
128: Nature and Scope of AI Techniques

Ajith Abraham
Oklahoma State University, Stillwater, OK, USA

1 Introduction to Computational Intelligence 893

2 Artificial Neural Networks 894

3 Neural Network Architectures 895

4 Fuzzy Logic 895

5 If-then Rules and Fuzzy Inference Systems 896

6 Evolutionary Algorithms 897

7 Intelligent Paradigms 898

8 Hybrid Intelligent Systems 898

9 Models of Hybrid Systems 899

10 Summary 900

References 900

1 INTRODUCTION TO COMPUTATIONAL
INTELLIGENCE

Machine intelligence dates back to 1936, when Alan Tur-
ing proposed the idea of a universal mathematics machine,
a theoretical concept in the mathematical theory of com-
putability. Turing and Emil Post independently proved that
determining the decidability of mathematical propositions is
equivalent to asking what sort of sequences of a finite num-
ber of symbols can be recognized by an abstract machine
with a finite set of instructions.

Such a mechanism is now known as a Turing
machine (Turing Machine, 2004). Turing’s research paper
addressed the question of machine intelligence, assessing
the arguments against the possibility of creating an
intelligent computing machine and suggesting answers to
those arguments; it proposed the Turing test as an empirical
test of intelligence (Turing, 1950).

The Turing test, called the imitation game by Alan
Turing, measures the performance of a machine against that
of a human being. The machine and a human (A) are placed
in two rooms. A third person, designated the interrogator,
is in a room apart from both the machine and the human.
The interrogator cannot see or speak directly to either A
or the machine, communicating with them solely through
some text messages or even a chat window. The task of the
interrogator is to distinguish between the human and the
computer on the basis of questions he or she may put to
both of them over the terminals. If the interrogator cannot
distinguish the machine from the human, then, Turing
argues, the machine may be assumed to be intelligent. In
the 1960s, computers failed to pass the Turing test because
of the low processing speed of the computers.

The last few decades have seen a new era of arti-
ficial intelligence (AI) focusing on the principles, the-
oretical aspects, and design methodology of algorithms
gleaned from nature. Examples are artificial neural net-
works inspired by mammalian neural systems, evolutionary
computation inspired by natural selection in biology, simu-
lated annealing inspired by thermodynamics principles, and
swarm intelligence inspired by the collective behavior of
insects or microorganisms, and so on, interacting locally
with their environment, therein causing coherent functional
global patterns to emerge. These techniques have found
their way into solving real-world problems in science, busi-
ness, technology, commerce, and also to a great extent in
measuring systems.

Computational intelligence is a well-established para-
digm, where new theories with a sound biological under-
standing have been evolving. The current experimental
systems have many of the characteristics of biological com-
puters (brains, in other words) and are beginning to be built

Handbook of Measuring System Design, edited by Peter H. Sydenham and Richard Thorn.
 2005 John Wiley & Sons, Ltd. ISBN: 0-470-02143-8.



894 Elements: B – Signal Conditioning

to perform a variety of tasks that are difficult or impossible
to do with conventional computers.

To name a few, we have microwave ovens, washing
machines, and digital cameras that can figure out on their
own what settings to use to perform their tasks optimally;
they have a reasoning capability, make intelligent decisions,
and learn from experience.

As usual, defining computational intelligence is not an
easy task. In a nutshell, which becomes quite apparent
in light of the current research pursuits, the area is
heterogeneous with a combination of such technologies as
neural networks, fuzzy systems, evolutionary computation,
swarm intelligence, and probabilistic reasoning.

The recent trend is to integrate different components to
take advantage of complementary features and to develop a
synergistic system. Hybrid architectures like neuro-fuzzy
systems, evolutionary-fuzzy systems, evolutionary-neural
networks, evolutionary-neuro-fuzzy systems, and so on,
are widely applied for real-world problem solving. In the
following sections, the main functional components of
computational intelligence are introduced along with their
key advantages and application domains.

2 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) have been developed
as generalizations of mathematical models of biological
nervous systems.

In a simplified mathematical model of the neuron, the
effects of the synapses are represented by connection
weights that modulate the effect of the associated input
signals, and the nonlinear characteristic exhibited by neu-
rons is represented by a transfer function, which is usually
the sigmoid, Gaussian, trigonometric function, and so on.

The neuron impulse is then computed as the weighted
sum of the input signals, being transformed by the trans-
fer function.

The learning capability of an artificial neuron is achieved
by adjusting the weights in accordance to the chosen

learning algorithm. Most applications of neural networks
fall into the following categories:

• Prediction: Use input values to predict some output
• Classification: Use input values to determine the classi-

fication
• Data Association: Like classification, but it also recog-

nizes data that contains errors
• Data conceptualization: Analyze the inputs so that

grouping relationships can be inferred.

