function optimiza-

tion experiments. The results illustrated that the performance of

the swarm intelligent model depended on the sign of the

maximum Lyapunov exponent. The particle swarm with a little

high maximum Lyapunov exponent usually achieved better

performance, especially for the multi-modal functions. The

correlation dimension of the system could recommend some

values for the parameters.

Since the performance of the swarm intelligent model usually

depends relatively on its Lyapunov exponent and correlation

dimension, it would provide some new ideas for developing new

swarm intelligent swarm models. If we can design some models

with a little higher maximum Lyapunov exponent, it might be

possible to construct a new swarm intelligence model with better

performance. The correlation dimension of the system would

provide some suggestions for the parameter selection.
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