
 

 

Automatic Clustering with Multi-objective Differential Evolution Algorithms  

 
Kaushik Suresh

1
,
 
Debarati Kundu

1
, Sayan Ghosh

1
, Swagatam Das

1
 and Ajith Abraham

2,3
 

 
1Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India 

swagatamdas19@yahoo.co.in 
2Center of Excellence for Quantifiable Quality of Service, Norwegian University of Science and Technology, Norway 

3 
Machine Intelligence Research Labs - MIR Labs  

ajith.abraham@ieee.org 

 

Abstract —This paper applies the Differential Evolution (DE) 

algorithm to the task of automatic fuzzy clustering in a 

Multi-objective Optimization (MO) framework. It compares 

the performances of four recently developed multi-objective 

variants of DE over the fuzzy clustering problem, where two 

conflicting fuzzy validity indices are simultaneously 

optimized. The resultant Pareto optimal set of solutions from 

each algorithm consists of a number of non-dominated 

solutions, from which the user can choose the most promising 

ones according to the problem specifications. A real-coded 

representation of the search variables, accommodating 

variable number of cluster centers, is used for DE. The 

performances of four DE variants have also been contrasted 

to that of two most well-known schemes of MO clustering 

namely the Non Dominated Sorting Genetic Algorithm ( 

NSGA II) and Multi-Objective Clustering with an unknown 

number of Clusters K (MOCK). Experimental results over 

six artificial and four real life datasets of varying range of 

complexities indicates that DE holds immense promise as a 

candidate algorithm for devising MO clustering schemes.  

 
I. INTRODUCTION 

 

Optimization-based automatic clustering algorithms 

greatly rely on a cluster validity function (optimization 

criterion) the optima of which appear as proxies for the 

unknown “correct classification” in a previously 

unhandled dataset [1]. Different formulations of the 

clustering problem vary in the optimization criterion used. 

Most existing clustering methods, however, attempt to 

optimize just one such clustering criterion modeled by a 

single cluster validity index. This often results into 

considerable discrepancies observable between the 

solutions produced by different algorithms on the same 

data. A single cluster validity measure is hardly able to 

judge the correctness of clustering for a wide variety of 

real life datasets. A wrong choice of the validity measure 

may lead to poor clustering results. Thus, the single-

objective clustering method may prove futile (as judged 

by means of expert’s knowledge) in a context where the 

criterion employed is inappropriate. In situations where 

the best solution corresponds to a tradeoff between  

 

 

different conflicting objectives, common sense advocates 

a multi-objective framework for clustering. In the case of 

iterative optimization algorithms, it is possible that a 

single-objective approach would visit such tradeoff 

solutions during a run, but would not recognize them as 

good and discard them.  

Although there has been a plethora of papers 

reporting several single-objective evolutionary clustering 

techniques (a comprehensive survey of which can be 

found in [1, 2]), very few research works have so far been 

undertaken towards the application of evolutionary multi-

objective optimization algorithms (EMOA) for pattern 

clustering [3, 4]. A state-of-the-art literature survey 

indicates that DE has already proved itself as a promising 

candidate in the field of evolutionary multi-objective 

optimization (EMO) [5 – 8]. Earlier it has also been 

successfully applied to single-objective partitional 

clustering [9 – 11].  

The work reported in [3] is based on Deb et al.’s 

celebrated NSGA (Non Dominated Sorting genetic 

Algorithm)-II [12] and the clustering method described in 

[4] is based on PESA (Pareto Evolution based Selection) 

II [13], and both the algorithms are multi-objective 

variants of Genetic Algorithm (GA). However, the multi-

objective variants of DE have not been applied to the 

general data clustering problems till date, to the best of 

our knowledge. This paper primarily compares the 

performances of four most representative multi-objective 

DE algorithms on the multi-objective fuzzy clustering 

problem. The multi-objective DE-variants considered here 

are namely the Pareto DE (PDE) [5], the Multi-objective 

DE (MODE) [6], DE for Multi-objective Optimization 

(DEMO) [7], and Non-Dominated Sorting DE (NSDE) 

[8]. Since DE, by nature, is a real-coded population-based 

optimization algorithm, we here resort to centroid-based 

representation scheme for the search variables. Note that 

in contrast to single objective optimization that yields a 

single best solution, in MOO, a number of, often 

conflicting, objective functions are optimized 

simultaneously and thus an MOO algorithm, in general, 

ends up with a number of Pareto optimal solutions. None 

of these Pareto optimal solutions can be improved upon 

an objective any further without degrading it on another. 

