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Abstract—The analysis of social networks is concentrated
especially on uncovering hidden relations and properties of
network members (vertices). Most of the current approaches
are focused mainly on different network types and different
network coefficients. On one hand, the analysis can be relatively
simple; on the other hand some complex approaches to network
dynamics can be used. This paper introduces a novel aspect of
network analysis based on the so-called Forgetting Curve. For
network vertices and edges, we define two coefficients, which
describe their role in the network depending on their long-term
behavior. Using one of these parameters we reduce the network
to smaller components. We provide some experimental results
using DBLP1 dataset. Our research illustrates the usefulness
of the proposed approach.
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I. MOTIVATION

Generally, the term memory is understood as committing,

storing and recalling of experiences. The role of memory

is crucial because it stores and recalls all the information

we need for our normal lives. All stimuli and situations

in which we find ourselves are compared to their traces

in memory, which allows us to recognize the meaning

of these stimuli and situations. Recalling information is

either a reproduction or re-memorization of already known

information. The process of forgetting is opposite to the

process of recalling. To forget something means not to

lose the particular memory trace, but replace it with a new

experience. Nothing is forgotten, it just cannot be recalled,

because it has lost its meaning. There are two factors causing

information to be forgotten. The first one is the extinction of

the unused memory trace and the second is the interference

of new experiences - the replacement of less important

information by the more important ones.

The goal of our research is to apply known and proven

methods of learning and forgetting into the field of social

networks. The human brain stores information, which is

fixed in the memory by its frequent usage, but which can –

when not used – also fade from the memory. This process

is very complex. However many experiments have already

been done (see [4]), which lead to fairly exact description of

functions involved in the memorization and the forgetting of

1http://www.informatik.uni-trier.de/∼ley/db/

Figure 1. Forgetting Curve

information. We wish to review the social network as a hu-

man brain, which learns and forgets information. The reason

is that the vertices of the network are people having these

functions in their brains. In the following text, we understand

under the term social network an undirected weighted graph.

During the calculations of edge and vertex weights, we

use time-dependent and the forgetting of information-related

values. For our experiments, we use our own hypothesis that

in removing vertices and edges with a low weight we can

reduce the network but still maintain the important ties.

II. FORGETTING CURVE

Ebbinghaus proposed the forgetting curve in 1885. The

forgetting curve (see [4]) defines the probability that a person

can recall information at time t since previous recall. It can

describe long-term memory and is usually presented using

the following equation.

R = e−
t
S

R (memory retention) the probability of recalling

information at time t since the last recall.

e Euler number (aprox. 2.718).

t time since the last recall.

S (relative strength of memory - stability) approx-

imated time since the last recall for which is the

information stored in memory.

Remark There are also different approaches for the

computation of the forgetting curve (see for example [18])

but the conclusions are always very similar - the forgetting

process is much faster in the beginning (see fig. 1).

The computation depends on the type of memory, espe-

cially on the estimated time S (this value is not constant in

the long term). For simplicity, assume that if we work with

the information for the first time, then the time of storing
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information in memory is Sini > 0 and this default value is

constant.

An important feature of long-term memory is that after

reproduced information recall in the time t > 0, the time

of storing information in memory S changes. The change

is dependent on the previous time S and on the time of

recall t. Ideally, the reproduced recall multiplies this time

(in comparison with the previous value) by factor F > 1.

The other important feature of long-term memory is, that

immediate reproduced recall (too quick) of information has

no bigger effect on the learning. On the other hand, the

reproduced recall too lately (in time near S) causes sub-

stantial forgetting. There is an optimal time between these

two extreme situations in which the reproduced information

recall causes a high level of remembering (and consequently

the maximum increase of time S by factor F ).

In the ideal case (reproducing the information in optimal

time), the remembering of information is gradual and very

effective - after each recall, the time of storing information

in memory S (remembering) is multiplied by factor F .

A. Reproduced information recall

For updated Snew, after new information recall should

hold:

1) If t > S then Snew = Sini (information is considered

as new)

2) If t → S then Snew → Sini (late recall is considered

as almost new information) .

3) If t → 0 then Snew → S (early recall has almost no

influence)

4) If t → opt(S) then Snew → F ·S, where opt(S) is the

function returning optimal time for recalling the infor-

mation and F is the factor of optimal improvement.

Remark For reproduced information recall is R = 1.

This follows from the fact, that t = 0 at this moment.

For the factor of optimal improvement holds, that when

the information is recalled at optimal time, the value of S
is multiplied by two (depending on the type of memory).

