
Hierarchical Dynamic Neighborhood Based Particle 
Swarm Optimization for Global Optimization 

 
Pradipta Ghosh1, Hamim Zafar1, Swagatam Das1 and Ajith Abraham 2, 3 

 
1Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700 032, India 

2Faculty of Computer Science and Electrical Engineering, VSB – Technical University of Ostrava, Czech Republic 
3Machine Intelligence Research Labs (MIR Labs), Seattle, WA, USA 

ajith.abraham@ieee.org   
 

Abstract— Particle Swarm Optimization (PSO) is arguably one of 
the most popular nature-inspired algorithms for real parameter 
optimization at present. In this article, we introduce a new 
variant of PSO referred to as Hierarchical D-LPSO (Dynamic 
Local Neighborhood based Particle Swarm Optimization). In this 
new variant of PSO the particles are arranged following a 
dynamic hierarchy. Within each hierarchy the particles search 
for better solution using dynamically varying sub-swarms i.e. 
these sub-swarms are regrouped frequently and information is 
exchanged among them. Whether a particle will move up or 
down the hierarchy depends on the quality of its so-far best-
found result. The swarm is largely influenced by the good 
particles that move up in the hierarchy. The performance of 
Hierarchical D-LPSO is tested on the set of 25 numerical 
benchmark functions taken from the competition and special 
session on real parameter optimization held under IEEE 
Congress on Evolutionary Computation (CEC) 2005. The results 
have been compared to those obtained with a few best-known 
variants of PSO as well as a few significant existing evolutionary 
algorithms. 

Keywords - PSO, local PSO,hierarchy, D-LPSO, Hierarchical D-
LPSO  

I.  INTRODUCTION 

The concept of particle swarms originated from the simulation 
of the social behavior commonly observed in animal kingdom 
and evolved into a very simple but efficient technique for 
global numerical optimization in recent past. The Particle 
Swarm Optimization (PSO) [1, 2] as it is called now, does not 
require any gradient information of the function to be 
optimized, uses only primitive mathematical operators, and is 
conceptually very simple. Since its inception in 1995, PSO has 
attracted a great deal of attention of the researchers all over the 
globe resulting into several variants of the basic algorithm, 
theoretical and empirical investigations of the dynamics of the 
particles, parameter selection and control, and applications of 
the algorithm to a wide spectrum of real world problems from 
diverse fields of science and engineering. For Evolutionary 
Algorithms (EAs) search for an optimum is an iterative 
process that depends on some random decisions. For a 
comprehensive knowledge on the foundations, perspectives, 
applications of PSO see [1!2] [4!6]. The effectiveness of PSO 
is mainly attributed to the efficient communication of 
information among the search agents. PSO has already been 

applied to numerous benchmark as well as real world 
optimization problems successfully.   

PSO exploits the dynamics of a population of trial 
solutions or search-agents that collaborate for finding better 
solutions. PSO combines cognition only model that values 
only the self-experience and social only model that takes into 
account the experience of neighbors. The algorithm uses a set 
of particles astrogating over a search space and moving 
towards a promising position to locate a global optimum. Each 
particle stands for a potential solution to an optimization 
problem. Initially the particles are distributed randomly over 
the search space each one endowed with a random velocity, 
and the goal is to converge to the global optimum of a 
function. During their journey with discrete time iterations, the 
velocity of each particle in the next iteration is determined by 
the best position found by the particles of the swarm (gbest as 
the social component), the best personal position of the 
particle (pbest as the cognitive component), and its current 
velocity (the memory term). 

Being a stochastic search process PSO is not free 
from false and/or premature convergence, especially over 
multimodal fitness landscapes. As there is a direct link of the 
information flow between particles and gbest, multifariousness 
is lost. As a result probability of being trapped in local optima 
increases that result in premature convergence. Various 
modifications and PSO variants have been proposed to 
eradicate this problem. The modifications can be regarded as 
algorithmic components that provide an improved 
performance. These algorithmic components may be 
integrated in the particles’ velocity update rule (1) or as stand-
alone algorithms that are used as components of hybrid PSO 
algorithms. 