Here we consider the Xie-Beni index [14] and the Fuzzy 



 

 

C Means (FCM) measure ( mJ ) [15] as the objective 

functions.  Note that any other and any number of 

objective functions could be used in the proposed MOO 

clustering framework. The performance of the multi-

objective DE-variants have also been contrasted with two 

best-known EMOA-based clustering methods till date. 

The first one of these is MOCK by Handl and Knowles 

[4] while the second one is based on NSGA II and was 

used by Bandyopadhyay et al. for pixel clustering in 

remote sensing satellite image data [3].  Although we 

experimented with a large variety of datasets, here we 

report the results for ten representative datasets including 

the microarray Yeast sporulation data [16]. 

 
II. MULTI-OBJECTIVE OPTIMIZATION WITH DE 

 
 

2.1 The MO Problem 
 

In many practical or real life problems, there are many 

(possibly conflicting) objectives that need to be optimized 

simultaneously. Under such circumstances there no longer 

exists a single optimal solution but rather a whole set of 

possible solutions of equivalent quality. The field of 

Multi-objective Optimization (MO) [17 – 19] deals with 

simultaneous optimization of multiple, possibly 

competing, objective functions. The MO problems tend to 

be characterized by a family of alternatives, which must 

be considered equivalent in the absence of information 

concerning the relevance of each objective relative to the 

others. 

The family of solutions of an MO problem is 

composed of the parameter vectors, which cannot be 

improved in any objective without causing degradation in 

at least one of the other objectives. This forms the central 

idea of Pareto-optimality. The concepts of dominance and 

Pareto-optimality may be presented more formally in the 

following way [18, 19]: 

 

Definition 1:  Consider without loss of generality the 

following multi-objective optimization problem with m 

decision variables x (parameters) and n objectives :               

Maximize: 

),....,(),....,,....,(()( 111 mnm xxfxxfXfY ==
rr

,        (1) 

where PxxX T
m ∈= ],....,[ 1

r
and OyyY

T
n ∈= ],....,[ 1

r
and 

where X
r

 is called decision (parameter) vector, P is the 

parameter space, Y
r

 is the objective vector, and O is the 

objective space. A decision vector PA∈
r

is said to 

dominate another decision vector PB ∈
r

 (also written as 

BA
r

f
r

) if and only if: 
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rr
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Based on this convention, we can define non-dominated, 

Pareto-optimal solutions as follows: 

Definition 2:  Let PA∈
r

be an arbitrary decision vector.  

 (a) The decision vector A
r

 is said to be non-dominated 

regarding the set PP ⊆' if and only if there is no vector 

in 'P which can dominate A
r

. Formally, 

          PPPA f
r

' :''∈                                                                  (3)                                                                       

(b) The decision (parameter) vector A
r

 is called Pareto-

optimal if and only if A
r

 is non-dominated regarding the 

whole parameter space P . 

2.2 The Differential Evolution (DE) Algorithm 

DE [20, 21] is a population-based global optimization 

algorithm that uses a floating-point (real-coded) 

representation. The i-th individual (parameter vector or 

chromosome) of the population at generation (time) G is a 

D-dimensional vector containing a set of D optimization 

parameters:   

              ],....,[ ,,,2,,1,, GDiGiGiGi ZZZZ =
r

                   (4) 

  Now, in each generation, a donor GiY ,

r
 is created.The 

method of creating this donor vector demarcates between 

the various DE schemes. In one of the earliest variants of 

DE, now called DE/rand/1 scheme, three other parameter 

vectors (say the r1, r2, and r3-th vectors such that 

],1[,, 321 NPrrr ∈ and   321 rrr ≠≠  are chosen at random 

from the current population. Next the difference of any 

two of the three vectors is multiplied by a scalar number 

F and the scaled difference is added to the third one, 

whence we obtain the donor vector GiY ,

r
. The process for 

the j-th component of the i-th vector may be expressed as, 

 ).( ,,3,,2,,1,, GjrGjrGjrGji ZZFZY −+=               (5)                           

