
 
 

 

  

Abstract— Several variants of the Particle Swarm 
Optimization (PSO) algorithm have been proposed in recent 
past to tackle the multi-objective optimization problems based 
on the concept of Pareto optimality. Although a plethora of 
significant research articles have so far been published on 
analysis of the stability and convergence properties of PSO as a 
single-objective optimizer, till date, to the best of our 
knowledge, no such analysis exists for the multi-objective PSO 
(MOPSO) algorithms. This paper presents a first, simple 
analysis of the general Pareto-based MOPSO and finds 
conditions on its most important control parameters (the 
inertia factor and acceleration coefficients) that control the 
convergence behavior of the algorithm to the Pareto front in 
the objective function space. Limited simulation supports have 
also been provided to substantiate the theoretical derivations. 
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I. INTRODUCTION 
he concept of particle swarms originated from the 
simulation of the social behavior commonly observed in 

animal kingdom and evolved into a very simple but efficient 
technique for global numerical optimization in recent past. 
Since its advent in 1995, the Particle Swarm Optimization 
(PSO) [1, 2] algorithm has attracted the attention of a lot of 
researchers all over the world resulting into a huge number 
of variants of the basic algorithm as well as many parameter 
selection/control strategies, comprehensive surveys of which 
can be found in [3 – 7]. In a D-dimensional search space, the 
position vector of the i-th particle is given by 

and velocity of the i-th particle 

is given by .  
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Positions and velocities are adjusted and the objective 
function to be optimized i.e. 

! 

f (Xi )  is evaluated with the 
new positional coordinates at each time-step. Expressions 
for velocity and position of the i-th individual at t-th iteration 
in a geographical best PSO may be given as:                        

! 

Vi(t +1)=" #Vi (t)+$1 #R1.(Pi
l % Xi (t))

+$ 2 #R2.(P
g % Xi (t)),

      (1a) 

! 

Xi (t +1) = Xi (t) +Vi (t +1),                   (1b)  
where, 

! 

Pi
l  is the personal best position found so far by an 

individual particle and 

! 

Pg represents the best position found 
so far by the entire swarm, for gbest PSO model. 

! 

R1and 

! 

R2are random positive numbers uniformly distributed in 
(0,1) and are drawn anew for each dimension of each 
particle. Constants 

! 

"1 and 

! 

" 2 are called acceleration 
coefficients and they determine the relative influences of the 
cognitive and social parts on the velocity of the particle. The 
particle’s velocity may be optionally clamped to a maximum 
value

! 

Vmax = [vmax,1,vmax,2,...,vmax,D ]
T . If in d-th 

dimension, 

! 

vi,d  exceeds 

! 

vmax,d specified by the user, then 
the velocity of that dimension is assigned to 

, where sign(x) is the triple-valued signum 

function [2]. 
The first stability analysis of the particle dynamics was 

due to Clerc and Kennedy in 2002 [8]. F van den Bergh [9] 
undertook an independent theoretical analysis of the particle 
swarm dynamics. Clerc and Kennedy [8] considered a 
deterministic approximation of the swarm dynamics by 
treating the random coefficients as constants, and studied 
stable and limit cyclic behavior of the dynamics for the 
settings of appropriate values to its parameters. A more 
generalized stability analysis of particle dynamics based on 
Lyapunov stability theorems was undertaken by 
Kadirkamanathan et al. [10]. Recently Poli [11] analyzed the 
characteristics of a PSO sampling distribution and explained 
how it changes over any number of generations, in the 
presence of stochasticity, during stagnation. Some other 
significant works towards the theoretical understanding of 
PSO can be found in [12 - 15]. However, to the best of our 
knowledge, all the theoretical research works undertaken so 
far, are centered on the single-objective PSO algorithm, 
although, during the past few years, several efficient multi-
objective variants of PSO have been proposed.  