In this article, we propose a new variant of PSO 
called Hierarchical D-LPSO. In Hierarchical D-LPSO, a 
particle is influenced by its own so far best position and by the 
best position of the particle that is directly above it in the 
hierarchy. All particles are arranged in a tree that forms the 
hierarchy so that each node of the tree contains exactly one 
particle. Particles can move up and down the hierarchy 
depending on the solution it has obtained. Within each level of 
hierarchy the particles search for better solution using a 
dynamically varying neighborhood. Each hierarchy involves a 
no of sub-swarms of particles that search for better solution 
and information is exchanged between the sub-swarms 
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resulting in increased diversity. Performance of the proposed 
PSO is compared with other those of Unified PSO (UPSO) 
[4], Comprehensive Learning PSO (CLPSO) [5], wFIPS [6], 
Dynamic Multi-Swarm PSO (DMS-PSO) [7], Cooperative 
PSO (CPSO) [5], Differential Evolution (DE) [8] and one of 
its significant adaptive variants [9]. 

The rest of the paper is arranged in the following way: 
Section II contains the an overview of PSO algorithm, Section 
III gives a brief overview of L-PSO, Section IV describes 
Hierarchical PSO, Section V presents D-LPSO algorithm and 
Section VI describes our Novel method abbreviated as 
Hierarchical D-LPSO, Section VII contains a comparative 
study of the algorithms over CEC (Congress on Evolutionary 
Computation) 2005 benchmark problems [10] and Section 
VIII concludes this paper..  
 

II. AN OVERVIEW OF PSO ALGORITHM  

The classical PSO starts with the random initialization of a 
population of candidate solutions (particles) over the fitness 
landscape. However, unlike other evolutionary computing 
techniques, PSO uses no direct recombination of genetic 
material between individuals during the search. Rather it 
works depending on the social behavior of the particles in the 
swarm. Therefore, it finds the global best solution by simply 
adjusting the trajectory of each individual towards its own best 
position and toward the best particle of the entire swarm at 
each time-step (generation). In a D-dimensional search space, 
the position vector of the i-th particle is given by !
X i = (xi

1,xi
2 ,",xi

D )  and velocity of the i-th particle is given 

by
!
Vi = (vi

1,vi
2 ,!,vi

D ) . Positions and velocities are adjusted 

and the objective function to be optimized f (
!
Xi )  is evaluated 

with the new coordinates at each time-step. The velocity and 
position update equations for the d-th dimension of the i-th 
particle in the swarm may be represented as: 
    vi

d =! *vi
d +c1 * rand 1i

d *( pbesti
d ! xi

d )   

       +c2 * rand 2i
d *(gbest d ! xi

d ) , 

      xi
d =xi

d !1  + vi
d ,                           (1) 

where 1c and 2c  
are the acceleration constants, 1c  controls 

the effect of the personal best position, 2c determines the 
effect of the best position found so far by any of the particles, 
rand1i

d and rand2i
d

 
are two uniformly distributed random 

numbers in the range [0, 1]. !  is the inertia weight that 
balances between the global and local search abilities and 
takes care of the influence of the previous velocity vector. 
pbesti = (pbesti

1, pbesti
2,!, pbesti

D ) is the best previous position 
yielding the best fitness value pbest

i 
for the thi

 
particle and 

gbest = (gbest1,gbest2,!,gbestD ) is the best position discovered 
by the entire swarm.  
 

III. LOCAL NEIGHBORHOOD BASED PSO  
 
The two main variants are global_best (or gbest) PSO and 
local_best (lbest) PSO. Some other variants limit the velocity 
of a particle by a maximal value maxV , some variant linearly 
varies! . In lbest PSO, each particle’s velocity is modified 
according to its personal best and the best performance 
achieved so far within its neighborhood instead of learning 
from the personal best and the best position achieved so far by 
the whole population in the global version. The velocity 
updating equation becomes: 

vi
d =! *vi

d +c1 * rand 1i
d *( pbesti

d ! xi
d )             

+c2 * rand 2i
d *(lbesti

d ! xi
d )                         (2)                                        

where ),,,( 21 D
iiii lbestlbestlbestlbest !=  is the best position 

achieved within its neighborhood. To increase the diversity 
among the particles of a swarm various mechanisms has been 
designed. The topology of the neighborhood plays a 
substantial role in PSO, and different neighborhood topologies 
have been investigated for PSO. In the lbest model of PSO, the 
neighborhood is defined by a ring topology based on the 
particles’ index. For the improvement of this lbest model of 
PSO, different neighborhood structures are proposed and 
discussed in literature. There are some variants, which use 
multi-swarm [7], subpopulation [7]. Sub-groups may be 
treated as special neighborhood structures. In the existing local 
versions of PSO with different neighborhood structures and 
the multi-swarm PSOs, the swarms are predefined or 
dynamically adjusted according to the distance. The dynamic 
multi-swarm optimizer uses a dynamic or randomly assigned 
topology. We use the dynamic topology i.e. dynamically 
varying sub populations along with the hierarchical version of 
the PSO and obtain an improved variant of PSO which shows 
good performance on the 30-D test functions obtained from 
the competition and special session on real-parameter 
optimization held under CEC 2005. 