Next a crossover operation takes place to increase the 

potential diversity of the population. We use ‘binomial’ 

crossover in which case the number of parameters 

inherited from the mutant has a (nearly) binomial 

distribution. Thus for each target vector GiZ ,

r
, a trial 

vector GiR ,

r
is created in the following fashion: 

   GijR ,,   = GjiY ,,  ,       if ( Crrand ji ≤)1,0(, or )randjj =  

                   GjiZ ,, ,      otherwise                                    (6)                                                                                   

for j = 1, 2, ….., D and randj (0, 1) ]1,0[∈ is the j-th 

evaluation of a uniform random number generator. 

],....,2,1[ Djrand ∈ is a randomly chosen index which 

ensures that )(tRi

r
gets at least one component from 

)(tZ i

r
. Next step of the algorithm calls for ‘selection’ in 

order to determine which one between the target vector 

and trial vector will survive in the next generation i.e. at 

time t = t+1. If the trial vector yields a better value of the 

fitness function, it replaces its target vector in the next 



 

 

generation; otherwise the parent is retained in the 

population: 

     =+ )1(tZ i

r
)(tRi

r

       if  ))(())(( tZftRf ii

rr
≤  

                  = )(tZ i

r

        if ))(())(( tZftRf ii

rr
>                                                                                              

                     (7) 

where f(.) is the function to be minimized.  

2.3 The Multi-objective Variants of DE 

We compared the performances of four recently 

developed and popular MO-variants of DE: the Pareto DE 

(PDE) [3], the Multi-objective DE (MODE) [4], DE for 

Multi-objective Optimization (DEMO) [5], and Non-

Dominated Sorting DE (NSDE) [6]. Due to space 

limitations, we briefly discuss here the outline of these 

algorithms instead of reiterating through their details 

available in cited literatures. 

1) PDE: In the PDE algorithm proposed by Abbas and 

Sarker, an initial population is generated at random from a 

Gaussian distribution with mean 0.5 and standard 

deviation 0.15. All dominated solutions are removed from 

the population. The remaining non-dominated solutions 

are retained for reproduction. If the number of non-

dominated solutions exceeds some threshold, a distance 

metric relation (will be described in the next paragraph) is 

used to remove those parents who are very close to each 

others [17, 18]. Three parents are selected at random. A 

child is generated from the three parents and is placed into 

the population if it dominates the first selected parent; 

otherwise a new selection process takes place 

2) MODE: MODE was proposed by Xue et al. in [8]. 

This algorithm uses a variant of the original DE, in which 

the best individual is adopted to create the offspring. A 

Pareto-based approach is introduced to implement the 

selection of the best individual. If a solution is dominated, 

a set of non-dominated individuals can be identified and 

the “best” turns out to be any individual (randomly 

picked) from this set. Also, the authors adopt ( λµ + ) 

selection, Pareto ranking and crowding distance in order 

to produce and maintain well-distributed solutions. 

3) DEMO: The algorithm, proposed by Robic and Filipic 

combines the advantages of DE with the mechanisms of 

Pareto-based ranking and crowding distance sorting. 

DEMO only maintains one population and it is extended 

when newly created candidates take part immediately in 

the creation of the subsequent candidates. This enables a 

fast convergence towards the true Pareto front, while the 

use of non-dominated sorting and crowding distance 

(derived from the NSGA-II [12]) of the extended 

population promotes the uniform spread of solutions.  

4) NSDE: In Iorio and Li’s NSDE algorithm, within the 

NSGA-II framework, the DE-variants are used to generate 

N offspring from the selected parents. The offspring 

individuals are then evaluated on the objective functions. 

Following this, they are combined with the parent 

generation. The combined population is then sorted into 

dominance ranks, as was mentioned previously. Each 

individual also has a crowding distance associated with it. 

New candidates are generated using the DE/current-to-

rand/1 strategy. NSDE is used to solve rotated problems 

with a certain degree of rotation on each plane.  