Therefore we can assume that F ∈ (1; 2〉.
B. Calculation of Snew

We have to consider three things:

1) The function opt(S) for the calculation of optimal

information recall time.

2) The choice of optimal improvement factor F .

3) Function f(t, S, F ) for calculation of Snew.

Function opt(S) Available sources present the optimal

time for reproduced information recall in the range of 10–

30% of time S. The setting of this function is dependent on

the type of memory (e.g. opt(S) = 0.2·S).
The factor F of optimal improvement The factor

F is involved in the computation of time S for which

the information is held in memory (is remembered). This

factor is again dependent on the type of memory. For the

Figure 2. Calculation of S in time t

calculation of S with the same type of memory the value of

F is constant (e.g. F = 1.2)

The function ch(t, S) The value of Snew is dependent

on the type of memory, on the time of repetitive information

recall and on the previous value of S (this incorporates

the history of learning mentioned information). For the

calculation of Snew we need to design the function of

ch(t, S, F, Sini) for the calculation of the coefficient of

change of the value S. Then holds:

Snew = ch(t, S, F, Sini)·S
Available sources contains various approaches for the

computation of value of function ch(t, S, F, Sini). For ex-

ample we will use simple relation based on linear functions

(see fig. 2):

1) If 0 ≤ t ≤ opt(S) then ch(t, S, F, Sini) = 1 + (F −
1)· t

opt(S)

2) If opt(S) ≤ t ≤ S then ch(t, S, F, Sini) = F − (F −
Sini

S )· t−opt(S)
S−opt(S)

3) If t > S then ch(t, S, F, Sini) = Sini

S

III. FORGETTING OF SOCIAL NETWORK

We assume that interactions between particular pairs of

vertices take place in the social network continuously. If

we consider these interactions as an experience stored in

memory, then the ties between two vertices of the network

are more stable, if this network learns these interactions. As

a result we assume that the more interactions occur between

the two vertices, the more stable is the tie between them.

Therefore we can understand the social network as a set of

variously stable ties.

Remark Interaction between two vertices as well as

information leaves traces in memory. This trace is dependent

on how often these interactions take place (as an analogy to

the reproduced information recall). If we will understand

the network as an analogy to the human brain, then the

memorization of ties in the network will correspond to the

degree of remembering the information in the brain.

A. Edge Retention & Stability

The properties of ties change over time, depending on

how often and in what time two vertices interact. For the

calculation of the properties of ties we use the Forgetting

510



Curve. It is the analogy to the learning and forgetting of

reproduced information - reproduced interaction. For each

tie we define three time-changing characteristics.

Definition: Edge Retention Edge Retention ER expresses

the probability that a reproduced interaction will take place

in given time t between two vertices connected by given

edge.

Definition: Edge Stability Edge Stability ES is the esti-

mated time for which the tie between vertices remains active

(since given time t).

Definition: Active Edge Active Edge is a tie, for which

holds that ES > 0 in given time t.

B. Vertex Retention & Stability

Like the retention and stability of ties we can define the

same vertex characteristics and use the forgetting curve in

their calculations again.

Definition: Vertex Retention Vertex Retention V R ex-

presses the probability that a reproduced interaction will

take place in given time t between this vertex and any other

vertex.

Definition: Vertex Stability Vertex Stability V S is the es-

timated time for which the vertex remains active (since given

time t).

Definition: Active Vertex Active Vertex is a vertex, for

which holds that V S > 0 in given time t.

IV. RELATED WORK

The analysis of general complex networks is well-

described in [2] and [3]. Liu et al. in [13] provides a

good overview of Social Network Analysis, co-authorship

networks and their combination. They also compared the

results of the analysis using classical SNA coefficients

(such as closeness, betweeness, etc.) and PageRank and its

modification AuthorRank, respectively. Newman’s [15] work

is also organized in a similar way, but contains additional

coefficients such as the number of papers per author, number

of authors per paper, distances between authors, etc.

Hart [8] provided an interesting survey on co-authorship

(although from a different field of science), the reasons

why the authors work together, what are the benefits of

working together, what tasks are usually shared among

co-authors, different co-authorship models and the name

ordering protocols. Han et al. [7] introduced the concept of

supportiveness, which captures co-authorship ties in a non-

symmetric way.

A visualization of social network is a very important

part of the whole SNA, as good visualization can quickly

provide good insight into the network structure, its vertices

and their properties. The evolution of this visualization from

simple hand-drawing images up to complex computer gen-

erated schemes was illustrated by Freeman in [6]. Ye et al.