IV. A BRIEF OVERVIEW OF HIERARCHICAL PSO 
In the hierarchical version of PSO the particles are arranged in 
a hierarchy and it defines the neighborhood structure. Each 
particle is neighbored to itself and also its parent in the 
hierarchy. The regular treelike hierarchies are followed. The 
hierarchy is defined by the height, the branching degree [11], 
i.e., the maximum number of children of the inner nodes, and 
the total number of nodes of the corresponding tree. In this 
hierarchy all inner nodes have the same number of children, 
but the inner nodes on the deepest level might have a smaller 
number of children. As a result the maximum difference 
between the numbers of children of inner nodes on the deepest 
level is at most one. The best particles of the swarm become 
highly influential by the upward and downward movement of 
the particles in the hierarchy. In every iteration, the new 
positions of the particles are determined between the 
evaluation of the objective function and velocity update. The 
best solution of thj  particle in a node of the tree is compared 



to the best solution obtained by the particles in the child 
nodes. This is done for every particle in that node. If best 
solution obtained by any particle (say thi particle) in the child 
node is better than that of thj  particle then the particles i and j 
swap their places. These comparisons start from the top of the 
hierarchy and then proceed in a breadth-first manner down the 
tree. The particle having global best position of the hierarchy 
moves up one level of the hierarchy at every iteration. The 
velocity of a particle is modulated by its own so far best 
position and by the best position of the individual that is 
directly above in the hierarchy. 

In case of H-PSO [11] neighborhood of a particle 
changes constantly depending on the fitness development of 
the individuals. The changing arrangement of the particles can 
help preserving diversity in the search. The arrangement of the 
particles leads to a different influence for the particles at 
different positions. The particle with the currently best found 
solution can (indirectly) influence all the other particles after it 
has reached the top of the hierarchy. 

The structure of the hierarchy, the branching degree d 
influences the optimization behavior of H-PSO. For example, 
if branching degree is higher, then performance might be 
better initially, on the other hand due to a smaller value of d 
performance of finding best solution may be worse in the 
beginning of the optimization process but it might improve the 
objective function value further in the end of the optimization 
process. For this reason the branching degree is changed 
dynamically. When the branching degree is decreased from d 
to d-1, the hierarchy is traversed starting at the root node. This 
is done so that always one of the direct sub trees below the 
considered node is removed, if the number of children exceeds 
the new required branching degree. The removal of sub tree is 
based on the quality of the particles in the topmost nodes of all 
sub trees of the considered nodes, i.e., all children of the 
considered node. This procedure is repeated for the entire tree. 
After this removal of sub tree the remaining tree has branching 
degree d-1 and fewer nodes than before. The removed nodes 
are then evenly inserted at the bottom of the hierarchy. The 
removed nodes are appended one by one so that the number of 
children of all nodes on the second last level differs by at most 
one. If all of these nodes have d-1 children, a new level is 
added to the hierarchy and the procedure is continued until all 
removed nodes are reinserted. The branching degree reduction 
is done in every adaptf  th iteration, this adaptf  is called decrease 

frequency. Branching degree is decreased by adaptk  known as 

decrease step size. For 1>adaptk  the reduction procedure is 
applied consecutively (i.e., the branching degree is always 
reduced in steps of 1) until the hierarchy has the required 
branching degree. This is done until a certain minimum 
branching degree is reached. To choose which sub tree are to 
be removed two strategies are used, removing the sub tree 
with the worst root node or the one with the best root node. 

V. PROPOSED D-LPSO ALGORITHM 
The Dynamic Local Neighborhood based Particle Swarm 
Optimization (D-LPSO) is a variant of PSO constructed based 

on the local version of PSO employing a new neighborhood 
topology. In case of PSO it has been found that satisfactory 
results can be obtained using smaller population size. PSO 
with smaller neighborhoods has better performance on 
complex problems also. In case of D-LPSO smaller 
neighborhoods are used. As a result the convergence velocity 
of the population decreases, diversity increases and better 
solutions are achieved for multi-modal problems.  