The field of Multi-objective Optimization (MO) deals 
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with the simultaneous optimization of multiple, possibly 
competing, objective functions, without combining them in a 
weighted sum. The MO problems tend to be characterized 
by a family of alternatives, which must be considered 
equivalent in the absence of information concerning the 
relevance of each objective relative to the others. The family 
of solutions of an MO problem is composed of the parameter 
vectors, which cannot be improved in any objective without 
causing degradation in at least one of the other objectives, 
and this set is said to be the Pareto optimal set and its image 
in the objective function space is usually called the Pareto 
front. In case of several MO problems, knowledge about this 
set helps the decision maker in choosing the best 
compromise solution [16]. 

Recently, several MOPSO algorithms have been 
developed based on the Pareto optimality concept. One 
fundamental issue is the selection of the cognitive and social 
leaders ( and ) such that they can provide an effective 

guidance to reach the most promising Pareto front region but 
at the same time maintain the population diversity. For the 
selection procedure researchers have suggested two typical 
approaches: selection based on quantitative standards and 
random selection [17 – 21].  

Coello and Lechuga [22] made an attempt to incorporate 
the Pareto dominance into PSO. In this case, the              
non-dominated solutions are stored in a secondary 
population and the primary population uses a randomly 
selected neighborhood best from this secondary population 
to update their velocities. The authors proposed an adaptive 
grid to generate well-distributed Pareto fronts and mutation 
operators to enhance the exploratory capabilities of the 
swarm [23]. Keeping the same two goals (obtaining a set of 
non-dominated solutions as close as possible to the Pareto 
front and maintaining a well-distributed solution set along 
the Pareto front), Li [24] proposed sorting the entire 
population into various non-domination levels such that the 
individuals from better fronts can be selected. In this way, 
the selection process pushes towards the true Pareto front. 
Other authors have developed different approaches such as 
combining canonical PSO with auto fitness sharing concepts 
[25], dynamic neighborhood PSO [26], or vector evaluated 
PSO [27]. 

In this article, we present a simple theoretical analysis of 
the general continuous multi-objective PSO algorithm.  
Conditions for the convergence of MOPSO to some 
solutions (at least one) in the Pareto optimal set have been 
deduced based on the non-dominated selection scheme for 
updating the personal best and the global best positions. The 
analysis provides suitable ranges of the control parameters 
like  and that ensures the convergence of MOPSO. 
Limited experimental results on two well-known MO 
benchmarks have been provided to support the analytical 
results derived in the article. 

II.  ANALYTICAL TREATMENT  
For MOPSO, suppose n particles are randomly scattered 

in the search space and following (1). Expectedly, decisions 
like the updating of local best or global best are determined 
using the concept of Pareto-optimality. We assume a Pareto-
based approach to be taken for implementing the selection of 
the globally best particle of the swarm in every iteration. The 
algorithm is expected to identify the set of non-dominated 
solutions of the population at each iteration and store the 
best non-dominated solutions found throughout the search 
process in an external archive (e.g. see the MOPSO 
described in [23]). The global best particle 

! 

Pgmay be chosen 
from this archive. The use of global attraction mechanisms 
combined with a historical archive of previously found non-
dominated vectors can motivate convergence toward 
globally non-dominated solutions. 

We attempt to investigate the convergence characteristics 
of the MOPSO algorithm by examining the evolution of the 
probability distribution of the population, based on which 
the search algorithm is run. Our method is inspired by the 
work reported in [28] for multi-objective evolutionary 

algorithms. Let the Pareto-optimal set be represented by

! 

"* . 
Then to show that the expected population mean converges 
to the centre of the Pareto-optimal set amounts to verifying 
the convergence properties of PSO in multi-objective 
domain. Resultant deduction may be summarized in form of 
a theorem as given below: 

 
Theorem 1: If 

! 

Xbe the initial swarm, then subject to 
restraints outlined in (10), in a multi-objective search space 
MOPSO algorithm will cause the swarm mean to converge 

to the center of the Pareto-optimal set i.e. if be the 
expected population mean after n iterations, then 

! 

limn"# µn = ˆ X *; where  denotes the center of the 
front.   

