
 
 

 

  

Abstract— Differential Evolution (DE) is a novel evolutionary 

approach capable of handling non-differentiable, non-linear 

and multi-modal objective functions. DE has been consistently 

ranked as one of the best search algorithm for solving global 

optimization problems in several case studies. Mutation 

operation plays the most significant role in the performance of 

a DE algorithm. This paper proposes a simple modified version 

of classical DE called MDE. MDE makes use of a new mutant 

vector in which the scaling factor F is self adaptive. F is a 

random variable following Laplace distribution. The proposed 

algorithm is examined on a set of ten standard, nonlinear, 

benchmark, global optimization problems having different 

dimensions, taken from literature. The preliminary numerical 

results show that the incorporation of the proposed mutant 

vector helps in improving the performance of DE in terms of 

final convergence rate without compromising with the fitness 

function value.  

I. INTRODUCTION 

VOLUTIONARY Algorithms (EAs) [1] are a broad class of 
stochastic optimization algorithms inspired by biology 
and, in particular, by those biological processes that 

allow populations of organisms to adapt to their surrounding 
environments: genetic inheritance and survival of the fittest. 
EAs have a prominent advantage over other types of 
numerical methods, among which the following two are the 
most important [2]: 

• They can be applied to problems that consist   of 
discontinuous, non-differentiable and non- convex 
objective functions and/or constraints. 
• They can easily escape from local optima   

EAs have been applied to a wide range of functions and 
real life problems [3] – [6]. Some common EAs are Genetic 
Algorithms (GA), Evolutionary Programming (EP), Particle 
Swarm Optimization (PSO), Differential Evolution (DE) etc. 
In the present research paper, we have concentrated our 
work to DE, which is comparatively a newer addition to the 
class of population based search techniques. DE is a 
stochastic, population based search strategy developed by 
Storn and Price [7] in 1995. It is a novel evolutionary 
approach capable of handling non-differentiable, non-linear 
and multimodal objective functions. DE has been designed 
as a stochastic parallel direct search method, which utilizes 
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concepts borrowed from the broad class of EAs. The method 
typically requires few, easily chosen control parameters. 
Experimental results have shown that performance of DE is 
better than many other well known EAs [8], [9]. While DE 
shares similarities with other EAs, it differs significantly in 
the sense that in DE, distance and direction information is 
used to guide the search process [10].  

Despite several attractive features, it has been observed 
that DE sometimes does not perform as good as the 
expectations. Empirical analysis of DE has shown that it 
may stop proceeding towards a global optimum even though 
the population has not converged even to a local optimum 
[12]. The situation when the algorithm does not show any 
improvement though it accepts new individuals in the 
population is known as stagnation. Besides this, DE also 
suffers from the problem of premature convergence. This 
situation arises when there is a loss of diversity in the 
population. It generally arises when the objective function is 
multi objective having several local and global optimums. 
Like other EA, the performance of DE deteriorates with the 
increase in dimensionality of the objective function. Several 
modifications have been made in the structure of DE to 
improve its performance. Some interesting modifications 
include parameter adaption strategy for DE by Zaharie [13], 
Abbas [14] proposed a self adaptive crossover rate for 
multiobjective optimization problems, Omran et al. [15] 
introduced a self adaptive scaling factor parameter F, Brest 
et al. [16] proposed SADE, which encoded control 
parameters F and Cr into the individuals and evolved their 
values by using two new probabilities. Das et al. [17] 
introduced two schemes for the scale factor F in DE. some 
other recent modified versions include Opposition based DE 
(ODE) by Rahnamayan et al. [18], a hybridization of DE 
with Neghborhood search by Yang et al. [19], Fittest 
Individual refinement [FIR] method by Noman and Iba [20]. 
Several recent developments in DE algorithm design and 
application can be found in [21]. 