In order to slow down the population’s convergence 
velocity and increase diversity and achieve better results on 
multimodal problems, in the D-LPSO, small neighborhoods 
are used. The population is divided into small sized swarms. 
Each sub-swarm uses its own members to search for better 
area in the search space. Since the small sized swarms are 
searching using their own best historical information, they are 
easy to converge to a local optimum because of PSO’s 
convergence property. In order to avoid it we must allow 
information exchange among the swarms. And in the 
information exchange schedule, we want to keep more 
information including the good ones and the not so good ones 
to add the varieties of the particles and achieve larger 
diversity. So a randomized regrouping schedule is introduced 
to make the particles have a dynamic changing neighborhood 
structures. Each sub-swarm containing at most three particles 
search for better location and they may converge to near a 
local optimum. After regrouping, the particles previously 
belonging to a common sub-swarm now belong to different 
sub-swarms and get the opportunity to modify their velocity 
and position learning from the new swarm members. During 
regrouping the particles are distributed among different 
swarms randomly. In every generation, the population is 
regrouped randomly and starts searching using a new 
configuration of small swarms. In this way, the information 
obtained by each swarm is exchanged among the swarms as a 
particle belongs to different swarms during the search process 
and it carries the information obtained in the previous swarm 
and uses this information to influence other particles’ 
movement in the new swarm. With the randomly regrouping 
schedule, particles from different swarms are grouped in a 
new configuration so that each small swarm’s search space is 
enlarged and better solutions are possible to be found by the 
new small swarms.  
 

VI. HIERARCHICAL D-PSO ALGORITHM 
In this algorithm Hierarchical PSO is combined with D-LPSO. 
The steps of the proposed PSO algorithm is as follows: 
 
Step1. The Initialized population is divided into stages. First 
stage contains 1 particle; next stage contains maximum n 
elements (Initially n = 2). N-th stage can contain maximum nN 
particles. 
Step2. Each particle is assigned randomly a parent from the 
previous stage except the particle on 1st stage  
Step3.  Evaluate each particles Fitness 
Step4. Now D-LPSO is applied along each stage except 1st 
stage. 



Step5. Now each particle compares its fitness with its assigned 
parent. If its position is better than its parent’s position, they 
are swapped. 
Step6. Step2 to Step5 continues until next 1/5th of the total FEs 
is completed. Now n = n+1, and Step1 takes place again. 
Step7. When maximum no of FEs is reached all the processes 
are stopped and the result is shown.  
                         In the velocity update equation we have used a 
constriction factor to avoid the unlimited growth of the 
particles’ velocity. This was proposed by Clerc and Kennedy 
[12]. Equation 2 becomes 
Vi

d = ! *(" *Vi
d + c1 * rand1i

d *(pbesti
d ! Xi

d )                
+c2 * rand2i

d *(lbesti
d ! Xi

d ))           (3) 
!   is the constriction factor given by  

! = 2 / 2! c! c2 ! 4c                                                  (4) 

c = cii!              

This procedure is shown in Figure 1. 
 

     
 
 
 

        
                          
 
 

Figure 1: Hierarchical D-LPSO’s Search Process 
 
The pseudo codes of Step1 to Step 5 are given below. Step 6 
and Step 7 can be easily coded. 
__________________________________________________ 

Step1 
 
N=total no of particles. 
FEs= No of FEs covered; 

Max_FEs=Max No of FEs 
Count =Max no of particles in second stage. 
Icount= Max no of particles in any stage Stage(1,1)= Any 
particle from the population. 
Stagecount=2; 
Icount=Count; 
While 1 

For i=1: Icount 
Stage (Stagecount, i) =any particle from the 
rest of the population 
If All the particles Covered 

Break; 
End 

End 
If all the particles are covered 

Break; 
End 
Icount=Icount*Count; 

 Stagecount=Stagecount+1; 
End 
__________________________________________________ 

Step2 
 (Stage (1,1))= Stage (1,1); 
Icount=Count; 
For j=1: Stagecount 

For i=1: Icount 
Parent (Stage (Stagecount, i)) =any particle 
from the previous stage. 