 

Proof: Let 

! 

X* be a randomly chosen solution from the 

Pareto-optimal set

! 

"* . Then without any loss of generality, 
local best position of any particle and the global best 
position of the swarm, in a particular iteration may be 
expressed as:  

                                                     

! 

Pi
l (t) = X*+DLi (t)

Pg (t) = X*+DGi (t)

" 
# 
$ 

% $ 
                                        (2) 

      Where, 

! 

DLi (t) and 

! 

DGi (t)  are difference vectors.  
Then, equation 1(a) may be written as: 



 
 

 

! 

Vi (t +1) =" #Vi (t) +$1 #R1.(Pi
l (t) % Xi (t))

+$ 2 #R2.(P
g % Xi (t))

=" #Vi (t)+$1 #R1.(X
* +DLi (t) % Xi (t))

+$ 2 #R2.(X
* +DGi (t) % Xi (t))

=" #Vi (t)+ ($1.R1 +$ 2.R2) # (X
* % Xi (t))

+($1 #R1 #DLi (t) +$ 2 #R2 #DGi (t))

                    (3)      

      In discrete domain 

! 

Vi (t) = (Xi (t) " Xi (t "1)) and using 
equation 1(b), equation (3) may be modified as shown 
below: 

! 

Xi (t +1) " Xi (t) =# $ (Xi (t) " Xi (t "1))

+(%1.R1 +% 2.R2) $ (X
* " Xi (t))

+(%1 $R1 $DLi (t) +% 2 $R2 $DGi (t))
 

Or, 

! 

Xi (t +1) = {1+" # ($1.R1 +$ 2.R2)}Xi (t) #" % Xi (t #1))

+ ($1.R1 +$ 2.R2) % X
*

+ ($1 %R1 %DLi (t) +$ 2 %R2 %DGi (t))

    

                                                                                       (4) 
Then, taking expectations on both sides of equation (4) 

and considering the above-mentioned terminology we get, 
 

! 

E Xi (t +1)( ) = {1+" # ($1.E R1( ) +$ 2.E R2( ))} %E Xi (t)( )

#" %E Xi (t #1)( )+ ($1.E R1( ) +$ 2.E R2( )) %E X*( )
+($1 %E R1( ) %E DLi (t)( ) +$ 2 %E R2( ) %E DGi (t)( ))

   

                                                                                       (5) 
Let us denote the mean value of the position of the “i-th” 
particle at iteration number “t” as

! 

µ i (t) . Also, let us 
define,

! 

E(DLi (t)) " ˆ D Li (t),

! 

E(DGi (t)) " ˆ D Gi (t)and

! 

E(X*) " ˆ X *. 

Now, for uniform random numbers, 

! 

E(R1) = E(R2) =
1
2

.  

From these statements equation (5) may be rearranged and 
given as 

! 

µ i(t +1) = (1+") # $1 +$ 2
2

% 

& ' 
( 

) * 
+µ i (t)#" +µ i (t #1)

+
$1 +$ 2

2
( ˆ X *) +

$1
2

ˆ D Li (t) +
$ 2
2

ˆ D Gi (t)
% 

& ' 
( 

) * 

  

Or, 

! 

µ i(t) = (1+") # $1 +$ 2
2

% 

& ' 
( 

) * 
+µ i (t #1)#" +µ i (t # 2)

+
$1 +$ 2

2
( ˆ X *) +

$1
2

ˆ D Li (t #1) +
$ 2
2

ˆ D Gi (t #1)
% 

& ' 
( 

) * 

    

                                                                                       (6) 
To examine convergence, we take Z-transform [29] of 

both sides of (6). Dropping the subscript for each such 
particle ‘i’, we get 

    

! 

Z µ(t)( ) = (1+") # $1 +$ 2
2

% 

& ' 
( 

) * 
+Z µ(t #1)( )#" +Z µ(t # 2)( )

+Z $1 +$ 2
2

( ˆ X *)
, 

- 
. 

