
Mixed Mutation Strategy Embedded Differential Evolution

Millie Pant,

Musrrat Ali and Ajith Abraham

Abstract- Differential evolution (DE) is a powerful yet

simple evolutionary algorithm for optimizing real valued

optimization problems. Traditional investigations with

differential evolution have used a single mutation

operator. Using a variety of mutation operators that can

be integrated during evolution could hold the potential to

generate a better solution with less computational effort.

In view of this, in this paper a mixed mutation strategy

which uses the concept of evolutionary game theory is

proposed to integrate basic differential evolution

mutation and quadratic interpolation to generate a new

solution. Throughout this paper we refer this new

algorithm as, differential evolution with mixed mutation

strategy (MSDE). The performance of proposed

algorithm is investigated and compared with basic

differential evolution. The experiments conducted shows

that proposed algorithm outperform the basic DE

algorithm in all the benchmark problems.

Keywords: differential evolution, mutation operator,

mixed strategy.

1. Introduction

 Differential evolution, proposed by Storn and Price in

1995 [2] is a relatively new optimization technique

compared to evolutionary algorithms (EAs) such as

Genetic Algorithms, Evolutionary Strategy, and

Evolutionary Programming. Within a short span of

around thirteen years, DE has emerged as one of the

most popular techniques for solving optimization

problems. However, it has been observed that the

convergence rate of DE do not meet the expectations

in cases of highly multimodal problems. Several

variants of DE have been proposed to improve its

performance. Some of the recent versions include

greedy random strategy [5], preferential mutation

operator [6], self adaptive DE [7], Trigonometric DE

[12], opposition based DE [11], neighborhood search

DE [14], Parent Centric DE [13] etc. several recent

versions of DE can be found in [15].

In all the above mentioned versions of DE, a single

mutation operation is used. It is quite natural to think

that a DE having more than one mutation operation

may work better than the one having a single mutation

operation. In this paper we propose a DE inspired by

the basic concepts of game theory.

In classical game theory, we have a set of players and

a set of strategies. Each player tries to improve its

performance by selecting a strategy from the given set

and the value of the game changes accordingly.

Based on this analogy, we refer to the particles of the

DE as players and the mutation operation as the

strategy. The basic DE having a single mutation

operation (single strategy) is called a pure strategy DE

(PSDE) and the DE having more than one mutation

operation (multiple strategies) is called mixed strategy

DE (MSDE.

In this research, we propose an MSDE having a set of

two strategies or a set of two mutation operations for

solving unconstrained global optimization problems.

The concept of mixed strategies is not new to the field

of EA’s [8, 9], however, to the best of our knowledge

it has not been used in DE.

The remainder of the paper is structured as follows.

Section 2 describes the basics Differential Evolution.

Section 3 presents the proposed MSDE. Experimental

setting is given in Section 4. Benchmark problems are

listed in Section 5. Section 6 provides comparisons of

results. Finally the paper is concluded in Section 7.

2. Differential Evolution (DE)

Throughout the present study we shall follow

DE/rand/1/bin version of DE and shall refer to it as

basic version. This particular scheme is briefly

described as follows:

DE starts with a population of NP candidate solutions:

Xi,G, i = 1, . . . ,NP, where the index i denotes the

population and G denotes the generation to which the

population belongs. The three main operators of DE

are mutation, crossover and selection.

 Mutation: The mutation operation of DE applies the

vector differentials between the existing population

members for determining both the degree and

direction of perturbation applied to the individual

subject of the mutation operation. The mutation

process at each generation begins by randomly

selecting three individuals {r1, r2, r3} in the population

set of (say) NP elements. The i
th

perturbed individual,

Vi,G+1, is generated based on the three chosen

individuals as follows:

 Vi,G+1 = Xr3,G + F * (Xr1,G − Xr2,G) (1)

Where, i = 1. . . NP, r1, r2, r3 ∈ {1. . . NP} are

randomly selected such that r1 ≠ r2 ≠ r3 ≠ i,

F is the control parameter such that F ∈ [0, 1+].

 Crossover: once the mutant vector is generated, the

perturbed individual, Vi,G+1 = (v1,i,G+1, . . . , vn,i,G+1),

and the current population member, Xi,G = (x1,i,G, . . . ,

xn,i,G), are then subject to the crossover operation, that

finally generates the population of candidates, or

“trial” vectors,Ui,G+1 = (u1,i,G+1, . . . , un,i,G+1), as

follows:

, . 1

, . 1

, .

j i G j r

j i G

j i G

v if rand C j k
u

x otherwise

+

+

≤ ∨ =
=

 (2)

Where, j = 1. . . n, k ∈ {1, . . . , n} is a random

parameter’s index, chosen once for each i.