 
III. MULTI-OBJECTIVE CLUSTERING SCHEME 

3.1 Search-variable Representation 

In the proposed method, for n data points, each d-

dimensional, and for a user-specified maximum number 

of clusters maxK , a chromosome is a vector of real 

numbers of dimension dKK ×+ maxmax . The first maxK  

entries are positive floating-point numbers in [0, 1], each 

of which controls whether the corresponding cluster is to 

be activated (i.e. to be really used for classifying the data) 

or not. The remaining entries are reserved for maxK
 

cluster centers, each d-dimensional. For example, the i-th 

vector is represented as: 

   
=)(tX i

r

 

  

                                                                                        (8)                                                                

The j-th cluster center in the i-th chromosome is active or 

selected for partitioning the associated dataset if 

5.0, >jiT . On the other hand, if 5.0, <jiT , the particular 

j-th cluster is inactive in the i-th vector in DE population. 

Thus the jiT , s behave like control genes (we call them 

activation thresholds) in the vector governing the 

selection of the active cluster centers. The rule for 

selecting the actual number of clusters specified by one 

vector is: 

IF 5.0, >jiT  THEN the j-th cluster center jim ,

r
is 

ACTIVE ELSE jim ,

r
 is INACTIVE.                          (9)                                                                                                

3.2 Selecting the Objective Functions 
 

The performance of a multi-objective clustering algorithm 

critically depends upon the clustering objectives it tries to 

optimize simultaneously. Conflict among the objective 

functions is often beneficial since it guides to globally 

optimal solutions. It also ensures that no single clustering 

objective is optimized leaving other probable significant 

objectives unnoticed.  

In this work, we choose the Xie-Beni index XBq 

and the FCM objective function Jq as the two objectives. 

The FCM measure Jq may be defined as: 

   ),(
2

1 1
ij

n

j

k

i

q
ijq mZduJ

rr
⋅= ∑∑

= =

, ∞≤≤ q1        (10) 

where q is the fuzzy exponent, d indicates a distance 

measure between the j-th pattern vector and i-th cluster 
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centroid, and iju denotes the membership of j-th pattern in 

the i-th cluster. The XB index is defined as a function of 

the ratio of the total variation σ  to the minimum 

separation sep of the clusters. Here σ and sep may be 

written as: 

          ),(

1 1

2
pi

k

i

n

p

ip Zmdu
rr

⋅=∑∑
= =

σ                           (11)                                                                                                                          
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≠
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The XB index is then written as:  

       
{ }),(min

),(
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jiji

k

i

n

p

pi
q
ip

q
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Zsepn
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⋅
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       (13) 

Note that when the partitioning is compact and the 

individual clusters are well separated, value of σ should 

be low while sep should be high, thereby yielding lower 

values of XBq index. The objective therefore is to 

minimize the XB index. For computing the measures 

described in equations (10) and (13), the centers encoded 

in a DE vector are first extracted. Let the set of centers be 

denoted by { }kmmm
rrr

,...,, 21 . The membership value of the 

j-th pattern in i-th cluster 

kiu ij ,....2,1, = and nj ,....,2,1= are computed as: 

                  

∑
=

−









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Note that while computing the iju s, using equation (12), 

if ),( jp Zmd
rr

is equal to zero for some p, then iju is set to 

zero for all ki ,....2,1= , ji ≠ , while pju is set equal to 

one. Subsequently the centers encoded in a vector are 

updated using the following equation: 

            

( )

( )∑

∑

=

=

⋅

=
n

j

q
pj

n

j

j
q

pj
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                          (15)                                                                                

and the cluster membership values are recomputed. Note 

that the XBq index is a combination of global (numerator) 

and particular (denominator) situations. The numerator is 

similar to Jm but the denominator has a factor that gives 

the separation between to minimum distant clusters. 

Hence this factor only considers the worst case, i.e. which 

two clusters are closest to each other and forgets about the 

other partitions. Here, greater value of the denominator 

(lower value of whole index) signifies a better 

partitioning. Thus it is evident that Jm and XBq indices 

should be simultaneously minimized in order to get good 

solutions. The two terms at the numerator and the 

denominator of XBq may not attain their best values for 

the same partitioning when the data has complex and 

overlapping clusters, such as remote sensing image data.  

