

Abstract— Differential Evolution (DE) is a novel evolutionary

approach capable of handling non-differentiable, non-linear

and multi-modal objective functions. DE has been consistently

ranked as one of the best search algorithm for solving global

optimization problems in several case studies. Mutation

operation plays the most significant role in the performance of

a DE algorithm. This paper proposes a simple modified version

of classical DE called MDE. MDE makes use of a new mutant

vector in which the scaling factor F is self adaptive. F is a

random variable following Laplace distribution. The proposed

algorithm is examined on a set of ten standard, nonlinear,

benchmark, global optimization problems having different

dimensions, taken from literature. The preliminary numerical

results show that the incorporation of the proposed mutant

vector helps in improving the performance of DE in terms of

final convergence rate without compromising with the fitness

function value.

I. INTRODUCTION

VOLUTIONARY Algorithms (EAs) [1] are a broad class of
stochastic optimization algorithms inspired by biology
and, in particular, by those biological processes that

allow populations of organisms to adapt to their surrounding
environments: genetic inheritance and survival of the fittest.
EAs have a prominent advantage over other types of
numerical methods, among which the following two are the
most important [2]:

• They can be applied to problems that consist of
discontinuous, non-differentiable and non- convex
objective functions and/or constraints.
• They can easily escape from local optima

EAs have been applied to a wide range of functions and
real life problems [3] – [6]. Some common EAs are Genetic
Algorithms (GA), Evolutionary Programming (EP), Particle
Swarm Optimization (PSO), Differential Evolution (DE) etc.
In the present research paper, we have concentrated our
work to DE, which is comparatively a newer addition to the
class of population based search techniques. DE is a
stochastic, population based search strategy developed by
Storn and Price [7] in 1995. It is a novel evolutionary
approach capable of handling non-differentiable, non-linear
and multimodal objective functions. DE has been designed
as a stochastic parallel direct search method, which utilizes

M. Pant is with the Indian Institute of Technology Roorkee, Saharanpur -
247001, India (phone: +91-9759561464; e-mail: millifpt@iitr.ernet.in)

R. Thangaraj is with the Indian Institute of Technology Roorkee,
Saharanpur – 247001, India (e-mail: t.radha@ieee.org)

A. Abraham is with the Center of Excellence for Quantifiable Quality of
Service, Norwegian University of Science and Technology, Norway and
Machine Intelligence Research Labs -MIR Labs (e-mail:
ajith.abraham@ieee.org)

C. Grosan is with the Department of Computer Science,Babes-Bolyai
University, Romania (e-mail: cgrosan@cs.ubbcluj.ro)

concepts borrowed from the broad class of EAs. The method
typically requires few, easily chosen control parameters.
Experimental results have shown that performance of DE is
better than many other well known EAs [8], [9]. While DE
shares similarities with other EAs, it differs significantly in
the sense that in DE, distance and direction information is
used to guide the search process [10].

Despite several attractive features, it has been observed
that DE sometimes does not perform as good as the
expectations. Empirical analysis of DE has shown that it
may stop proceeding towards a global optimum even though
the population has not converged even to a local optimum
[12]. The situation when the algorithm does not show any
improvement though it accepts new individuals in the
population is known as stagnation. Besides this, DE also
suffers from the problem of premature convergence. This
situation arises when there is a loss of diversity in the
population. It generally arises when the objective function is
multi objective having several local and global optimums.
Like other EA, the performance of DE deteriorates with the
increase in dimensionality of the objective function. Several
modifications have been made in the structure of DE to
improve its performance. Some interesting modifications
include parameter adaption strategy for DE by Zaharie [13],
Abbas [14] proposed a self adaptive crossover rate for
multiobjective optimization problems, Omran et al. [15]
introduced a self adaptive scaling factor parameter F, Brest
et al. [16] proposed SADE, which encoded control
parameters F and Cr into the individuals and evolved their
values by using two new probabilities. Das et al. [17]
introduced two schemes for the scale factor F in DE. some
other recent modified versions include Opposition based DE
(ODE) by Rahnamayan et al. [18], a hybridization of DE
with Neghborhood search by Yang et al. [19], Fittest
Individual refinement [FIR] method by Noman and Iba [20].
Several recent developments in DE algorithm design and
application can be found in [21].