End 
Icount=Icount*Count; 

End 
__________________________________________________ 

Step3 
For i=1:N 
 Evaluate Each particle’s Fitness 
End 
__________________________________________________ 

Step4 
For j=1: Stagecount 

Apply D-LPSO; 
End 
__________________________________________________ 

Step5 
For j=1: Stagecount 

For i=1: Icount 
If Fitness (Parent (Stage (Stagecount, i))) 
<Fitness (Stage (Stagecount, i)) 

Swap the particles. 
End 

End 
Icount=Icount*Count; 

End 

In the above algorithm we are repeating steps 2 to 5 for 1/5th 
of the total FEs and after that we start the process again. It has 
been found empirically that good results are obtained by 

restarting the process after 1/5th of the total FEs. Steps 2 to 5 
yield sufficiently good result within this no of FEs and more 
no. of FEs are not required. When applying D-LPSO in step 4 

After a few iterations 

Position Updation 

This processes i.e. Grouping, position vector updating, and 
position interchange in the hierarchy; again Rearrangement 

goes on until Max_FEs is reached. 

Grouping 

Rearrangement 



we create sub-swarms containing at most 3 particles within 
each level of hierarchy, the no of sub-swarms in a level of 
hierarchy depends on the no of particles in that particular  
level. 

VII.    EXPERIMENTAL RESULTS  

A.  Benchmark Functions Used: 
For the evaluation of the performance of the new variant of 
PSO a test-bed of twenty-five well - known boundary-
constrained benchmark functions has been used. These 
functions constituted the benchmark of CEC-2005 competition 
on single objective optimization. These functions can be 
divided into two groups as follows 

! Unimodal Functions: f1 to f5 
! Multimodal Functions: f6 to f25 

Among these functions seven are simple test functions, two 
others are expanded functions (Whitley et al. 1996).The 
remaining eleven functions are hybrid composition functions. 
Only f1 and f9 are separable. These    functions   were   
designed   to    test    an   optimizer’s ability   to   locate   a   
global   optimum   under   a   variety of circumstances:        

! Function   landscape is highly conditioned 
! Function landscape is translated 
! Function landscape is rotated 
! Optimum lies in a narrow basin 
! Optimum lies on a bound 
! Optimum lies beyond the initial bounds 
! Function is not continuous everywhere 
! Gaussian N(0,1) noise  is  to  the  function  evaluation 
! Bias is added to the function evaluation 

The detailed information   about   the test   functions is 
available on–line at: 
http://www.ntu.edu.sg/home/EPNSugan 

B. Algorithms Compared: 
The results of Hierarchical D-LPSO on the above test bed 
have been compared to the following algorithms: 

• DE/rand/1/bin [8]  
• jDE with NP=100,"1="2=0.1 [9] 

• CLPSO [5] 
• UPSO [4] 
• DMS-PSO [7] 
• wFIPS [6] 
• CPSO [5] 

Among the above seven algorithms the first one is a classical 
DE, the next algorithm is a DE variants, the next five 
algorithms are various PSO variants. The results of the 
compared algorithms have been obtained from 25 independent 
runs on each of twenty-five numerical benchmarks. 

C. Simulation Strategies: 
Functions f1 to f25 were tested in 30-dimensions (30D). The 
following specifications are used. Each run for all the 
algorithms were terminated when the number of Function 
Evaluations (FEs) exceed 3e+05. Parametric set-up for all the 
benchmark problems considered here: c1=2.05, c2=2.05, 
w=0.793, ! =0.729. Our algorithm is tested on a Pentium core 
2 duo machine with 1 GB RAM and 2.00 GHz speed. 

D.  Results on Benchmark Functions: 
The results of Hierarchical D-LPSO, DE/rand/1/bin, jDE, 
CLPSO, UPSO, DMSPSO, wFIPS, and CPSO have been 
shown below in Tables 1 to 5. The results are presented in 
terms of mean and standard deviations obtained from 25 
independent runs on each of twenty-five numerical 
benchmarks for 30 Dimensions. In order to determine the 
statistical significance of the advantage of the hierarchical D-
LPSO over other algorithms, a non-parametric statistical test, 
called Wilcoxon’s ranksum test [13, 14] is applied on the 
mean error found at the 5% significance level and the results 
are shown in Table 6. The numerical values 1, 0, -1 represent 
that other methods are statistically superior to, equal to or 
inferior to the proposed algorithm. 
 