The crossover rate, Cr ∈ [0, 1], is set by the user.

 Selection: The selection scheme of DE also differs

from that of other EAs. The population for the next

generation is selected from the individual in current

population and its corresponding trial vector according

to the following rule:

. 1 . 1 .

. 1

.

() ()i G i G i G

i G

i G

U if f U f X
X

X otherwise

+ +

+

≤
=

 (3)

Thus, each individual of the temporary (trial)

population is compared with its counterpart in the

current population. The one with the lower objective

function value will survive from the tournament

selection to the population of the next generation. As a

result, all the individuals of the next generation are as

good as or better than their counterparts in the current

generation. In DE trial vector is not compared against

all the individuals in the current generation, but only

against one individual, its counterpart, in the current

generation.

3. Proposed Algorithm

In this section we describe the proposed modified

version, MSDE, which uses the concept of

evolutionary game theory [10]. The individuals are

regarded as players in an artificial evolutionary game

applying different mutation operators to generate

offspring. This is in contrast with the basic DE, where

all the individuals are subject to a single mutation

operator. In MSDE, for every individual of the

population may select any of the two strategies

provided to it in order to produce a perturbed (mutant)

vector Vi,G+1.

A single mutation operator is called a pure strategy in

the terms of game theory. A strategy profile, vector

is a collection pure strategies such

that ()1,...,p p pα=
r

, where pi is the pure strategy

used by individual i. The strategies taken in the

present study are p1 and p2, where p1 denotes the usual

mutation operation given in equation (1) and p2

denotes the quadratic interpolation. Mathematical

definitions of the strategies are given in Table 4.

The second strategy p2 denotes quadratic interpolation,

which determines the point of minima of the quadratic

curve passing through three selected points. The

symbols have the usual meaning as described in the

previous section. There is no particular rationale for

choosing quadratic interpolation as the second strategy

except that it is a well known gradient free, direct

search optimization method and has given good

results in several cases [16], [17].

At each generation, each individual chooses a

mutation operator from its strategy set based on a

probability distribution. This distribution over the set

of pure strategies available to an individual is called

the mixed strategy of individual i. and is represented

by a vector ()1
(),..., ()

i i i
p pβλ λ λ=

r

, where β(=2 in

our case) is the number of strategies, and ()i aλ is

the probability of individual i applying pure strategy a

in mutation. To each individual a payoff is assigned

according to its performance using particular mutation

strategy. An individual can adjust its mixed strategy

based on the payoffs of strategies. Usually, the

strategy with a better payoff will be preferred with a

higher probability in the next generation.

The procedure of this algorithm is outlined as follows:

Step1: Determine the initial set S using random

number generator and initially assign mixed strategy

as

()1 1(), () (0.5,0.5)i i ip pλ λ λ= =
r

.

Step 2: Calculate the objective function value f(Xi)

 for all Xi.

Step3: Set i=0.

Step4: i=i+1;

Step5: Target vector Xi (parent vector) choose

strategy (mutation operator) according to

probability distribution iλ . If probability of

pure strategy p1 is greater than the

probability of strategy p2 then go to step 6

else go to step 7.

Step6: Select three distinct points from population

and generate perturbed individual Vi using

equation (1) and go to step 8.

Step7: Select one best point and other two distinct

points from population and generate

perturbed individual Vi by quadratic

interpolation.

Step8: Recombine the each target vector Xi with

perturbed individual generated in step 6 or

7 to generate a trial vector Ui using

equation (2).

Step9: Check whether each variable of the trial

vector is within range. If not keep it within

range using ui,j =2* xmin,j - ui,j ,if ui,j < xmin,j

and ui,j =2* xmax,j - ui,j , if ui,j> xmax,j,

otherwise go to step 10.

Step10: Calculate the objective function value for

 vector Ui.

Step11: Choose better of the two (function value at

target and trial point) using equation (3) for

next generation.

Step12: If the target vector Xi uses strategy pα,

where α=1, 2 and new point survive in next

generation (G+1) then

() () ()()1 1G G G

i i i
p p pα α αλ λ λ γ+ = + −

 () () ()1G G G

i i i
p p pβ β βλ λ λ γ β α+ = − ≠

 Otherwise

 () () ()1G G G

i i ip p pα α αλ λ λ γ+ = −

() () ()1G G G

i i ip p pβ β βλ λ λ γ β α+ = + ≠

, where γ we have taken 1/3 [8].