/ 

0 
1 +

$1
2

Z ˆ D L (t #1)( ) +
$ 2
2

Z ˆ D G (t #1)( )% 

& ' 
( 

) * 

 

One can safely assume the system to be a causal one and 

hence we can take the one sided Z-transform. Thus the 
equation may be simplified as: 

! 

µ(z) " 1#$ * z#1 +% " z#2( ) =
&1 +& 2

2
ˆ X *Z U (t)( )

+
&1
2

z#1 ˆ D L (z) +
& 2
2

z#1 ˆ D G (z)
' 

( ) 
* 

+ , 
,
 

where, 

! 

" = (1+#) $ %1 +% 2
2

& 

' ( 
) 

* + 
and denotes the unit 

step function. 

Or,

! 

µ(z) =
"1 +" 2

2
ˆ X * 1

1#$ * z#1 +% & z#2( )
&

z
z #1

+
"1
2

z#1

1#$ * z#1 +% & z#2( )
& ˆ D L (z) +

" 2
2

z#1

1#$ * z#1 +% & z#2( )
& ˆ D G (z)

 

Or

! 

µ(z) =
"1 +" 2

2
ˆ X * z3

z2 #$ * z +%( )
&

1
z #1

+
"1
2

z

z2 #$ * z +%( )
& ˆ D L (z) +

" 2
2

z

z2 #$ * z +%( )
& ˆ D G (z)

   

                                                                          (7) 
 

Now final value theorem states that  

! 

limt"# µ(t) = limz"1(z $1)µ(z) , provided the limits 
exist. 

 
Then,  

! 

limt"# µ(t) =
$1 +$ 2

2
ˆ X * limz"1

z3

z2 %& * z +'( )

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 

+
$1
2

limz"1
z z %1( )

z2 %& * z +'( )
. ˆ D L (z)

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 

+
$ 2
2

limz"1
z z %1( )

z2 %& * z +'( )
. ˆ D G (z)

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 

                      

                                                                                     (8) 
Considering 1st term of the expansion,  

! 

limz"1
z3

z2 #$ * z +%( )

& 

' 

( 
( 
( 

) 

* 

+ 
+ 
+ 

=
1

1#$ +%

=
1

1+% # (1+%) +
,1 +, 2
2

=
1

,1 +, 2
2

,

   

                                                                                    (9) 
provided roots of the characteristic 
equation,

! 

Q(z) = z2 "# * z +$ ; lie within unit circle in the z-
domain.     The required condition may be investigated using 
Jury’s test as shown below: 
 
Conditions for pole placement within unit circle from 
Jury’s Test 

1. 

! 

Q(1)> 0:          



 
 

 

        

! 

1"# +$ > 0      i.e.    

! 

"1 +" 2
2

> 0              (10.a) 

 
2. 

! 

("1)nQ("1)> 0 :          

     i.e. 

! 

1+1+" #
$1 +$ 2
2

+" > 0  

           Or, 

! 

"1 +" 2
2

< 2(1+#)                               (10.b) 

 
3. 

! 

an > a0 : 

                            

! 

"< 1                                           (10.c) 
For other two components, limiting value depends upon 

the nature of 

! 

ˆ D L (z) and

! 

ˆ D G (z) i.e. the function to be 
optimized. If the poles of these terms are within unit circle 
i.e. the difference vectors are bounded and not oscillatory in 
nature, with constant magnitude; then these difference 
vectors may be expanded as: 

! 

ˆ D (z) =
C j z

z " z jZ j # polesof ˆ D (z)
$ , such that

! 

z j < 1. 

Therefore,  

! 

limz"1
z z #1( )

z2 #$ * z +%( )
& ˆ D (z)

' 

( 

) 
) 
) 

* 

+ 

, 
, 
, 

= limz"1
z z #1( )

z2 #$ * z +%( )
&

C j z
z # z j

-
' 

( 

) 
) 
) 

* 

+ 

, 
, 
, 

 

               

! 