3.3 Avoiding Erroneous Vectors 

There is a possibility that in our scheme, during 

computation of the XB or Jq, a division by zero may be 

encountered. This may occur when one of the selected 

cluster centers in a DE-vector is outside the boundary of 

distributions of the data set. To avoid this problem we 

first check to see if any cluster has fewer than two data 

points in it. If so, the cluster center positions of this 

special chromosome are re-initialized by an average 

computation. We put 
k

n  data points for every individual 

cluster center, such that a data point goes with a center 

that is nearest to it 

3.4 Selecting the Best Solution from Pareto-front  

Multi-objective clustering does not return a single 

solution, but a set of clustering solutions. These individual 

groupings correspond to different tradeoffs between the 

two objectives and, in our case, also consist of different 

numbers of clusters. Several researchers have already 

investigated the identification of promising solutions from 

Pareto front approximations recently [22, 23]. For 

choosing the most interesting solutions from the Pareto 

front, we apply Tibshirani et al.’s Gap statistic [24], a 

statistical method to determine the number of clusters in a 

data set. The Gap statistic is based on the expectation that 

the most suitable number of clusters shows in a 

significant “knee” when plotting the performance of a 

clustering algorithm (in terms of a selected internal 

evaluation measure) as a function of the number of 

clusters. 

3.5 Evaluating the Clustering Quality 

In this work, the final clustering quality is evaluated using 

two external measures. Specifically we choose the 

Adjusted Rand Index [25] (which is a generalization of 

the Rand index [26]) and the Sihouette index [27]. 

Silhouette width reflects the compactness and separation 

of the clusters. Given a set of data points 

},....,{ 1 nZZZ
rr

= and a given clustering 

solution { }kCCCC ,...,, 21= , the silhouette width 

)( jZs
r

for each data jZ
r

belonging to cluster iC indicates a 

measure of the confidence of belongingness, and it is 

defined as: 

                                                     

.
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j
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Here )( jZa
r

denotes the average distance of data point 

jZ
r

from the other data points of the cluster to which the 

data point jZ
r

is assigned (i. e. cluster iC ). On the other 

hand, )( jZb
r

represents the minimum of the average 

distances of data point jZ
r

from the data points belonging 

to clusters krCr ,...,2,1   , = and ir ≠ . The value of 

)( jZs
r

lies between -1 and +1. Large values of 

)( jZs
r

(near to 1) indicate that the data point jZ
r

 is well 

clustered. Value of )( jZs
r

 around 0 means that the data 

point lays between two clusters and a negative value of 

)( jZs
r

indicates that the data point jZ
r

is probably placed 

in a wrong cluster. Overall silhouette index )(Cs of a 

clustering solution { }kCCCC ,...,, 21= is defined as the 

mean silhouette width over all the data points: 

             )(
1

)(

1

∑
=

=
n

j

jZs
n

Cs
r

                    (17)                                                                                                                            

Greater values of )(Cs (near to 1) reflect that most of the 

data points are correctly clustered and this in turn 

indicates a better clustering solution. Silhouette index can 

be evaluated for any distance measure.  

 
IV. EXPERIMENTAL RESULTS 

4.4.1 Datasets used 

The experimental results showing the effectiveness of 

multi-objective DE based clustering has been provided for 

six artificial and four real life datasets. The artificial 

datasets are named as Dataset_1 to Dataset_6 with 

number of clusters varying from 3 to 10.  Table 1 presents 

the number of objects, dimensionality and the number of 

clusters for each data. The real-life datasets are iris, wine, 

breast-cancer [28] and the yeast sporulation data. We 

consider here the microarray data on the transcriptional 

program of sporulation in budding yeast, the collection 

and analysis of which have been described in [16]. The 

sporulation dataset is available publicly from [31]. This 

dataset consists of 6118 genes measured across 7 time 

points (0, 0.5, 2, 5, 7, 9, and 11.5 h) during the sporulation 

process of budding yeast. The data are then log-

transformed. Among the 6118 genes, the genes, whose 

expression levels did not change significantly during the 

harvesting, have been ignored from further analysis. This 

is determined with a threshold level of 1.6 for the root 

mean squares of the log2-transformed ratios. The 

resulting set consists of 474 genes. Please note that for the 

yeast sporulation dataset, we have used the Pearson 

correlation coefficient based distance measure [29], 

instead of the conventional Euclidean distance (which has 

been used for the rest of the datasets), as it has been 

shown to be more effective for clustering microarray 

datasets [29].  