[19] discussed the visualization of co-authorship networks

using a minimum spanning tree of the largest component,

filtering unstable links between vertices using threshold and

highlighting important groups as cliques. Huang and Huang

[11] addresed two main problems of most visualization

techniques - the problematic application in large-scale net-

works and the difficulty to incorporate historical data in one

artifact.

Elmacioglu and Lee [5] presented statistics calculated

from the DBLP dataset about conference papers and their

authors. They also provided comparison of weighted and

unweighted variants of SNA coefficients used to identify

important authors in the network. An interesting approach

to the visualization of co-authorship networks constructed

from the DBLP dataset using overlapping groups can be

found in Santamaria and Theron [17].

Barabasi et al. [1] is focused on the evolution of the social

network of co-authorship, respectively on the evolution

of its characteristic properties. Co-authorship can be also

considered as a suitable area for link prediction (see for

example [14], [16])

The application of network analysis on DBLP data is not

limited to co-authorship networks, but may also be used to

identify different communities sharing common interests and

to follow their evolution from emerging communities to their

vanishing point (see Huang et al. [10]). The analysis of the

citation network leads to the well-known H-index (see Hirsh-

man [9]). Liu et al. [12] used diversity to identify important

vertices in the network and performs an experiment on the

DBLP dataset. The greater difference between the neighbors

of a particular vertex, the greater is the diversity.

Our proposed approach is strongly based on the historical

data and differs in using the Forgetting curve.

V. DBLP DATASET EXPERIMENTS

For our experiments, we need time-dependent data to

calculate the retention and stability of the forgetting curve.

In April 2010, we downloaded the DBLP dataset in XML2

and preprocessed it for further usage. First of all, we selected

all conferences held by IEEE, ACM or Springer, which gave

us 9,768 conferences. For every conference we identified the

month and year of the conference.

In the next step we extracted all authors having at least one

published paper in the mentioned conferences (as authors

or co-authors). This gave us 443,838 authors. Using the

information about authors and their papers we were able to

create a set of cooperations between these authors consisting

of 2,054,403 items. An important fact is that cooperation
is understood to be the co-authorship of one paper. Using

the information about the conference date, we accompanied

2Available from http://dblp.uni-trier.de/xml/
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Table I
TOP 10 VERTICES AND EDGES BY STABILITY

# AUTHOR(vertex) CO-AUTHORS (edge)

1 Christos H. Papadimitriou Irith Pomeranz Sudhakar M. Reddy

2 Moshe Y. Vardi Enrico Macii Massimo Poncino

3 Serge Abiteboul Evangelos Kranakis Danny Krizanc

4 Martin Wirsing Feng Bao Robert H. Deng

5 Hector Garcia-Molina Divyakant Agrawal Amr El Abbadi

6 Philip S. Yu Maurizio Rebaudengo Matteo Sonza Reorda

7 Amir Pnueli Louise E. Moser P. M. Melliar-Smith

8 John H. Reif Xiao Zhou Takao Nishizeki

9 Paul G. Spirakis Patrick Girard Christian Landrault

10 Ugo Montanari Orna Kupferman Moshe Y. Vardi

these cooperations by time information. We also ignored the

ordering of author names as it is impossible to investigate the

particular ordering protocol (by alphabet, by contribution,

etc.) and hence all co-authors are given equal importance.

A. Weighting Edges and Vertices

We computed the weight of edges and vertices as their

stability in time t. We divided the entire recorded publication

period of conferences (the first record from 1963) into one-

month time periods. If during one month an author has

published a paper with another co-author in at least one

conference (held by IEEE, ACM or Springer), then we set

one interaction for the both authors (vertices) and the tie

between author and co-author (edge) for this month. For

each vertex and edge we obtain a list of months in which

the interactions occurred. Then we applied the forgetting

curve to compute the retention and stability of every author

and tie in a specified month.

We have truncated the selected time period to December

2008 to obtain the most complete dataset. Of course, the

weight (stability of vertices and edges) changes in every

month, but the following calculations are made until the

end of year 2008. At that time only 122 289 authors and

248 519 ties were active (the other had a stability equal to

zero). The first ten authors and co-authorship ties according

to the stability to the end of year 2008 are shown in Table I.

Stability does not depend only on the number of interactions

(and the number of publications consequently) but also

depends on how often and how regularly these interactions

occur. The calculation of retention and stability for each

vertex and edge has linear time complexity with the number

of interactions and constant space complexity. Consequently,

the calculation is very effective even for large networks.

For further explanation and visualization, we selected an

author who has the most entries in DBLP - Philip S. Yu.

Figure 3 shows the evolution of retention and stability of

this author from the year 1986. As evident, initially the

retention decreased rapidly because of the Forgetting curve.