= limz"1
z2 z #1( ) $C j

z2 #% * z +&( ) z # z j( )

' 

( 

) 
) 
) 

* 

+ 

, 
, 
, 

-  

When, 

! 

z j < 1and condition set (9) is satisfied , then this 
limit exists and the limiting value is given as: 

! 

limz"1
z2 z #1( )

z2 #$ * z +%( )
& ˆ D (z)

' 

( 

) 
) 
) 

* 

+ 

, 
, 
, 

= 0                        (11) 

Another viewpoint to analyze the effect of these 
difference vectors is presented in the Appendix from where 
it can be said that our assumption holds true provided  

! 

z j "max
Di#1
Di

<1 

Using results obtained in (9) and (11), (8) simplifies as: 

! 

limt"# µ(t) =
$1 +$ 2

2
ˆ X *. 1

$1 +$ 2
2

+ 0 + 0  

i.e. 

! 

limt"# µ(t) = ˆ X * 
                                                 Proved 
 

Lemma 1: For any practical problems, with

! 

" = 0.4 , the 
conditions when MOPSO will never converge to true Pareto 

front reduces to

! 

" > 2.8 , where 

! 

" =
"1 +" 2
2

 is the average 

acceleration coefficient of the swarm. For lower values of 
average acceleration co-efficient, convergence 
characteristics of the swarm will, in general, be dependant 
on the nature of the optimization function.  

 
Proof: From conditions outlined in equation set (10) the 
swarm will never converge if  

! 

"1 +" 2
2

> 2(1+#)  

Then putting

! 

" = 0.4 , the condition reduces to

! 

" > 2.8 . 
Convergence characteristics of MOPSO will depend on 
position of poles

! 

ˆ D L (z) and

! 

ˆ D G (z) . The process is to a 
certain extent stochastic in nature. However, without proof it 
can be said that in a non-dominated sorting method 
probability of oscillation of error vectors is not very high. 
This can be used as a guideline in parametric selection. For 
example one can expect the swarm to diverge while using a 
parametric set

! 

"1,"1,#( ) = 3.5,3.5,0.4( ) , and to converge in 
most of the runs while using a set

! 

"1,"1,#( ) = 0.5,0.5,0.4( ) , 
a limited experimental verification of which is presented in 
section 3. 
Observation 1: The parametric set used in [23] is given 
as

! 

"1,"1,#( ) = 1,1,0.4( ) . From Lemma 1, with

! 

"= 0.4 , the 

swarm would not converge in general if 

! 

" =
"1 +" 2
2

> 2.8 . 

Putting the corresponding values of acceleration coefficients 
used in (23), we get

! 

" = 1. Thus the parameters used in [23], 
seems to be in agreement with the theoretically suitable 
region and as reported in [23] produced near optimal pareto-
fronts for a variety of optimization functions.  

III. EXPERIMENTAL RESULTS  
In order to validate the theoretical results derived in the 

last section, we tested the MOPSO algorithm proposed in 
[23] on a set of well-known benchmark MO problems. Here 
for the sake of space economy we are providing the results 
of the following two functions [30 – 32] only: 
Test Function 1 (Schaffer’s Function [29]): Minimize 

! 

F = ( f1(x), f2 (x)) , where 

! 

f 1(x) = x2

f2 (x) = (x " 2)2

# 
$ 
% 

& % 
"100 ' x ' 100  

Test Function 2 (Fonseca’s function [30]): Minimize 
  

! 

F = ( f1(
! x ), f2 (

! x )) ,where         

  

! 

f1(
! x ) = 1" exp(" (xi "

1
3
)2

i=1

3
# )

f2 (
! x ) = 1" exp(" (xi +

1
3
)2

i=1

3
# )

$ 

% 

& 
& 

' 

& 
& 

" 4 ( xi ( 4
 

On both the test problems we run MOPSO with two 
different parametric set up: 

! 