 
 
 

Table 1: Mean and std.(in parentheses) of error values for functions 1-5 

Algorithms 
 

f1 f2 f3 f4 f5 
Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) 

DE/rand/1/bin 
 

1.3554e-29 
(1.3893e-15) 

5.4912e-08 
(1.2449e-07) 

2.8911e+05 
(1.9321e+05) 

5.0455e-01 
(8.5812e-01) 

2.3500e+02 
(1.8312e+02) 

jDE 1.0000e-29 
(5.3453e-16) 

7.5064e-06 
(7.3804e-06) 

2.2663e+05 
(1.6085e+05) 

2.7305e-01 
(1.5490e-01) 

1.1108e+03 
(3.7238e+02) 

UPSO 1.5773e-28 
(1.2721e-17) 

2.4150e+01 
(9.0551e-01) 

3.4662e+03 
(5.3453e-16) 

2.1533e+03 
(5.1222e+00) 

1.4190e+03 
(1.2135e+01) 

CLPSO 6.9032e-26 
(4.4361e-14) 

3.9386e+05 
(6.8032e+00) 

7.4046e+07 
(2.5412e+05) 

1.4314e+04 
(1.0954e+01) 

1.2266e+04 
(8.2250e+03)  

DMS-PSO 3.3149e-29 
(2.431e-10) 

0.8968e+00 
(7.9441e+00) 

7.9812e+06 
(2.0285e+02) 

7.9277e+02 
(1.1354e+01) 

7.5656e+03 
(1.3555e+01) 

wFIPS 2.3896e-015 
(1.4035e-07) 

2.8500e+03 
(4.6839e+02) 

2.4097e+03 
(7.8151e+05) 

1.4268e+03 
(4.1457e+01) 

1.8613e+03 
(3.8819e+03) 

CPSO 2.8547e-09 
(1.0947e-05) 

1.1777e+03 
(3.7518e+01) 

1.4116e+03 
(5.1021e+04) 

3.2427e+04 
(2.1253e+01) 

1.2955e+04 
(1.7723e+03) 

Hierarchical D-
LPSO 

1.0000e-30 
(9.3837e-20) 

1.3939e-22 
(7.8076e-03) 

1.0226e+03 
(2.3400e+01) 

8.5560e+01 
(2.5674e+01) 

3.3301e+03 
(9.8939e+00) 



Table 2: Mean and std.(in parentheses)  of error values for Functions 6-10 

 

Table 3: Mean and std.(in parentheses)  of error values for Functions 11-15 

 
Table 4: Mean and std.(in parentheses) of error values for Functions 16-20 

 

Algorithms 
 

f6 f7 f8 f9 f10 
Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) 

DE/rand/1/bin 
 

3.7711e+00 
(2.7176e+00) 

9.6555e-01 
(9.1416e-02) 

2.0908e+01 
(6.2577e-02) 

5.6843e-14 
(1.0000e-15) 

6.1665e+01 
(4.5634e+01) 

jDE 1.1196e+01 
(1.3987e+00) 

9.8597e-03 
(3.4824e-03) 

2.0955e+01 
(2.5067e-02) 

1.2737e-15 
(1.0000e-15) 

5.2547e+01 
(4.4660e+00) 

UPSO 1.4676e+01 
(6.9411e+01) 

7.4781e-03 
(5.1123e-01) 

2.1002e+01 
(5.1451e-02) 

8.0541e+01 
(1.1453e+01) 

1.1709e+02 
(2.2452e+01) 

CLPSO 2.7570e+01 
(3.0942e+01) 

1.4496e-01 
(1.6216e-01) 

2.1431e+01 
(3.1455e-01) 

1.4223e+01 
(1.9204e+01) 

1.7357e+02 
(5.7628e+01) 

DMS-PSO 5.0691e+01 
(4.2186e+01) 

0.0148e+00 
(8.1534e-01) 

2.1009e+01 
(4.7572e-01) 

2.1889e+01 
(1.6371e+01) 

1.6018e+02 
(2.6161e+01) 

wFIPS 2.7808e+01 
(7.4091e+00) 

0.0224e+00 
(5.4664e-01) 

2.0893e+01 
(7.8543e-01) 

8.3434e+01 
(1.9281e+01) 

1.9873e+02 
(5.4815e+01) 

CPSO 1.2233e+02 
(2.5279e+01) 

4.6963e-01 
(1.9951e+00) 

2.0431e+01 
(9.1522e-01) 

3.9923e-09 
(1.8421e+01) 

4.7458e+02 
(3.0921e+01) 

Hierarchical D-
LPSO 

5.7921e-01 
(2.0167e+00) 