In continuation to the techniques of improving the 
performance of DE, in the present study we present a 
modified version of DE called MDE. The proposed MDE is 
a semi adaptive type DE in which the scaling factor F takes 
value according to the Laplace Distribution. The scaling 
factor F plays a significant role in the generation of 
perturbed mutant vector. The presence of a good scaling 
factor may help in preserving the diversity by enhancing the 
exploration and  exploiting capabilities of the population. 

The structure of the paper is as follows: in Section 2, we 
briefly explain the Differential Evolution Algorithm, in 
Section 3; we have defined and explained the proposed 
MDE algorithm. Section 4 deals with experimental settings, 
Sections 5 and 6 give the benchmark problems and their 
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numerical results respectively and finally the paper conclude 
with Section 7. 

II. DIFFERENTIAL EVOLUTION  

DE shares a common terminology of selection, crossover 
and mutation operators with GA however it is the 
application of these operators that make DE different from 
GA. Whereas, in GA crossover plays a significant role, it is 
the mutation operator which effects the working of DE [11].  
The working of DE may be described as follows:  

For a D-dimensional search space, each target vector gix , , 

a mutant vector is generated by 
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must be different from each other and also different from the 
running index i. F (>0) is a scaling factor which controls the 
amplification of the differential evolution )( ,, 32 grgr xx − . In 

order to increase the diversity of the perturbed parameter 
vectors, crossover is introduced [8]. The parent vector is 
mixed with the mutated vector to produce a trial 
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where j = 1, 2,……, D; ]1,0[∈jrand ; CR is the crossover 

constant takes values in the range [0, 1] 
and ),.....,2,1( Djrand ∈ is the randomly chosen index. 

Selection is the step to choose the vector between the 
target vector and the trial vector with the aim of creating an 
individual for the next generation.  

III. MODIFIED DE ALGORITHM 

Initially Storn and Price proposed ten versions of DE. In 
the present study, we have embedded the proposed mutant 
vector in the DE/rand/1/bin version [8], which is perhaps the 
most commonly used version. The performance of DE 
depends largely on the selection of control parameters. The 
control parameters generally take the fixed values as decided 
by the user. If these values are taken probabilistically then 
the user may be saved from the trouble of undergoing 
rigorous sensitivity analysis for deciding the appropriate 
value of parameters. Various continuous probability 
distributions are available in literature which may be taken 
for deciding the behavior of control parameters. In the 
present article we propose a ‘semi adaptive’ type of DE in 
which one of the control parameters F is generated 
probabilistically while the sensitivity analysis is done for the 
other parameter CR. Instead of taking a fixed value of F the 
proposed MDE algorithm takes random variable following 
Laplace distribution. The Probability Density Function (pdf) 
of Laplace distribution is similar to that of normal 
distribution however, whereas the normal distribution is 
expressed in terms of squared difference from the mean, 
Laplace density is expressed in terms of absolute difference 
from the mean. As a result Laplace distribution has a fatter 

tail than normal distribution. The presence of a fatter tail in 
turn implies that a random variable having Laplace 
distribution will be able to control differential vectors more 
effectively and will probably help in preventing premature 
convergence by maintaining the diversity. 
 A C++ style computational code for the proposed algorithm 
may be given as: 
//Initialize the population and 

calculate the fitness value for each 

particle 

Do 

For i = 1 to number of particles 

 // Mutation 

||*£ ,,,1, 211 grgrgrgi xxxv −+=
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//where £ is the random variable having Laplace Distribution 
Do Crossover and Selection 

End for. 

Until some stopping criteria is reached. 