In continuation to the techniques of improving the
performance of DE, in the present study we present a
modified version of DE called MDE. The proposed MDE is
a semi adaptive type DE in which the scaling factor F takes
value according to the Laplace Distribution. The scaling
factor F plays a significant role in the generation of
perturbed mutant vector. The presence of a good scaling
factor may help in preserving the diversity by enhancing the
exploration and exploiting capabilities of the population.

The structure of the paper is as follows: in Section 2, we
briefly explain the Differential Evolution Algorithm, in
Section 3; we have defined and explained the proposed
MDE algorithm. Section 4 deals with experimental settings,
Sections 5 and 6 give the benchmark problems and their

Differential Evolution with Laplace Mutation Operator

Millie Pant, Radha Thangaraj, Ajith Abraham and Crina Grosan

E

numerical results respectively and finally the paper conclude
with Section 7.

II. DIFFERENTIAL EVOLUTION

DE shares a common terminology of selection, crossover
and mutation operators with GA however it is the
application of these operators that make DE different from
GA. Whereas, in GA crossover plays a significant role, it is
the mutation operator which effects the working of DE [11].
The working of DE may be described as follows:

For a D-dimensional search space, each target vector gix , ,

a mutant vector is generated by
)(* ,,,1, 321 grgrgrgi xxFxv −+=

+
 (1)

where },....,2,1{,, 321 NPrrr ∈ are randomly chosen integers,

must be different from each other and also different from the
running index i. F (>0) is a scaling factor which controls the
amplification of the differential evolution)(,, 32 grgr xx − . In

order to increase the diversity of the perturbed parameter
vectors, crossover is introduced [8]. The parent vector is
mixed with the mutated vector to produce a trial
vector 1, +gjiu ,

=
+

+

gji

gji
gji x

v
u

,

1,
1, if

if
)(
)(

CRrand

CRrand

j

j

>

≤

and
or

)(
)(

rand

rand

jj
jj

≠

=
 (2)

where j = 1, 2,……, D;]1,0[∈jrand ; CR is the crossover

constant takes values in the range [0, 1]
and),.....,2,1(Djrand ∈ is the randomly chosen index.

Selection is the step to choose the vector between the
target vector and the trial vector with the aim of creating an
individual for the next generation.

III. MODIFIED DE ALGORITHM

Initially Storn and Price proposed ten versions of DE. In
the present study, we have embedded the proposed mutant
vector in the DE/rand/1/bin version [8], which is perhaps the
most commonly used version. The performance of DE
depends largely on the selection of control parameters. The
control parameters generally take the fixed values as decided
by the user. If these values are taken probabilistically then
the user may be saved from the trouble of undergoing
rigorous sensitivity analysis for deciding the appropriate
value of parameters. Various continuous probability
distributions are available in literature which may be taken
for deciding the behavior of control parameters. In the
present article we propose a ‘semi adaptive’ type of DE in
which one of the control parameters F is generated
probabilistically while the sensitivity analysis is done for the
other parameter CR. Instead of taking a fixed value of F the
proposed MDE algorithm takes random variable following
Laplace distribution. The Probability Density Function (pdf)
of Laplace distribution is similar to that of normal
distribution however, whereas the normal distribution is
expressed in terms of squared difference from the mean,
Laplace density is expressed in terms of absolute difference
from the mean. As a result Laplace distribution has a fatter

tail than normal distribution. The presence of a fatter tail in
turn implies that a random variable having Laplace
distribution will be able to control differential vectors more
effectively and will probably help in preventing premature
convergence by maintaining the diversity.
 A C++ style computational code for the proposed algorithm
may be given as:
//Initialize the population and

calculate the fitness value for each

particle

Do

For i = 1 to number of particles

 // Mutation

||*£ ,,,1, 211 grgrgrgi xxxv −+=
+

//where £ is the random variable having Laplace Distribution
Do Crossover and Selection

End for.

Until some stopping criteria is reached.