3.1086e-15 
(9.7520e-04) 

2.0000e+01 
(5.1185e-04) 

6.9093e+00 
(2.9427e+00) 

3.2758e+01 
(2.9123e+00) 

 

Algorithms f11 f12 f13 f14 f15 
Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) 

DE/rand/1/bin 
 

3.2611e+01 
(1.0990e+01) 

8.4356e+03 
(6.2276e+03) 

4.5166e+00 
(2.2655e+00) 

1.3378e+01 
(3.4756e-01) 

4.8470e+02 
(2.1460e+01) 

jDE 3.1370e+01 
(2.3952e+00) 

3.8376e+04 
(6.5374e+03) 

1.6568e+00 
(9.0313e-01) 

1.3545e+01 
(9.9402e-02) 

2.9642e+02 
(1.8711e+01) 

UPSO 2.9326e+01 
(1.3453e+00) 

2.6078e+04 
(1.9759e+03) 

8.3413e+00 
(5.9199e+00) 

1.3823e+02 
(1.2345e+00) 

4.0485e+02 
(3.9841e+01) 

CLPSO 2.7570e+01 
(8.7291e+00) 

1.4496e+03 
(1.2144e+02) 

1.8319e+00 
(3.5519e+00) 

1.4223e+01 
(1.8566e-01) 

2.7357e+02 
(1.8805e+01) 

DMS-PSO 3.763e+01 
(3.9221e+00) 

1.8494e+05 
(2.3081e+03) 

3.9243e+00 
(1.0025e+00) 

1.3498e+01 
(2.3052e+00) 

2.4561e+02 
(2.1109e+01) 

wFIPS 3.9810e+01 
(7.2393e+00) 

9.9352e+05 
(8.7152e+02) 

1.4137e+01 
(1.0723e+01) 

1.4137e+01 
(5.6714e+00) 

3.2362e+02 
(7.3117e+01) 

CPSO 4.0380e+01 
(5.9065e+00) 

3.1445e+03 
(8.9612e+02) 

1.6102e+00 
(1.0042e+00) 

1.3852e+01 
(1.9023e-01) 

7.3132e+02 
(2.7126e+01) 

Hierarchical D-
LPSO 

2.4588e+01 
(7.7643e-01) 

2.2635e+02 
(1.0456e+02) 

1.4646e+00 
(4.8823e-01) 

1.1955e+01 
(1.9311e-01) 

2.1324e+02 
(1.2044e+01) 

 
 

Algorithms f16 f17 f18 f19 f20 

Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) 
DE/rand/1/bin 

 
2.8231e+02 

(1.1811e+01) 
3.0931e+02 

(1.5800e+01) 
9.1311e+02 
(8.4333e-01) 

9.1394e+02 
(1.2112e+00) 

9.1345e+02 
(1.1643e+00) 

jDE 1.2854e+02 
(4.0730e+01) 

1.6189e+02 
(4.7251e+01) 

8.6111e+02 
(1.8705e+00) 

8.4801e+02 
(3.1790e+00) 

8.5466e+02 
(9.5496e-01) 

UPSO 1.9239e+02 
(1.3453e+01) 

2.3493e+02 
(1.5553e+01) 

8.5899e+02 
(8.5349e+00) 

8.3672e+02 
(9.9335e+00) 

8.3458e+02 
(5.3453e+00) 

CLPSO 1.6647e+02 
(1.1472e+02) 

1.6647e+02 
(1.8328e+01) 

9.1426e+02 
(4.3234e+00) 

9.1190e+02 
(2.3876e+00) 

9.1460e+02 
(2.8968e+00) 

DMS-PSO 1.5063e+02 
(4.1217e+01) 

1.2051e+02 
(1.7493e+01) 

8.4715e+02 
(7.1184e+00) 

8.4156e+02 
(1.2033e+01) 

8.3903e+02 
(6.0242e+00) 

wFIPS 2.5374e+02 
(2.6231e+01) 

2.4396e+02 
(3.7383e+01) 

8.5259e+02 
(1.9271e+01) 

8.5058e+02 
(2.8134e+01) 

8.4261e+02 
(1.5721e+01) 

CPSO 2.7883e+02 
(7.0912e+01) 

4.4672e+02 
(3.8973e+01) 

9.1759e+02 
(1.3845e+01) 

9.5649e+02 
(3.3420e+00) 

9.6774e+02 
(1.5644e+00) 