IV. EXPERIMENTAL SETTINGS 

In order to make a fair comparison of DE and MDE 
algorithms, we fixed the same seed for random number 
generation so that the initial population is same for both the 
algorithms. The population size is taken as 100 for all the 
test problems.  The crossover rate and scaling factor F, for 
classical DE, are fixed at 0.2 and 0.9 respectively. For MDE 
we did a sensitivity analysis for various crossover rates 
varying it from 0.1 to 0.9 (please also see Table IV) for all 
the test problems and observed that the crossover rate of 0.2 
is most suitable. The scaling factor F for MDE follows 
Laplace distribution given as: 

 ,  

    =  

  is the scale parameter. 
For each algorithm, the maximum number of iterations 

allowed was set to 5000 and the error goal was set as 1*e-04. 
A total of 30 runs for each experimental setting were 
conducted and the average fitness along with the average 
number of function evaluations (NFE), time taken and 
number of generations (GNE) of the best solutions 
throughout the run were recorded. The algorithms were 
programmed using Developer C++ and were executed on a 
Pentium IV PC. 

V. BENCHMARK PROBLEMS 

For the present study we considered a test bed of 10 
benchmark problems given in Table I. Though this test bed 
is rather narrow, we have tried to include problems having 
different characteristics. Except for the last two functions; f9 
and f10, all the problems are solved for dimension 50. In this 
section we describe briefly the properties of these functions.  

• Rastringin’s function’s contour is made up of a large 
number of local minima which increases with the 
increase in the dimensionality of the problem.  



 
 

 

• The second function is a simple sphere function 
which is strictly convex and unimodal and is 
generally considered as a good starting point for 
testing an optimization algorithm.  

• Griewank function is a continuous multimodal 
function considered difficult to optimize because of 
its non-separable nature.  

• The search space of Rosenbrock function is 
dominated by a large gradual slope which is raised 
along one edge to a fine point. Though it looks 
simple, it is notoriously hard for some optimization 
algorithms because of the extremely large search 
space combined with relatively small global 
minima.  

• Noisy function is constructed by adding a uniformly 
distributed random noise to a quartic function. Due 

to the presence of noise the global optimum keeps 
on shifting from one position to another.  

• The surface of Schwefel function consists of a large 
number of peaks and valleys. Also for this function 
the global minimum is near the bounds of the 
domain.  

• In Ackley function, the presence of an exponential 
term makes is surface covered with several local 
minima.  

• The eighth function is again a multimodal function 
having several local and global minima.  

• Himmelblau’s function is also a multimodal function 
with one global minimum and four identical local 
minima.  

• Shubert’s function has 760 local minima out of 
which 18 are global minima.  

 
TABLE I.  NUMERICAL BENCHMARK PROBLEMS 

Function 
Function Definition Range Min.Value 
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TABLE II.  MDE VS. DE (MEAN FITNESS, STANDARD DEVIATION) 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

TABLE III.  MDE VS. DE IN TERMS OF NUMBER OF FUNCTION EVALUATIONS (NFE), GENERATIONS (GNE) AND TIME 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Function MDE DE 

Fitness  Standard 
deviation 

Fitness  Standard 
deviation 

f1 7.09739 2.40624 102.747 6.36517 

f2 6.15276e-05 1.12258e-05 8.2473e-05 1.2193e-05 

f3 6.4616e-05 1.05123e-05 8.40502e-05 1.56117e-05 

f4 1.86068 0.694999 43.9651 1.70131 

f5 0.008664 0.0018241 0.012731 0.002349 

f6 -20862.3 101.117 -20669.3 171.058 

f7 0.000169 2.57312e-06 0.000212 2.46469e-05 

f8 -47.7664 0.493178 -36.0939 0.621769 

f9 -3.6221 0.361939 -3.00776 1.2093 

f10 -186.731 2.50912e-07 -186.731 1.12765e-07 

Function MDE DE 

NFE GNE Time 
(sec) 