4.2 Parameters for the Algorithms 

All the multi-objective DE variants have been used with 

40 parameter vectors in each generation and each run of 

each algorithm was continued for 100 generations. The 

value of scale factor F is a random value between 0.5 and 

1. The other parameters for the multi-objective GA 

(NSGA II) based clustering are fixed as follows: number 

of generations = 100, population size = 50, crossover 

probability = 0.8, mutation probability 

=
lengthChromosome _

1
. Please note that the four DE 

variants and the NSGA II use the same parameter 

representation scheme.   

4.3 Presentation of Results 

The mean Silhouette index values of the best-of-run 

solutions provided by six contestant algorithms over the 

10 datasets have been provided in Table 2. The best 

entries have been marked in boldface in each row. Table 3 

enlists the adjusted rand index values except for Yeast 

sporulation data as no standard nominal classification is 

known for this dataset. Table 4 shows the results of 

unpaired t tests (standard error of difference of the two 

means, 95% confidence interval of this difference, the t 

value, and the two-tailed P value) between the best and 

second best algorithms in terms of average Silhouette 

index (we omit a similar table for adjusted rand index due 

to space limitations). For all cases in Table 4, sample size 

= 30 and number of degrees of freedom = 58. The results 

listed in Tables 2 to 4 indicate that there is always one or 

more multi-objective DE variant that beats the NSGA II 

or MOCK in terms of mean Silhouette index in a 

statistically significant fashion. 
 

TABLE 1. DETAILS OF THE DATASETS USED. 

 

4.4 Significance and Data Clustering Results 

The best clustering solution provided by different 

algorithms on the sporulation data of yeast has been 

Dataset Number 

of points 

Number 

of 

clusters 

Number of 

Characteristics 

Dataset_1 900 9 2 

Dataset _2 76 3 2 

Dataset _3 400 4 3 

Dataset _4 300 6 2 

Dataset _5 500 10 2 

Dataset_ 6 810 3 2 

Iris 150 3 4 

Wine 178 3 13 

Breast-Cancer 683 2 9 

Yeast Sporulation 474 7 7 



 

 

visualized using the cluster profile plot (in parallel 

coordinates) and the heatmap plot in MATLAB 7.0.4 

version. Parallel coordinates [41] is a common way of 

visualizing high-dimensional geometry. A point in n-

dimensional space is represented as a polyline with 

vertices on the parallel axes; the position of the vertex on 

the i-th axis corresponds to the i-th coordinate of the 

point. Cluster profile plots (in parallel coordinates) of 

seven clusters for the best clustering result (provided by 

MODE) on yeast sporulation data has been shown in 

Figure 1. The blue polylines indicate the member genes 

within a cluster while the black polyline indicates the 

centroid of that gene. Cluster profile plots (Figure 1) also 

demonstrate how the cluster profiles for the different 

groups of genes differ from each other, while the profiles 

within a group are reasonably similar. 

 
V. CONCLUSIONS 

 

This paper compared and contrasted the performances of 

four state-of-the-art multi-objective variants of DE in an 

automatic clustering framework with two other prominent 

multi-objective clustering algorithms. The multi-objective 

DE-variants used the same variable representation 

scheme. Tables 2 to 4 indicate that one or more multi-

objective DE variants were always able to produce better 

final clustering solutions as compared to MOCK or 

NSGA II when all the algorithms were let run for an equal 

number of generations. Visualization of the yeast 

sporulation data clustering results indicate that the MODE 

yielded compact and well separated clusters. Our 

experimental results indicate that DE holds immense 

promise as a candidate optimization technique for multi-

objective clustering. Future research may extend the 

multi-objective DE-based clustering schemes to handle 

discrete chromosome representation schemes that no 

longer depend on cluster centroids and thus are not biased 

in any sense towards spherical clusters. As a scope of 

further research, the technique of multi-objective 

optimization with other cluster validity indices needs to 

be studied. Moreover, new ways of comparing the 

performance of multi-objective solutions have to be 

defined. 
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FIGURE 1.  PARALLELCOORDS PLOTS OF CLUSTER 1 TO 4 (FROM LEFT TO RIGHT ON TOP), AND FOR CLUSTERS 5, 6, AND 7 BELOW. 