Step13: If i<population size then go to step4 else go

to step14.

Step14: Check whether convergence criterion is met.

 If yes, stop; otherwise go to step 3.

4. Experimental Setup

In order to make a fair comparison of MSDE and

basic DE, we have used C++ rand () function to

generate initial population for both the algorithms.

The number of individuals in the population is taken a

fixed quantity, 100. Values of F scale outside the

range of 0.4 to 1.2 are rarely effective, so F=0.5 is

usually a good initial choice. In general Cr should be

as large as possible to speedup the convergence so in

this study we have taken Cr =0.33. All the algorithms

are executed on a PIV PC, using DEV C++, thirty

times for each problem. In every case, a run was

terminated when the function values of all points in

population S were identical to an accuracy of five

decimal places, i.e.,
5

max min 10f f ε −− ≤ = or

when the maximum number of function evaluations

(NFE =10
6
) was reached.

5. Benchmark problems

The performance of the proposed algorithm is tested

on a set of five benchmark problems taken from

literature [11]. All the functions are multimodal in

nature. Except for functions f2 and f5, which are of

dimensions 4 and 2 respectively, the remaining test

problems are scalable and are tested for dimensions

10, 20 and 50. Mathematical models of the problems

are given in the Appendix.

6. Numerical results and comparisons

6.1 Comparison between DE and MSDE

This section compares MSDE with the basic DE

algorithm. Table 1 gives average fitness of function

values, standard deviation, t- values and average error

are listed. Average error is defined as the difference

between the true global optimum value and the value

obtained by the algorithm. Table 2 provides number of

function evaluations (NFE) and improvement in term

of number of functions evaluation. In Table 3, average

time of execution of algorithms is given. As it is clear

from the Table 1 that in term of fitness function value

and standard deviation both the algorithms give more

or less similar results although in some cases MSDE

performs slightly better than classical DE. On the

basis of t-values, last column of the Table 1, we

conclude that there is a significant difference between

both the algorithms at 5% level of significance. The

superior performance of the proposed MSDE is more

evident from Table 2, which gives the average number

of function evaluations. From Table 2 we can see that

MSDE takes less number of function evaluations to

achieve the required fitness in comparison to the basic

DE in all cases except to noisy function (f3), in which

both the algorithms approach to the maximum number

of function evaluation (NFE=10
6
). In term of

improvement in number of function evaluation MSDE

reduces the number of function evaluation up to 77%

for function f4 of dimension 10. If we talk about

overall reduction in number of function evaluation, it

is more than of 50%. But for function f3, which is a

noisy function, in term of function evaluation there is

no improvement, both algorithms takes maximum

number of function evaluation. From Table 3, it can

be seen that MSDE takes less run time in comparison

to basic DE but in case of function f3, where number of

function evaluation is same, MSDE takes more time

than to basic DE. This behavior of MSDE is quite

expected because it spends time in updating the

probabilities and also because the evaluation of

second strategy p2 takes more time in comparison to

the usual mutation operator. Performance curves

(convergence graphs) of few selected functions are

given in Figures 1(a) – 1(d). From these illustrations,

it is evident that the convergence of proposed

algorithm is faster than basic DE. The performance of

MSDE is shown further in Figures 2 and 3 with

respect to function f1 increasing its dimension up to

200 variables. Figure 2 depicts that with the increase

of time the fitness function value converges more

rapidly in case of MSDE in comparison to basic DE.

In Figure 3 we illustrate the effect on fitness function

value with the increase in dimension. From the

illustration it can be seen that the fitness remains

almost consistent for MSDE when the dimension is

increased, where as for basic DE, the fitness decreases

with the increase in dimension.

6.2 Comparisons between MSDE and other

modified versions of differential evolution.

The performance of the proposed MSDE is further

compared with two recent versions of DE; opposition

based population initialization DE, ODE [11] and

trigonometric mutation differential evolution, TDE

[12]. Both the algorithms have reported superior

performance over the basic DE. The results obtained

are summarized in Tables 5 and 6. In Table 5, the

results of MSDE and ODE are compared for average

number of function evaluations. For ODE, we have

taken the results as mentioned in [11]. It is clear from

the Table 5 that MSDE takes less number of function

evaluations except for the function f2.to achieve the

accuracy given in last column. Improvement column

shows that there is an improvement up to 87% if we

talk for overall improvement it is 45%. In Table 6, we

show the comparison of MSDE with TDE. Because

the data for comparison purpose is not given in [12],

so we have taken the same parameter setting as given

in [12] and run TDE thirty times for the function f1 for

different dimension. Mean fitness value as well as

number of function evaluations obtained by MSDE is

better than TDE in all cases.