Subsequently thanks to his high and regular publication

activity, the value settled down and the stability grew almost

continuously. In Figure 4, we can see the evolution of

stability of the edge with co-author Haixun Wang (the most

stable edge of Philip S. Yu at the end of 2008).

Figure 3. Retention and Stability evolution of Philip S. Yu

Figure 4. Evolution of Stability between Philip S. Yu and Haixun Wang

B. Network Reduction

The problem of the analysis of networks such as DBLP

from the point of view of co-authorship is that the search

for deeper relationships and network visualization is com-

plicated due to the large portion of noise caused by many

authors and relationships that are insignificant in the long-

term. Therefore various methods filtering vertices and edges

are used. As an example we considered only authors having

at least a specific number of publications or considering only

authors and co-authorship which are not older than a certain

predefined limit. In our approach the filter works in a natural

way. Just remember that the stability coefficient contains the

history. This is because the stability in time t is dependent on

the previous time. Following the stability, we can describe

the publication trend of an author or his relationship (co-

authorship) and the value of stability in time t then shows

how stable (significant) the author or his relationship is.

Figure 5 contains the sub network focused on the co-

authors of Philip S. Yu. The network contains all co-

authors and all ties among these authors during the whole

publication period to the end of the year 2008 (every author

in this sub network has at least one publication with Philip

S. Yu in a conference held by IEEE, ACM or Springer).

Ten authors with the highest stability in the network are

labeled by their names. The Figure on the right side shows

the same network, but reduced using a minimum stability

of 12. Technically speaking, we have removed all ties with

stability less than 12 (i.e. ties which, if not reproduced, cease
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Figure 5. Reduction of network of Philip S. Yu co-authors

Table II
NUMBER OF COMPONENTS AND THEIR SIZE AFTER THE REDUCTION TO

STABILITY 12

Vertices 633 119 89 45 43 37 35 34 33 30 29

Components 1 1 1 1 1 1 1 1 1 1 1

Vertices 27 21 19 18 17 16 15 14 13 12 11

Components 1 2 3 3 5 3 9 8 7 14 13

Vertices 10 9 8 7 6 5 4 3 2 13,372
Components 14 25 38 74 122 185 452 875 2,003 3,867

to be active after 12 months). Then we have removed all

vertices which lost all ties to Philip Yu. The size of the vertex

expresses the stability of the authors while the weight of the

edge expresses the stability of represented co-authorship. We

can see for example two 3-cliques3. It is also apparent at first

sight that one of them is more stable (has stronger edges).

C. Network components

The same principle as the previous sample we have used

for the whole network on the end of year 2008. Initially,

the network had 122,289 active vertices and 248,519 active

edges. First of all we have reduced the network to a

minimum stability of 12. This means we have removed all

edges with a stability lower than 12. Then we have removed

all vertices, which lost all their edges. The result can be seen

in the Table II. We have identified a total number of 3,867

components, there remained in the network 13,372 vertices

only (10.9% active authors).

Figure 6 contains the largest component after the reduc-

tion. It contains 633 authors. We can see that the component

is composed of backbones containing authors with higher

stability. These authors have groups of authors with lower

stability in their neighborhood. The detailed inspection re-

veals that the component contains small loops and cliques

only. There are several other authors in the neighborhood

of Philip S. Yu, but this region is not in the center of the

component.

The figure 7 shows the second largest component fo the

reduced network, which contains 119 authors. By its nature,

it is similar to the first component. Notice the strong ties

between the author Wen Gao and other authors. However,

3Clique in an undirected graph is a subset of its vertices such that every
two vertices in the subset are connected by an edge

Figure 6. The largest component of the network after the reduction to
stability 12

Figure 7. The second largest component of the network after the reduction
to stability 12

Table III
NUMBER OF COMPONENTS AND THEIR SIZE AFTER THE REDUCTION TO

STABILITY 24

Vertices 16 15 14 13 12 11 10 9
Components 1 0 0 0 1 0 7 3
Vertices 8 7 6 5 4 3 2 2018
Components 5 2 8 15 53 134 551 780

in the center of the component is a different author (Hanging

Lu).