 

 

 
TABLE 2. AVERAGE SILHOUETTE INDEX AND NUMBER OF CLUSTERS FOUND AND STANDARD DEVIATIONS (IN PARENTHESES) BY SIX  

ALGORITHMS OVER 30 INDEPENDENT RUNS ON TEN DATASETS. 

 

  

 

 

Dataset 

 

Algorithms 

MODE DEMO PDE NSDE NSGA2 MOCK 

k Silhouette 

Index 

k Silhouette 

Index 

k Silhouette 

Index 

k Silhouette 

Index 

k Silhouette  

Index 

k Silhouette 

Index 

Dataset_1 9.12 

(1.46) 

0.670726 

(0.0321) 

9.43 

(0.843) 

0.670523 

(0.08263) 

9.83 

(0.35) 

0.656594 

(0.05372) 

8.81 

(2.837) 

0.661661 

(0.00483) 

9.37 

(1.72) 

0.669317 

(0.0892) 

8.52 

(2.81) 

0.66342 

(0.0736) 

Dataset_2 3.36 

(0.65) 

0.678734 

(0.03716) 

3.74 

(0.363) 

0.670530 

(0.05381) 

3.15 

(0.726) 

0.663812 

(0.00366) 
3.07 

(0.052) 

0.683382 

(0.00082) 

3.16 

(0.072) 

0.674393 

(0.00927) 

3.33 

(1.03) 

0.658921 

(0.004731) 

Dataset_3 4.14 

(0.36) 

0.771363 

(0.00938) 
4.09 

(0.24) 

0.774611 

(0.002376) 

4.38 

(1.09) 

0.766945 

(0.04824) 

4.17 

(0.73) 

0.767333 

(0.004712) 

3.57 

(0.51) 

0.765691 

(0.005686) 

3.78 

(1.25) 

0.768419 

(0.006721) 

Dataset_4 6.04 

(0.25) 

0.849184 

(0.00472) 

6.13 

(1.27) 

0.838303 

(0.056741) 

6.15 

(0.79) 

0.824910 

(0.00721) 

6.31 

(1.46) 

0.840613 

(0.04752) 

6.28 

(0.46) 

0.827618 

(0.02871) 

6.08 

(0.51) 

0.832527 

(0.007825) 

Dataset_5 9.24 

(3.89) 

0.778102 

(0.04363) 
10.03 

(0.37) 

0.778736 

(0.008125) 

9.26 

(2.88) 

0.746241 

(0.00673) 

11.45 

(1.68) 

0.777406 

(0.05345) 

12.43 

(0.939) 

0.768379 

(0.005384) 

10.41 

(0.80) 

0.769342 

(0.006208) 

Dataset_6 5.19 

(0.93) 

0.643316 

(0.00381) 

5.62 

(0.867) 

0.637986 

(0.008112) 
5.08 

(0.35) 

0.645446 

(0.05524) 

5.26 

(0.78) 

0.640832 

(0.004983) 

4.65 

(1.58) 

0.642091 

(0.002833) 

5.16 

(0.38) 

0.640957 

(0.008349) 

Iris 2.31 

(0.76) 

0.606353 

(0.03483) 
2.97 

(0.40) 

0.606864 

(0.03234) 

2.25 

(0.324) 

0.569675 

(0.04752) 

2.14 

(0.58) 

0.600304 

(0.004618) 

2.16 

(1.06) 

0.566613 

(0.082651) 

3.05 

(0.37) 

0.6003725 

(0.005129) 

Wine 3.16 

(0.46) 

0.582197 

(0.00427) 

3.65 

(0.83) 

0.568391 

(0.007473) 

4.01 

(1.35) 

0.525840 

(0.01213) 

3.52 

(1.20) 

0.5457383 

(0.009497) 

3.88 

(0.67) 

0.5767342 

(0.009415) 

3.59 

(0.46) 

0.576834 

(0.000812) 

Breast 
Cancer 

2.08 

(0.38) 

0.648297 

(0.00734) 

2.68 

(0.64) 

0.609123 

(0.57813) 

2.15 

(0.46) 

0.619219 

(0.00567) 

2.33 

(0.67) 

0.628352 

(0.006782) 

2.57 

(0.60) 