6.3 Sensitivity analysis of parameter γ

The parameter γ plays a crucial role in the

performance of the proposed MSDE algorithm. It acts

like a weighting parameter defined by the user at the

beginning of the program. In the present study we

recorded the performance of γ for various values

between 0 and 1. For the sake of brevity, we are

giving the numerical results for five different values of

γ viz. 0.001, 0.1, 0.25, 0.33 and 0.95 in terms of

fitness function, standard deviation and number of

functions evaluations (NFE). For scalable problems

we compared the results for dimension 20. The results

for different values of γ are given in Table 7.

Empirical analysis of results shows that smaller values

of γ results in slower convergence thereby increasing

the number of functions evaluations. Values between

0.25 to 0.95 are most suited for the optimization

problems taken in the present study. We have

considered the value of γ as 0.33 for all the numerical

test functions taken in the present study.

7. Discussion and conclusions

In this paper we proposed a modified version of basic

DE called MSDE by incorporating a mixed mutation

strategy. The simulation of results showed that the

proposed algorithm is quite competent for solving

problems of different dimensions in less time and less

number of function evaluations without compromising

with the quality of solution. We have also compared

our results with other two algorithms ODE and TDE

which showed that mixed mutation strategy is

beneficial in comparison to single strategy. The set of

problems considered though small and limited show

the promising nature of MSDE. One apparent

drawback of proposed MSDE is that for noisy

functions like f3 it takes more time than the basic DE,

although the number of function evaluation is same.

However, we would like to maintain that the work is

still in the preliminary stages and making any concrete

conclusion about it do not sound justified. In this

paper we have taken only two strategies we intend to

work with more strategies in future and shall apply it

for more complex problems and compare its

performance with other versions of DE and with other

optimization algorithms. The concept of mixed

strategy can be applied to population generation and

crossover rates also.

Table 1: Mean fitness, standard deviation of functions in 30 runs and t-valve.

Fun. Dim. Mean fitness (Std) Average error t-value

DE MSDE DE MSDE

f1

10 4.89922e-006

(9.3006e-007)

3.65155e-007

(4.20151e-007)

4.89922e-006 3.65155e-007

23.92

20 1.02463e-005

(2.00048e-006)

3.01699e-006

(1.35368e-006)

1.02463e-005 3.01699e-006

16.12

50 2.31386e-005

(2.21348e-006)

6.72181e-006

(1.04039e-006)

2.31386e-005 6.72181e-006

36.16

f2

4 4.5118e-008

(2.32542e-008)

7.83712e-010

(1.15383e-009)

4.5118e-008 7.83712e-010

10.25

f3

10 0.000120068

(4.75295e-005)

1.77752e-005

(1.22154e-005)

0.000120068 1.77752e-005
11.23

20 0.000803444

(0.000154331)

0.000121088

(4.24884e-005)

0.000803444 0.000121088
22.96

50 0.00692452

(0.00125875)

0.00043024

(0.000126203)

0.0003418 0.00002384
27.65

f4

10 9.48435e-007

(3.33338e-007)

5.85615e-008

(4.37959e-008)

9.48435e-007 5.85615e-008
14.25

20 3.68394e-006

(9.27743e-007)

5.40822e-007

(2.69767e-007)

3.68394e-006 5.40822e-007
17.52

50 9.66678e-006

(1.00454e-006)

1.69896e-006

(4.23073e-007)

9.66678e-006 1.69896e-006

39.36

f5

2 -1.03163

(7.93442e-009)

-1.03163

(1.28681e-014)

1.55038e-006 0.000268453

 0.00

 Table 2: Number of functions evaluation, Table 3: Average time (sec) in 30 runs.

 % improvement of functions in 30 runs.

Fun. Dim.
No of function Eva. %

Improve

ment DE MSDE

f1

10 31040 14350 53.76

20 57830 20390 64.74

50 154490 39260 74.58

f2 4 76160 58780 22.82

f3

10 1e+006 1e+006 0.00

20 1e+006 1e+006 0.00

50 1e+006 1e+006 0.00

f4

10 60880 13980 77.03

20 52690 16990 67.75

50 121930 30080 75.33

f5 2 7190 2400 66.62

 Table 4: Strategies used in the proposed algorithm.