IV. EXPERIMENTAL SETTINGS

In order to make a fair comparison of DE and MDE
algorithms, we fixed the same seed for random number
generation so that the initial population is same for both the
algorithms. The population size is taken as 100 for all the
test problems. The crossover rate and scaling factor F, for
classical DE, are fixed at 0.2 and 0.9 respectively. For MDE
we did a sensitivity analysis for various crossover rates
varying it from 0.1 to 0.9 (please also see Table IV) for all
the test problems and observed that the crossover rate of 0.2
is most suitable. The scaling factor F for MDE follows
Laplace distribution given as:

 ,

 =

 is the scale parameter.
For each algorithm, the maximum number of iterations

allowed was set to 5000 and the error goal was set as 1*e-04.
A total of 30 runs for each experimental setting were
conducted and the average fitness along with the average
number of function evaluations (NFE), time taken and
number of generations (GNE) of the best solutions
throughout the run were recorded. The algorithms were
programmed using Developer C++ and were executed on a
Pentium IV PC.

V. BENCHMARK PROBLEMS

For the present study we considered a test bed of 10
benchmark problems given in Table I. Though this test bed
is rather narrow, we have tried to include problems having
different characteristics. Except for the last two functions; f9
and f10, all the problems are solved for dimension 50. In this
section we describe briefly the properties of these functions.

• Rastringin’s function’s contour is made up of a large
number of local minima which increases with the
increase in the dimensionality of the problem.

• The second function is a simple sphere function
which is strictly convex and unimodal and is
generally considered as a good starting point for
testing an optimization algorithm.

• Griewank function is a continuous multimodal
function considered difficult to optimize because of
its non-separable nature.

• The search space of Rosenbrock function is
dominated by a large gradual slope which is raised
along one edge to a fine point. Though it looks
simple, it is notoriously hard for some optimization
algorithms because of the extremely large search
space combined with relatively small global
minima.

• Noisy function is constructed by adding a uniformly
distributed random noise to a quartic function. Due

to the presence of noise the global optimum keeps
on shifting from one position to another.

• The surface of Schwefel function consists of a large
number of peaks and valleys. Also for this function
the global minimum is near the bounds of the
domain.

• In Ackley function, the presence of an exponential
term makes is surface covered with several local
minima.

• The eighth function is again a multimodal function
having several local and global minima.

• Himmelblau’s function is also a multimodal function
with one global minimum and four identical local
minima.

• Shubert’s function has 760 local minima out of
which 18 are global minima.

TABLE I. NUMERICAL BENCHMARK PROBLEMS

Function
Function Definition Range Min.Value

Rastringin
Function

)10)2cos(10()(
1

2
1 +∑ −=

=

i

n

i
i xxxf π

[-5.12,5.12] 0

Spherical
Function

∑=

=

n

i
ixxf

1

2
2)(

[-5.12,5.12] 0

Griewank
Function

1)
1

cos(
4000

1
)(

1

0

1

0

2
3 +∑

+

+∑=

−

=

−

=

n

i

i
n

i
i

i

x
xxf

[-600,600] 0

Rosenbrock
Function

2
1

0

22
14)1()(100)(−+∑ −=

−

=

+ i

n

i
ii xxxxf

[-30,30] 0

Noisy Function
∑ ++=

−

=

1

0

4
5]1,0[))1(()(

n

i
i randxixf [-1.28,1.28] 0

Schewefel
Function

)||sin()(
1

6 ∑−=

=

n

i
ii xxxf [-500,500] -8379.658

Ackley
Function)

1
2.0exp(2020)(

1

2
7 ∑−−+=

=

n

i
ix

n
exf

∑−

=

n

i
ix

n 1
))2cos(

1
exp(π

[-32,32] 0

Function f8 mi
n

i
i

x
ixxf

2
2

1
8)))(sin(sin()(

π
∑
=

−= , 10=m [-π,π] ---

Himmelblau
Function

1
22

21
22

129)7()11()(xxxxxxf +−++−+= [-5,5] -3.78396

Shubert
Function

∑∑
==

++++=

5

1
2

5

1
110))1cos(())1cos(()(

jj

jxjjjxjjxf
[-10,10] -186.7309

TABLE II. MDE VS. DE (MEAN FITNESS, STANDARD DEVIATION)