NFE GNE Time 
(sec) 

f1 118740 1186 12.76 500100+ 5000+ 55.33 

f2 43160 430 4.8 67696 675 7.1 

f3 61253 611 7.5 97823 977 12.3 

f4 352907 3528 98.36 500100+ 5000+ 152.2 

f5 500100+ 5000+ 51.77 500100+ 5000+ 52.03 

f6 40556 810 1.267 171432 3427 5.33 

f7 70873 707 8.03 114207 1141 13.16 

f8 105657 2112 47.133 500100+ 5000+ 175.4 

f9 4278 84 0.067 4765 94 0.1 

f10 3910 77 0.033 12170 242 0.067 

∑ 801334 9545 231.72 1468293 26556 473.02 



 
 

 

    
Fig 1 (a). Rastringin Function  

 

 
                                                           Fig 1 (b). Sphere Function 
 

    
Fig 1 (c) Griewank Function  



 
 

 

 
                                                        Fig 1 (d) Noisy Function 

Fig 1(a) –1(d); Sensitivity analysis of MDE with respect to the various crossover rates for selected benchmark problems 
 

 
Fig 2 (a).  Rastringin function 

 

 
 

Fig 2 (b). Sphere function 



 
 

 

     
Fig 2 (c) Griewank function 

 

 
 

Fig 2 (d) Rosenbrock function 
 

Fig 2 (a) – 2(d). Performance of DE and MDE for selected benchmark problems 
 

 

VI    NUMERICAL RESULTS AND COMPARISONS 

The MDE algorithm is compared with the classical DE in 
terms of Average fitness function value, number of function 
evaluations (NFE), average number of iterations (GNE) and 
run time. In Table II, we have shown the numerical results of 
benchmark problems in terms of average fitness function 
value and standard deviation.  Table III gives the number of 
function evaluations, number of generations and time taken. 
From Table II, it can be seen that for Rastringin function (f1), 
the difference in the average fitness function values for DE 
and MDE is quite visible. The true global minimum for 
Rastringin function is located at 0.0. None of the algorithms 
were able to reach this value for the dimension 50. However 
MDE gave a much better value in comparison to DE. 
Similarly for Rosenbrock function, the proposed MDE gave 
a value much closer to the true optimum (0.0) in comparison 
to DE. For all other functions both the algorithms gave more 
or less similar values quite near to the true optimum value.  

The better performance of MDE is more visible from 
Table III, where number of function evaluations, number of 
generations and time are reported. From this Table it is clear 

that the proposed MDE converges much faster than the 
classical DE. The total number of function evaluations for 
solving 10 test problems comes out to be 801334 for MDE 
in comparison to 1468293 as obtained by DE. Similarly, for 
the total time taken by MDE is 231.72 whereas the total time 
taken by DE is 473.02. In case of number of generations, 
MDE required 9545 generations and DE took 26556 
generations. Thus, the overall percentage improvement in 
terms of NFE, GNE and Time taken for solving the 10 
benchmark problems is around 50%. 
 
(%age improvement)NFE= 45.424 

(%age improvement)GNE =   64.05709 

(%age improvement)Time =  51.01233 

 
The performance curves of MDE vs. DE for selected 
benchmark problems are shown in Fig 1(a) – Fig 1(d). 
Performance curves of MDE using different crossover rates 
are given in Figures 2 (a) – 2(d). 

 
 



 
 

 

 
 
 