Figure 8 shows the largest component with sixteen ver-

tices after the reduction of the network to the stability of

24. We have removed all edges with stability lower than

24 and vertices without adequate edges. The results of

the reduction are shown in table III. We have identified

780 components, there remained 2,018 vertices after the

reduction only (1.65% of active authors). We can find three

3-Cliques with very stable ties. Furthermore we can see

the author with 12 very stable ties in the center of the

component.
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Figure 8. The largest component of the network after the reduction to
stability 24

VI. CONCLUSION

In this article, we introduced two parameters for the

vertices and edges of social network - the retention and

stability. For the calculation of these parameters we used the

Forgetting Curve, which is a well-known approach as a result

of experiments with human memory. We view the Forgetting

Curve as an heuristic, which allows us to effectively analyze

the stability of elements of a social network and also to

reduce the network to the most important components. The

network works in a similar way as the human brain, which

forgets information and also learns new things. Therefore

the results of the network analysis vary over time. However

the important properties remain and change little. Future

research will focus primarily on the comparison with other

existing approaches.

Acknowledgement

This work was supported by the Czech Science Founda-

tion under the grant no. 102/09/1494.

REFERENCES

[1] AL Barabasi, H. Jeong, Z. Neda, E. Ravasz, A. Schubert and
T. Vicsek: Evolution of the social network of scientific collabo-
rations, Physica A: Statistical Mechanics and its Applications,
vol. 311, pp. 590–614, 2002

[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.U.
Hwang: Complex networks: Structure and dynamics, Physics
Reports, vol. 424, pp. 175–308, 2006

[3] L.F. Costa, FA Rodrigues, G. Travieso and P.R.V. Boas: Char-
acterization of complex networks: A survey of measurements,
Advances in Physics, vol. 56, pp. 167–242, 2007

[4] H. Ebbinghaus, H.A. Ruger and C.E. Bussenius: Memory: A
contribution to experimental psychology, 1885/1913

[5] E. Elmacioglu and D. Lee: On six degrees of separation in
DBLP-DB and more, ACM SIGMOD Record, vol. 34, pp. 33-
40, 2005

[6] L.C. Freeman: Visualizing social networks, Journal of social
structure, vol. 1, 2000

[7] Y. Han, B. Zhou, J. Pei and Y. Jia: Understanding Importance
of Collaborations in Co-authorship Networks, Proceedings of
the 2009 SIAM International Conference on Data Mining,
pp. 1112–1123, 2009

[8] R.L. Hart: Co-authorship in the academic library literature:
a survey of attitudes and behaviors, The Journal of Academic
Librarianship, vol. 26, pp. 339–345, 2000

[9] JE Hirsch: An index to quantify an individual’s scientific
research output, Proceedings of the National Academy of
Sciences, vol. 102, pp. 16569–16572, 2005

[10] Z. Huang, Y. Yan, Y. Qiu and S. Qiao: Exploring Emergent
Semantic Communities from DBLP Bibliography Database,
Proceedings of the 2009 International Conference on Advances
in Social Network Analysis and Mining, pp. 219–224, 2009

[11] T.H. Huang and M.L. Huang: Analysis and Visualization of
Co-authorship Networks for Understanding Academic Collab-
oration and Knowledge Domain of Individual Researchers,
Proceedings of the International Conference on Computer
Graphics, Imaging and Visualisation, pp. 18–23, 2006

[12] L. Liu, F. Zhu, C. Chen, X. Yan, J. Han, P. Yu and S. Yang:
Mining Diversity on Networks, Database Systems for Advanced
Applications, pp. 384–398, 2010

[13] X. Liu, J. Bollen, M.L. Nelson, and H. Van de Sompel: Co-
authorship networks in the digital library research community,
Information Processing & Management, vol. 41, pp. 1462–
1480, 2005

[14] J. O’Madadhain, J. Hutchins, P. Smyth: Prediction and rank-
ing algorithms for event-based network data, ACM SIGKDD
Explorations Newsletter, vol. 7, pp. 23–30, 2005

[15] M. Newman: Who is the best connected scientist? A study of
scientific coauthorship networks, Complex networks, pp. 337–
370, 2004

[16] M. Pavlov and R. Ichise: Finding Experts by Link Predic-
tion in Co-authorship Networks, 2nd Internation ExpertFinder
Workshop, pp. 42–55, 2007

[17] R. Santamarıa and R. Theron: Overlapping Clustered
Graphs: Co-authorship Networks Visualization, Smart Graph-
ics, pp. 190–199, 2008

[18] J.T. Wixted and E.B. Ebbesen: Genuine power curves in for-
getting: A quantitative analysis of individual subject forgetting
functions, Memory and Cognition, vol. 25, pp. 731–739, 1997

[19] Q. Ye, B. Wu and B. Wang: Visual Analysis of a Co-
authorship Network and Its Underlying Structure, Proceedings
of the 2008 Fifth International Conference on Fuzzy Systems
and Knowledge Discovery, vol. 4, pp. 689–693, 2008

514