TABLE III. MDE VS. DE IN TERMS OF NUMBER OF FUNCTION EVALUATIONS (NFE), GENERATIONS (GNE) AND TIME

Function MDE DE

Fitness Standard
deviation

Fitness Standard
deviation

f1 7.09739 2.40624 102.747 6.36517

f2 6.15276e-05 1.12258e-05 8.2473e-05 1.2193e-05

f3 6.4616e-05 1.05123e-05 8.40502e-05 1.56117e-05

f4 1.86068 0.694999 43.9651 1.70131

f5 0.008664 0.0018241 0.012731 0.002349

f6 -20862.3 101.117 -20669.3 171.058

f7 0.000169 2.57312e-06 0.000212 2.46469e-05

f8 -47.7664 0.493178 -36.0939 0.621769

f9 -3.6221 0.361939 -3.00776 1.2093

f10 -186.731 2.50912e-07 -186.731 1.12765e-07

Function MDE DE

NFE GNE Time
(sec)

NFE GNE Time
(sec)

f1 118740 1186 12.76 500100+ 5000+ 55.33

f2 43160 430 4.8 67696 675 7.1

f3 61253 611 7.5 97823 977 12.3

f4 352907 3528 98.36 500100+ 5000+ 152.2

f5 500100+ 5000+ 51.77 500100+ 5000+ 52.03

f6 40556 810 1.267 171432 3427 5.33

f7 70873 707 8.03 114207 1141 13.16

f8 105657 2112 47.133 500100+ 5000+ 175.4

f9 4278 84 0.067 4765 94 0.1

f10 3910 77 0.033 12170 242 0.067

∑ 801334 9545 231.72 1468293 26556 473.02

Fig 1 (a). Rastringin Function

 Fig 1 (b). Sphere Function

Fig 1 (c) Griewank Function

 Fig 1 (d) Noisy Function

Fig 1(a) –1(d); Sensitivity analysis of MDE with respect to the various crossover rates for selected benchmark problems

Fig 2 (a). Rastringin function

Fig 2 (b). Sphere function

Fig 2 (c) Griewank function

Fig 2 (d) Rosenbrock function

Fig 2 (a) – 2(d). Performance of DE and MDE for selected benchmark problems

VI NUMERICAL RESULTS AND COMPARISONS

The MDE algorithm is compared with the classical DE in
terms of Average fitness function value, number of function
evaluations (NFE), average number of iterations (GNE) and
run time. In Table II, we have shown the numerical results of
benchmark problems in terms of average fitness function
value and standard deviation. Table III gives the number of
function evaluations, number of generations and time taken.
From Table II, it can be seen that for Rastringin function (f1),
the difference in the average fitness function values for DE
and MDE is quite visible. The true global minimum for
Rastringin function is located at 0.0. None of the algorithms
were able to reach this value for the dimension 50. However
MDE gave a much better value in comparison to DE.
Similarly for Rosenbrock function, the proposed MDE gave
a value much closer to the true optimum (0.0) in comparison
to DE. For all other functions both the algorithms gave more
or less similar values quite near to the true optimum value.

The better performance of MDE is more visible from
Table III, where number of function evaluations, number of
generations and time are reported. From this Table it is clear

that the proposed MDE converges much faster than the
classical DE. The total number of function evaluations for
solving 10 test problems comes out to be 801334 for MDE
in comparison to 1468293 as obtained by DE. Similarly, for
the total time taken by MDE is 231.72 whereas the total time
taken by DE is 473.02. In case of number of generations,
MDE required 9545 generations and DE took 26556
generations. Thus, the overall percentage improvement in
terms of NFE, GNE and Time taken for solving the 10
benchmark problems is around 50%.

(%age improvement)NFE= 45.424

(%age improvement)GNE = 64.05709

(%age improvement)Time = 51.01233

The performance curves of MDE vs. DE for selected
benchmark problems are shown in Fig 1(a) – Fig 1(d).
Performance curves of MDE using different crossover rates
are given in Figures 2 (a) – 2(d).