"1,"1,#( ) = 0.5,0.5,0.4( )  
and

! 

"1,"1,#( ) = 3.5,3.5,0.4( ) . Rest of the parameters has been 
kept similar to [4] and the algorithm is run up to 4000 



 
 

 

Function Evaluations (FEs). In Figures 1 and 4 we show the 
initial solutions in objective function space, at the start of 
MOPSO iterations w. r. t. the true Pareto front for the two 
test functions. Figures 2 and 3 show the convergence 
behavior of MOPSO with two different parametric settings, 
in terms of the solutions plotted in the objective function 
space after 2000 and 4000 FEs for Test Function 1. Note that 
MOPSO is run with two different parameter sets but from 
the same initial population for each problem. Figures 5 and 6 
bear an exact correspondence with Figures 2 and 3, but the 
formers are now plotted for Test Function 2. Figures 1 to 6 
represent mean results over 20 independent runs of the 
algorithm over both the test problems.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

FIGURE 1: INITIAL SOLUTIONS GENERATED BY MOPSO POPULATION FOR TEST PROBLEM1 
 

 
 

 

 

 

 

 

 
(A) SOLUTIONS GENERATED BY MOPSO AFTER 2000 FES.                                             (B) SOLUTIONS GENERATED BY MOPSO AFTER 4000 FES 

 
 

FIGURE 2: CONVERGENCE BEHAVIOR OF THE SOLUTIONS BY MOPSO POPULATION WITH PARAMETER-SET 

! 

"1,"1,#( ) = 0.5,0.5,0.4( )  FOR TEST PROBLEM  

 
 
 
 
 

 

 

 

 

 

 
(A) SOLUTIONS GENERATED BY MOPSO AFTER 2000 FES.                                        (B) SOLUTIONS GENERATED BY MOPSO AFTER 4000 FES 

 
FIGURE 3: CONVERGENCE BEHAVIOR OF THE SOLUTIONS BY MOPSO POPULATION WITH PARAMETER-SET 

! 

"1,"1,#( ) = 3.5,3.5,0.4( )  FOR TEST PROBLEM 1 

 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4: INITIAL SOLUTIONS BY MOPSO POPULATION FOR TEST PROBLEM 2 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A) SOLUTIONS GENERATED BY MOPSO AFTER 2000 FES.                                                (B) SOLUTIONS GENERATED BY MOPSO AFTER 4000 FES 
 

FIGURE 5: CONVERGENCE BEHAVIOR OF THE SOLUTIONS BY MOPSO POPULATION WITH PARAMETER-SET 

! 

"1,"1,#( ) = 0.5,0.5,0.4( )  FOR TEST PROBLEM 2 

 
 
 
 
 
 
 
 
 
 
 

(A) SOLUTIONS GENERATED BY MOPSO AFTER 2000 FES.                                         (B) SOLUTIONS GENERATED BY MOPSO AFTER 4000 FES 
 

FIGURE 6: CONVERGENCE BEHAVIOR OF THE SOLUTIONS BY MOPSO POPULATION WITH PARAMETER-SET 

! 

"1,"1,#( ) = 3.5,3.5,0.4( )  FOR TEST PROBLEM 

2 
 
 

 
The plots clearly indicate that as was predicted 

theoretically, the MOPSO algorithm fails to make its 
solutions converge to the Pareto optimal front in objective 
function space for the parametric set-up 
of

! 

"1,"1,#( ) = 3.5,3.5,0.4( ) . Since on each problem, the 
MOPSO with different parameters were let run from the 
same initial population in each case; so any difference in 
performance of the algorithm may be well attributed to the 
difference in their parametric settings only. 

IV. CONCLUSIONS  
This article is the first of its kind to focus light on the 

convergence behavior of Pareto-based MOPSO algorithms 

from an analytical point of view. Theorem 1 deduces the 
conditions imposed on three important control parameters: 
the inertia weight  and acceleration coefficients 

! 