Hierarchical 
D-LPSO 

8.9347e+01 
(1.4668e+00) 

8.4512e+01 
(9.8907e+00) 

8.2927e+02 
(8.7532e+00) 

8.3044e+02 
(1.2234e+00) 

8.3074e+02 
(4.6854e-01) 



Table 5: Mean and std.(in parentheses) of error values for Function s21-25 

 
 

Table 6: Comparisons Between Hierarchical d-lpso And Other Algorithms on the basis of WilCoxon’s Ranksum Tests 

 
 
 
 

Algorithms f21 f22 f23 f24 f25 

Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) 
DE/rand/1/bin 

 
5.8188e+02 

(2.6267e+01) 
9.6457e+02 

(1.1433e+01) 
6.2123e+02 

(3.0612e+01) 
3.1411e+002 
(3.2262e+01) 

7.8612e+02 
(2.1746e+01) 

jDE 8.6002e+02 
(1.1361e+00) 

5.0340e+02 
(2.9115e+00) 

6.1835e+02 
(4.5481e+00) 

2.1081e+02 
(2.8842e+00) 

2.1153e+02 
(1.3637e+00) 

UPSO 8.7297e+02 
(5.2457e+01) 

7.5716e+02 
(1.6531e+01) 

8.8250e+02 
(6.7905e+01) 

2.2900e+02 
(3.5557e+01) 

2.2523e+02 
(7.8321e+00) 

CLPSO 5.1123e+02 
(9.5745e+01) 

9.5770e+02 
(7.9452e+00) 

5.3616e+02 
(7.7860e+00) 

2.1000e+02 
(3.8643e-04) 

2.1100e+02 
(9.1113e+01) 

DMS-PSO 8.6685e+02 
(3.4713e+01) 

5.2356e+02 
(1.2063e+01) 

8.7736e+002 
(2.8510e+01) 

2.1804e+02 
(1.0258e+01) 

2.2455e+02 
(1.9082e+00) 

wFIPS 8.6328e+02 
(7.1084e+01) 

5.2168e+02 
(2.3153e+01) 

8.6622e+02 
(2.1347e+01) 

2.1798e+02 
(9.7082e+00) 

2.1924e+02 
(1.0445e+01) 

CPSO 8.2179e+02 
(7.9673e+00) 

1.2179e+03 
(9.7679e+01) 

5.4617e+02 
(5.1238e+01) 

9.6411e+02 
(5.9474e+00) 

9.5683e+02 
(5.8653e+01) 

Hierarchical D-
LPSO 

5.0000e+02 
(1.0000e+00) 

5.0000e+02 
(1.2189e+00) 

5.3416e+02 
(1.2212e+00) 

2.0000e+02 
(1.9874e-06) 

2.1001e+02 
(1.5874e+00) 

Algorithms 
 

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 

DE/rand/1/bin -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
jDE -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

UPSO -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
CLPSO -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

DMS-PSO -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
wFIPS -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
CPSO -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

1(better) 0(equal) -1(worse) 



The above five comparison tables (Table 1 to Table 5) indicate 
that out of the 25 in 22 cases Hierarchical D-LPSO has 
outperformed the competitor algorithms considering mean 
error. In case of rotated and hybrid composition functions the 
performance of Hierarchical D-LPSO is quite well. It performs 
well also in case of functions involving noise in fitness. 
Hierarchical D-LPSO has been outperformed only in three 
functions. It can be also seen from the tables that it provides 
statistically superior results than the other PSO-variants in 
almost all the functions. 

 

VIII. CONCLUSIONS 
After its development more than a decade ago, PSO has 
eventually become a very powerful method of real-parametric 
function optimization. The new variant of PSO proposed here 
and referred to as Hierarchical D-LPSO, has been studied for a 
set of test functions. The performance of this new algorithm 
on the benchmark functions of CEC-05 is compared to other 
existing algorithms like CLPSO, CPSO, jDE, wFIPS, etc. 
Hierarchical D-LPSO performs very well on all the functions 
and it has outperformed the competitor algorithms over 22 out 
of 25 cases in a statistically significant fashion. 

Nowadays an extensive research work is going on in 
designing various algorithms to optimize large-scale high-
dimensional problems (D = 1000, D = 500). It needs focused 
research to improve the performance of Hierarchical D-LPSO 
in case of high dimensional problems. Our future work will be 
on the improvement of Hierarchical D-LPSO. 
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