 TABLE IV. SENSITIVITY ANALYSIS OF MDE FOR DIFFERENT CROSSOVER RATES

CR
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fun

f1
2.38
1.7151
302

0.36

0.6013

205

4.05
1.5208
218

3.16
1.5826
217

7.02
2.734
213

7.19
2.8548
217

10.51
4.0836
221

13.52
6.3352
232

15.68
8.9189
256

f2
0.0260
0.0945
165

0.0007

0.0023

154

0.0528
0.1102
151

0.0864
0.1727
152

0.2107
0.3980
149

0.1897
0.2682
146

0.3227
0.5283
150

0.6466
0.6269
176

1.5256
1.4390
169

f3
0.0937
0.3967
548

0.0922

0.1445

408

0.1423
0.3711
581

0.3639
0.3983
558

0.3475
0.3684
530

1.052
1.3840
520

2.2736
2.4206
514

2.8714
2.7900
525

6.2459
5.2566
545

f4
5.0408
0.2378
991

1.523

0.1256

818

4.497
0.2765
856

2.088
0.4523
864

2.426
0.4635
873

9.921
0.5342
852

9.422
0.4376
857

6.456
0.2248
889

6.523
0.6532
875

f5
0.0072
0.0044
1000+

0.0060

0.0030

1000+

0.0076
0.0071
1000+

0.0068
0.0056
1000+

0.0113
0.0102
1000+

0.0311
0.0551
1000+

0.0293
0.0398
1000+

0.0465
0.0575
1000+

0.1268
0.1294
1000+

f6
-4106.7
115.01
305

-4138.7

71.082

227

-4079.3
129.10
237

-4007.7
142.31
243

-3968.2
208.54
251

-3956.4
171.93
242

-3885.3
246.29
275

-3681.6
404.06
275

-3356.0
394.83
298

f7
0.7164

0.8649

228

1.0222
1.0796
231

1.2261
1.5979
233

1.0676
1.0056
298

2.1165
1.7611
275

2.7051
2.0251
273

4.4418
1.9437
273

6.4287
2.5419
279

8.3859
2.5998
305

f8
-9.1158
0.4124
363

-9.3339

0.1672

220

-9.1517
0.2982
235

-9.0319
0.4760
312

-8.7116
0.5127
299

-8.8325
0.4515
272

-8.4146
0.6963
275

-8.0267
0.8349
273

-6.6724
1.1851
263

f9
-1.0324
2.9545
86

-1.6135
2.5664
107

-1.0411
3.0129
63

-2.2646

2.1002

66

-1.1164
2.9736
79

-0.3789
3.0504
75

-0.8485
2.9915
49

-0.0613
3.1689
54

0.9223
3.2310
50

f10
-186.73

4.1e-05

80

-186.73
0.0058
68

-186.73
0.0039
67

-186.72
0.0295
63

-186.72
0.0399
62

-186.66
0.2884
62

-186.66
0.2164
66

-186.63
0.3883
62

-186.29
1.222
73

VII CONCLUSIONS

In the present study we proposed the use of scaling factor
depending on Laplace Distribution for generating a mutant
vector. The proposed MDE algorithm is tested on 10
benchmark problems and the results are compared with the
classical DE. The numerical results show that the use of
random variable having Laplace distribution as a scaling
factor F, improves the performance of classical DE
significantly. Although, we have not done any theoretical
analysis but from the empirical results it can be seen that
instead of fixing scaling factor it is better to take it in an
adaptive manner. Also we would like to add that though we
have tried to take a diverse set of bench mark problems, it is
still a narrow test bed and we are continuing it to solve more
complex problems and compare its performance with other
existing EA for global optimization. The proposed work is
still in the preliminary stage and several improvements can
be added to it; like an adaptive crossover rate. Also, the

work can be extended for other distributions like Cauchy and
Levy distributions which have shown promising results in
Evolutionary Programming.

REFERENCES
[1] T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of

EvolutionaryComputation. New York: Inst. Phys. and Oxford Univ.
Press, 1997.

[2] J. Zhang, J. Xu and Q. Zhou, “A New Differential Evolution for
Constrained Optimization Problems”, In Proc. of the sixth Int. conf.
on Intelligent Systems, Design and Applications, 2006, pp. 1018-
1023.

[3] M. Pant, R. Thangaraj and A. Abraham, “Optimization of a Kraft
Pulping System: Using Particle Swarm Optimization and Differential
Evolution”, In Proc. of 2nd Asia Int. Conf. on Modeling and
Simulation, Malaysia, IEEE Computer Society Press, USA, pp. 637 –
641, 2008.