Fun

.

Dim. Average Time

(Sec)

DE MSDE

f1

10 1.3 1.1

20 3.1 2.9

50 20.1 17.8

f2 4 1.9 2.0

f3

10 25 86.4

20 49.7 176.1

50 134.2 287.1

f4

10 1.7 1.5

20 2.9 3.8

50 16.9 14.9

f5 2 0.1 0.1

Strategies

used

Definition

P1 Xr3,G + F * (Xr1,G − Xr2,G)

P2

Fig 1(a): Performance curves of DE vs. MSDE for

function f1 , dimension 20.

Fig 1(c): Performance curves of DE vs. MSDE for

function f4, dimension 20.

Fig 2: Fitness Vs time for function f1 for 200 Dim.

Fig 1(b): Performance curves of DE vs. MSDE for

function f1, dimension 50.

Fig 1(d): Performance curves of DE vs. MSDE for

function f5

Fig 3 Fitness Vs dimension for function f1.

Table 5: Average number of functions evaluation in 30 runs and % improvement.

Fun. Dim.
No of function Eva. %

Improvement

To achieve

Accuracy[11] ODE[11] MSDE

f1 30 51619 12500 75.78411 10
-1

f2 4 7959 22890 0.00 10
-1

f3 30 24248 19040 21.47806 10
-1

f4 30 53311 6660 87.50727 10
-1

f5 2 5155 2740 46.84772 10
-7

 Table 6: Mean fitness, standard deviation and average of functions evaluations in 30 runs for function f1.

 Table 7: Sensitivity of parameter γ

Fun. γ= .001 γ= .1 γ= .25 γ= .33 γ= .95

f1

Dim

20

Fitness 3.29362e-006 2.5314e-006 3.14209e-006 3.01699e-006 2.94767e-006

Std. 6.17117e-007 4.80274e-007 8.58226e-007 1.35368e-006 9.79393e-007

NFE 21820 21900 21420 20390 20490

f2

Dim

4

Fitness 1.58156e-009 5.98808e-010 1.17071e-009 7.83712e-010 9.45272e-010

Std. 2.08799e-009 1.44467e-009 1.13281e-009 1.15383e-009 1.00746e-009

NFE 63130 55960 53030 58780 49760

f3

Dim

20

Fitness 0.000126695 0.000152264 0.0001191 0.000121088 1.16693e-005

Std. 0.000114664 0.000130133 0.00011491 4.24884e-005 0.000383002

NFE 1000000 1000000 1000000 1000000 1000000

f4

Dim

20

Fitness 4.30757e-007 4.21027e-007 4.65772e-007 5.40822e-007 6.02965e-007

Std. 1.9568e-007 1.42966e-007 1.55814e-007 2.69767e-007 2.87743e-007

NFE 17920 17280 16970 16990 16360

f5

Dim

2

Fitness -1.03163 -1.03163 -1.03163 -1.03163 -1.03163

Std. 2.68149e-014 9.85413e-015 1.87432e-014 1.28681e-014 1.6407e-014

NFE 2960 2510 2750 2400 2670

References:

[1] K. Price. “An introduction to differential evolution”,

New Ideas in Optimization, 1999, pp 79-108.

[2] R. Storn and K. Price, “Differential evolution – a simple

and efficient adaptive scheme for global optimization over

continuous spaces”, Technical Report TR-95-012, Berkeley,

CA, 1995.

[3] J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson,

“A species conserving genetic algorithm for multimodal

function optimization”, Evol. Comput, 10(3), 2002, pp 207-

234.

[4] R. Thomsen, “Multimodal optimization using

crowding-based differential evolution”, In Proceedings of

the 2004 Congress on Evolutionary Computation, volume

2, 2004, pp 1382-1389,.

[5] Paul K. Bergey, Cliff Ragsdale, “Modified differential

evolution: a greedy random strategy for genetic

recombination”, Omega The International Journal of

Management Science 33, 2005, pp 255-265.

[6] M.M.Ali, “Differential evolution with preferential

crossover”, European Journal of Operation Research 181,

2007 pp.1137-1147.

Di

m.