0.6004642 

(0.004561) 

2.10 

(0.53) 

0.626719 

(0.01094) 

Yeast 

Sporulation 
7.08 

(0.12) 

0.676434 

(0.00072) 

6.34 

(0.32) 

0.558619 

(0.057832) 

8.36 

(2.81) 

0.595367 

(0.00721) 

7.24 

(1.04) 

0.604513 

(0.005728) 

7.22 

(0.68) 

0.641306 

(0.04813) 

6.67 

(0.857) 

0.613567 

(0.005738) 



 

 

TABLE 3. MEAN VALUE OF ADJUSTED RAND INDEX FOUND AND STANDARD DEVIATIONS (IN PARENTHESES) BY DIFFERENT ALGORITHMS OVER 30 

INDEPENDENT RUNS ON NINE DATASETS. 

 

 

 

 

 
TABLE 4. UNPAIRED T-TEST RESULTS FOR SILHOUETTE INDEX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Dataset Algorithms 
MODE DEMO PDE NSDE NSGA2 MOCK 

Dataset_1 0.846199 

(0.031257) 

0.828437 

(0.046182) 

0.719584 

(0.00563741) 

0.819794 

(0.035285) 

0.802180 

(0.004782) 

0.810934 

(0.0059348) 

Dataset_2 0.847621 

(0.006312) 

0.9273464 

(0.0008573) 

0.9372649 

(0.036451) 
1.000000 0.9378123 

(0.006821) 

0.946547 

(0.004536) 

Dataset_3 0.951786 

(0.004827) 
1.000000 0.9758732 

(0.05736) 

0.894635 

(0.005736) 

0.963841 

(0.0046719) 

0.878732 

(0.0712523) 

Dataset_4 1.000000 0.857463 

(0.065639) 

0.840953 

(0.076829) 

0.919843 

(0.0121436) 

0.957818 

(0.004678) 

0.978761 

(0.006734) 

Dataset_5 0.983785 

(0.076764) 
0.993173 

(0.089371) 

0.876710 

(0.023376) 

0.982013 

(0.084372) 

0.947641 

(0.006646) 

0.9454568 

(0.0012043) 

Dataset_6 0.881413 
(0.05983) 

0.881136 
(0.078348) 

0.884930 

(0.007846) 

0.880265 
(0.056347) 

0.881395 
(0.056483) 

0.910294 
(0.016743) 

Iris 0.738626 

(0.0756779) 
0.748784 

(0.067457) 

0.709036 

(0.025739) 

0.738960 

(0.001436) 

0.715898 

(0.005739) 

0.786574 

(0.075763) 

Wine 0.875849 

(0.0087642) 

0.858876 
(0.0035287) 

0.8265764 
(0.0032429) 

0.845365 
(0.0065761) 

0.828645 
(0.0074653) 

0.864764 
(0.0034398) 

Breast Cancer 0.956456 

(0.0056453) 

0.912173 

(0.0043247) 

0.937857 

(0.0087743) 
0.950965 

(0.0065682) 

0.944236 

(0.006521) 

0.9465731 

(0.006748) 

Dataset Std. Err t 95% Conf. Intvl Two-tailed P Significance 

Dataset_1 0.001 7.1968 -0.0121 to  -0.0068 < 0.0001 Extremely Significant 

Dataset_2 0.002 3.8990 -0.0129 to  -0.0040 < 0.0001 Extremely Significant 

Dataset_3 0.007 34.9267 -0.2665 to -0.2373 < 0.0001 Extremely Significant 

Dataset_4 0.001 3.0961 -0.0051 to -0.0010 0.0037 Very Significant 

Dataset_5 0.003 3.0684 -0.0156 to  -0.0032 0.0040 Very Significant 

Dataset_6 0.002 3.0584 -0.0109 to  -0.0022 0.0041 Very Significant 

Iris 0.009 1.3744 -0.0309 to 0.0059 0.1774 Not Significant 

Wine 0.003 2.3999 -0.0118 to  -0.0010 0.0214 Significant 

Breast Cancer 0.009 1.3744 -0.0309 to 0.0059 0.1774 Not Significant 

Yeast Sporulation 0.003 2.3999 -0.0118 to  -0.0010 0.0214 Significant 