[4] A. Abbasy and S. H. Hosseini, “A Novel Multi-Agent Evolutionary
Programming Algorithm for Economic Dispatch Problems with Non-
Smooth Cost Functions, In Proc. of IEEE Power Engineering Society
General Meeting, pp. 1 -7, 2007.

[5] M. Pant, R. Thangaraj and V. P. Singh, “Efficiency Optimization of
Electric motors: A Comparative Study of Stochastic Algorithms”,

World Journal of Modeling and Simulation, Vol. 4(2), pp.140 – 148,
2008.

[6] E. Cao and M. Lai, “An Improved Differential Evolution Algorithm
for the Vehicle Routing Problem With Simultaneous Delivery and
Pick-up Service”, In Proc. of Third International Conference on
Natural Computation, Vol. 3, pp. 436 – 440, 2007.

[7] R. Storn and K. Price, “Differential Evolution – a simple and efficient
adaptive scheme for global optimization over continuous spaces”,
Technical Report, International Computer Science Institute, Berkley,
1995.

[8] R. Storn and K. Price, “Differential Evolution – a simple and efficient
Heuristic for global optimization over continuous spaces”, Journal
Global Optimization. 11, 1997, pp. 341 – 359.

[9] R. Stom, “System design by constraint adaptation and differential
evolution”, IEEE Transactions on Evolutionary Computation, Vol. 3,
pp. 22-34, 1999.

[10] A.P. Engelbrecht, “Fundamentals of Computational Swarm
Intelligence,” John Wiley & Sons Ltd, 2005.

[11] D. Karaboga and S. Okdem, “A simple and Global Optimization
Algorithm for Engineering Problems: Differential Evolution
Algorithm”, Turk J. Elec. Engin. 12(1), 2004, pp. 53 – 60.

[12] J. Lampinen and I. Zelinka, “On stagnation of the differential
evolution algorithm,” in: Pavel Ošmera, (ed.) Proc. of MENDEL 2000,

6th International Mendel Conference on Soft Computing, pp. 76 – 83,
June 7–9. 2000, Brno, Czech Republic.

[13] D. Zaharie, “Control of population diversity and adaptation in
differential evolution algorithms,” In D.Matousek, P. Osmera (eds.),
Proc. of MENDEL 2003, 9th International Conference on Soft

Computing, Brno, Czech Republic, pp. 41-46, June 2003.
[14] H. Abbass, “The self-adaptive pareto differential evolution

algorithm,” in Proc. of the 2002 Congress onEvolutionary

Computation, 831-836, 2002.
[15] M. Omran, A. Salman, and A. P. Engelbrecht, “Self-adaptive

differential evolution, computational intelligence and security,” PT 1,

Proceedings Lecture Notes In Artificial Intelligence 3801: 192-199,
2005.

[16] J. Brest, S. Greiner, B. Boškovic, M. Mernik, and V. Žumer, “Self-
adapting Control parameters in differential evolution: a comparative
study on numerical benchmark problems,” IEEE Transactions on

Evolutionary Computation, Vol. 10, Issue 6, pp. 646 – 657, 2006.
[17] S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential

evolution schemes for faster global search,” ACM-SIGEVO

Proceedings of GECCO, Washington D.C., pp. 991-998, June 2005.
[18] S. Rahnamayan, H.R. Tizhoosh, and M. M. A. Salama, “Opposition-

Based Differential Evolution,” IEEE Transactions on Evolutionary

Computation, Vol. 12, Issue 1, pp. 64 – 79, 2008.
[19] Z. Yang, J. He, and X. Yao, Making a Difference to Differential

Evolution, in Advances in Metaheuristics for Hard Optimization, Z.
Michalewicz and P. Siarry (eds.), pp 415-432, Springer, 2007.

[20] N. Noman and H. Iba, “Enhancing differential evolution performance
with local search for high dimensional function optimization,” in
Proc. of the 2005 Conference on Genetic and Evolutionary

Computation, pp. 967–974, June 2005.
[21] U. K. Chakraborty (Ed.) Advances in Differential Evolution, Springer-

Verlag, Heidelberg, 2008.