"1," 2that ensure the convergence of the algorithm to the 
center of the Pareto front, under a few simplifying 
assumptions. In lemma 1 the range of values of these control 
parameters were discussed that directs either convergence or 
non-convergence of the algorithm. Lemma 1 is intended to 
provide some initial guidelines for selecting these three 
control parameters of MOPSO. In Section 3, we show how 
two different settings of parameters really affects the 
convergence behavior of MOPSO practically over two 
benchmark MO problems. We restrain from giving the full 



 
 

 

set of results of numerical solutions over many different 
benchmarks for the sake of space economy.  

The mathematical analysis on the convergence of the 
MOPSO, undertaken in this work proves that the population 
converges to the Pareto optimal solution set. However, how 
the swarm is distributed in the decision variable space is still 
unknown and should be analyzed rigorously in future. Also 
the nature of stochastic variation of error vectors needs to be 
investigated further to derive tighter bounds for parameter 
selection. 
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APPENDIX 

Further Discussions on 

! 

ˆ D L and

! 

ˆ D G : 
In order to further analyze the effect of error 
vectors

! 

ˆ D L and

! 

ˆ D G , equation (7) is analyzed in time domain 
again as shown below:  
From equation no (7) 

! 

µ(z) =
"1 +" 2

2
ˆ X * z3

z2 #$ * z +%( )
&

1
z #1

+
"1
2

z

z2 #$ * z +%( )
& ˆ D L (z) +

" 2
2

z

z2 #$ * z +%( )
& ˆ D G (z)

' 

( 

) 
) 
) 

* 

+ 

, 
, 
, 

 

Let us consider the term 

! 

p(z) =
"1
2

z

z2 #$ * z +%( )
& ˆ D L (z)  in the above expression. 

If conditions as outlined in equation set (10) are satisfied, 
then the following equality hold true: 

! 

z2 "# * z +$= (z " zk )
k
% ; where 

! 

zk < 1  

Then,  

 

! 

p(z) =
"1
2

z

z2 #$ * z +%( )
& ˆ D L (z)

= ˆ D L (z) Ck
z

z # zk

' 

( 
) 

* 

+ 
, 

k
-

 

! 

= Ck
z

z " zk

ˆ D L (z)
# 

$ 
% 

& 

' 
( 

k
)                               (12)                                 

; where each such 

! 

Ck is the constant associated with the 
root  

! 

zk  in the above expansion. 
 Now we know that if  

! 

AB(z) = A(z)" B(z) , then 

! 

ab(n) = Z"1 A(z) #B(z)[ ] = b(i) #a(n " i)( )
i=0

n
$ .  

As such time domain representation of equation (12) may 
be given as: 

! 

p(n)= Ck ( ˆ D i " zk
n#i

i=0

n
$ )

% 

& 
' ' 

( 

) 
* * 

k
$

= CkErrk( )
k
$ ,

 

 where we have defined 

! 

Errk = ( ˆ D i " zk
n#i

i=0

n
$ )  

Now, let us define 

! 

qi =
E(D i"1)
E(D i )

=
ˆ D i"1
ˆ D i

, #i = 1(1)n   

Also let us define  

Therefore, 

! 

ˆ D n"1# q $ ˆ D n , %i = 1(1)n  
 
Therefore the following expression holds: 

! 

ˆ D i " qn#i $ ˆ D n , %i = 1(1)n  
 
So for large n,  

! 

Errk = (zk
n"i # ˆ D i )

i=0

n
$

% ˆ D n # (qzk )n"i

i=0

n
$

 

         

! 

" ˆ D n #
1

1$ zk # q
               , when  

                                                                      (13) 
It is expected that by selection procedures at least the 

local best of any individual will be in the Pareto-optimal set 
after infinite no. of iterations i.e. 

! 

ˆ D n " 0 . So taking limits 

on both sides of (13) 

 

! 

Errk " 0  i.e.  

! 

limn"# p(n) $ 0 
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