 TABLE IV. SENSITIVITY ANALYSIS OF MDE FOR DIFFERENT CROSSOVER RATES 

CR 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fun 

f1 
2.38 
1.7151 
302 

0.36 

0.6013 

205 

4.05 
1.5208 
218 

3.16 
1.5826 
217 

7.02 
2.734 
213 

7.19 
2.8548 
217 

10.51 
4.0836 
221 

13.52 
6.3352 
232 

15.68 
8.9189 
256 

f2 
0.0260 
0.0945 
165 

0.0007 

0.0023 

154 

0.0528 
0.1102 
151 

0.0864 
0.1727 
152 

0.2107 
0.3980 
149 

0.1897 
0.2682 
146 

0.3227 
0.5283 
150 

0.6466 
0.6269 
176 

1.5256 
1.4390 
169 

f3 
0.0937 
0.3967 
548 

0.0922 

0.1445 

408 

0.1423 
0.3711 
581 

0.3639 
0.3983 
558 

0.3475 
0.3684 
530 

1.052 
1.3840 
520 

2.2736 
2.4206 
514 

2.8714 
2.7900 
525 

6.2459 
5.2566 
545 

f4 
5.0408 
0.2378 
991 

1.523 

0.1256 

818 

4.497 
0.2765 
856 

2.088 
0.4523 
864 

2.426 
0.4635 
873 

9.921 
0.5342 
852 

9.422 
0.4376 
857 

6.456 
0.2248 
889 

6.523 
0.6532 
875 

f5 
0.0072 
0.0044 
1000+ 

0.0060 

0.0030 

1000+ 

0.0076 
0.0071 
1000+ 

0.0068 
0.0056 
1000+ 

0.0113 
0.0102 
1000+ 

0.0311 
0.0551 
1000+ 

0.0293 
0.0398 
1000+ 

0.0465 
0.0575 
1000+ 

0.1268 
0.1294 
1000+ 

f6 
-4106.7 
115.01 
305 

-4138.7 

71.082 

227 

-4079.3 
129.10 
237 

-4007.7 
142.31 
243 

-3968.2 
208.54 
251 

-3956.4 
171.93 
242 

-3885.3 
246.29 
275 

-3681.6 
404.06 
275 

-3356.0 
394.83 
298 

f7 
0.7164 

0.8649 

228 

1.0222 
1.0796 
231 

1.2261 
1.5979 
233 

1.0676 
1.0056 
298 

2.1165 
1.7611 
275 

2.7051 
2.0251 
273 

4.4418 
1.9437 
273 

6.4287 
2.5419 
279 

8.3859 
2.5998 
305 

f8 
-9.1158 
0.4124 
363 

-9.3339 

0.1672 

220 

-9.1517 
0.2982 
235 

-9.0319 
0.4760 
312 

-8.7116 
0.5127 
299 

-8.8325 
0.4515 
272 

-8.4146 
0.6963 
275 

-8.0267 
0.8349 
273 

-6.6724 
1.1851 
263 

f9 
-1.0324 
2.9545 
86 

-1.6135 
2.5664 
107 

-1.0411 
3.0129 
63 

-2.2646 

2.1002 

66 

-1.1164 
2.9736 
79 

-0.3789 
3.0504 
75 

-0.8485 
2.9915 
49 

-0.0613 
3.1689 
54 

0.9223 
3.2310 
50 

f10 
-186.73 

4.1e-05 

80 

-186.73 
0.0058 
68 

-186.73 
0.0039 
67 

-186.72 
0.0295 
63 

-186.72 
0.0399 
62 

-186.66 
0.2884 
62 

-186.66 
0.2164 
66 

-186.63 
0.3883 
62 

-186.29 
1.222 
73 

 
 

 

VII    CONCLUSIONS 

In the present study we proposed the use of scaling factor 
depending on Laplace Distribution for generating a mutant 
vector. The proposed MDE algorithm is tested on 10 
benchmark problems and the results are compared with the 
classical DE. The numerical results show that the use of 
random variable having Laplace distribution as a scaling 
factor F, improves the performance of classical DE 
significantly. Although, we have not done any theoretical 
analysis but from the empirical results it can be seen that 
instead of fixing scaling factor it is better to take it in an 
adaptive manner. Also we would like to add that though we 
have tried to take a diverse set of bench mark problems, it is 
still a narrow test bed and we are continuing it to solve more 
complex problems and compare its performance with other 
existing EA for global optimization. The proposed work is 
still in the preliminary stage and several improvements can 
be added to it; like an adaptive crossover rate. Also, the 

work can be extended for other distributions like Cauchy and 
Levy distributions which have shown promising results in 
Evolutionary Programming.  
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