Mean fitness Std No of fun. Evaluation

TDE MSDE TDE MSDE TDE MSDE

10 3.49344e-006 3.65155e-007 8.35737e-007 4.20151e-007 39820 14350

30 1.26726e-005 4.48145e-006 2.20241e-006 1.13972e-006 84210 26790

20 8.19955e-006 3.01699e-006 1.24685e-006 1.35368e-006 63140 20390

50 2.40794e-005 6.72181e-006 3.08538e-006 1.04039e-006 127400 39260

[7]. A.Salman, A.P.Engelbrecht, M.G.H.Omran, “Empirical

analysis of self adaptive differential evolution”, European

Journal of operational research 183, 2007 pp 785-804.

 [8]. H.Dong, J.He, H.Huang, W.Hou, “Evolutionary

programming using a mixed mutation strategy”,

Information Science 177, 2007 pp 312-327.

[9]. J.He, X.Yao, “A game theoretic approach for designing

mixed mutation strategy”, LNCS 3612, 2005 pp 279-288,

2005.

[10]. J.W. Weibull, “Evolutionary Game Theory”, MIT

press, Cambridge, MA, 1995.

[11].Shahryar Rahnamayan, H.R. Tizhoosh,

M.M.A.Salama, “A novel population initialization method

for accelerating evolutionary algorithms”, computer and

applied mathematics with application (53), 2007 pp 1605-

1614.

 [12] Hui-Yuan Fan, Jouni Lampinen, “A Trigonometric

Mutation Operation to Differential Evolution,” Journal of

Global Optimization 2003, 27:105-129.

[13] Millie Pant, Musrrat Ali and V.P. Singh, “Differential

Evolution with Parent Centric Crossover”, Second UKSIM

European Symposium on Computer Modeling and

Simulation 2008, 141 – 146.

[14] Z. Yang, J. He, and X. Yao, Making a Difference to

Differential Evolution, in Advances in Metaheuristics for

Hard Optimization, Z. Michalewicz and P. Siarry (eds.), pp

415-432, Springer, 2007.

[15] U. K. Chakraborty (Ed.) Advances in Differential

Evolution, Springer-Verlag, Heidelberg, 2008.

[16] M. Pant, R. Thangaraj and A. Abraham, “A New PSO

Algorithm Incorporating Reproduction Operator for

Solving Global Optimization Problems”, 7th International

Conference on Hybrid Intelligent Systems (HIS’07),

Kaiserslautern, Germany, IEEE Computer Society press,

USA, ISBN 07695-2662-4, pp. 144-149, 2007.

[17] Mohan C and Shanker K, “A Controlled Random

Search Technique For Global Optimization using Quadratic

Approximation”, Asia-Pacific Journal of Operational

Research, Vol. 11, pp. 93-101, 1994.

Appendix

1. Ackley’s function:

. ()
n n

2

1 i i

i 1 i 1

() 20*exp .2 1/n x exp 1/n cos 2 x 20f X eπ
= =

= − − − + +

∑ ∑ , With 32 32
i

x− ≤ ≤ , min ()1 0,...,0 0f =

 It is a multimodal function. the presence of an exponential term makes its surface covered with several

 local minima.

2. Colville function:

() 2 2 2 2 2 2 2 2

2 2 1 1 4 3 3 2 4 2 4100() (1) 90() (1) 10.1((1) (1)) 19.8(1)(1)f x x x x x x x x x x x= − + − + − + − + − + − + − −

With 10 10
i

x− ≤ ≤ , min ()2
1,1,1,1 0f =

It’s a Unimodal function. Its global optimum functions resides inside a long, narrow, and parabolic-shaped

flat valley.

3. Quartic function:

() [)4

3

1

0,1
n

i

i

f x ix random
=

= +∑ With 1.28 1.28
i

x− ≤ ≤ , min ()3 0,...,0 0f =

It is a noisy function,

constructed by adding a uniformly distributed random noise to a quartic function. Due to the presence of

noise the global optimum keeps on shifting from one position to another.

4. Griewenk function:

() 2

4

1 1

1
cos() 1

4000

nn
i

i

i i

x
f x x

i= =

= − +∑ ∏ With 600 600
i

x− ≤ ≤ , min ()4 0,...,0 0f =

It is a continuous multimodal function considered difficult to optimize because of its non-separable nature.

5. Six hump Camel back function:

 () 2 4 6 2 4

5 1 1 1 1 2 2 2

1
4 2.1 4 4

3
f x x x x x x x x= − + + − + With 5 5

i
x− ≤ ≤ , min

() ()5 0.0898, 0.7126 0.0898,0.7126 1.0316285f − − = −

 It is a multimodal function with two global minima and four local minima.