A typical multilayered neural network and an artificial
neuron are illustrated in Figure 1. Each neuron is char-
acterized by an activity level (representing the state of
polarization of a neuron), an output value (representing the
firing rate of the neuron), a set of input connections (repre-
senting synapses on the cell and its dendrite), a bias value
(representing an internal resting level of the neuron), and
a set of output connections (representing a neuron’s axonal
projections). Each of these aspects of the unit is represented
mathematically by real numbers. Thus, each connection has
an associated weight (synaptic strength), which determines
the effect of the incoming input on the activation level of
the unit. The weights may be positive or negative. Refer-
ring to Figure 1, the signal flow from inputs x1, . . . , xn is
considered to be unidirectional, indicated by arrows, as is a
neuron’s output signal flow (O). The neuron output signal
O is given by the following relationship:

O = f (net) = f


 n∑

j=1

wjxj


 (1)

where wj is the weight vector and the function f(net) is
referred to as an activation (transfer) function. The variable
net is defined as a scalar product of the weight and input
vectors

net = wTx = w1x1 + · · · · +wnxn (2)

output (o)

Artificial neuron

x1

x2

x3

x4

w1

w2

w3

w4

Input layer
Hidden layer

Output layer

Multilayered artificial neural network

fq 

(a) (b)

Figure 1. Architecture of an artificial neuron and a multilayered neural network.



Nature and Scope of AI Techniques 895

where T is the transpose of a matrix and in the simplest
case the output value O is computed as

O = f (net) =
{

1 if wTx ≥ θ

0 otherwise
(3)

where θ is called the threshold level , and this type of node
is called a linear threshold unit.

3 NEURAL NETWORK ARCHITECTURES

The behavior of the neural network depends largely on
the interaction between the different neurons. The basic
architecture consists of three types of neuron layers:

1. Input
2. Hidden
3. Output.

In feed-forward networks, the signal flow is from input
to output units, strictly in a feed-forward direction. The data
processing can extend over multiple (layers of) units, but
no feedback connections are present, that is, connections
extending from outputs of units to inputs of units in the
same layer or previous layers.

Recurrent networks contain feedback connections. Con-
trary to feed-forward networks, the dynamical properties of
the network are important. In some cases, the activation
values of the units undergo a relaxation process such that
the network will evolve into a stable state in which these
activations do not change anymore. In other applications,
the changes of the activation values of the output neurons
are significant, such that the dynamical behavior constitutes
the output of the network.

There are several other neural network architectures
(Elman network, adaptive resonance theory maps, competi-
tive networks, etc.) depending on the properties and require-
ment of the application. The reader may refer to Bishop
(1995) for an extensive overview of the different neural
network architectures and learning algorithms.

A neural network has to be configured such that the
application of a set of inputs produces the desired set
of outputs. Various methods to set the strengths of the
connections exist. One way is to set the weights explicitly,
using a priori knowledge.

Another way is to train the neural network by feeding it,
teaching patterns and letting it change its weights according
to some learning rule.

The learning situations in neural networks may be
classified into three distinct sorts of learning:

1. Supervised
2. Unsupervised
3. Reinforcement.

In supervised learning, an input vector is presented at
the inputs together with a set of desired responses, one
for each node, at the output layer. A forward pass is done
and the errors or discrepancies, between the desired and
actual response for each node in the output layer, are found.
These are then used to determine weight changes in the net
according to the prevailing learning rule.

The term ‘supervised’ originates from the fact that the
desired signals on individual output nodes are provided
by an external teacher. The best-known examples of this
technique occur in the backpropagation algorithm, the delta
rule, and perceptron rule.

In unsupervised learning (or self-organization), a (out-
put) unit is trained to respond to clusters of pattern within
the input. In this paradigm, the system is supposed to
discover statistically salient features of the input popu-
lation (Kohonen, 1988). Unlike the supervised learning
paradigm, there is no a priori set of categories into which
the patterns are to be classified; rather, the system must
develop its own representation of the input stimuli.

Reinforcement learning is learning what to do – how to
map situations to actions – so as to maximize a numerical
reward signal. The learner is not told which actions to take,
as in most forms of machine learning, but instead must
discover which actions yield the most reward by trying
them. In the most interesting and challenging cases, actions
may affect not only the immediate reward but also the
next situation and, through that, all subsequent rewards.
These two characteristics, trial-and-error search and delayed
reward, are the two most important distinguishing features
of reinforcement learning.

4 FUZZY LOGIC

Zadeh (1965) introduced the concept of fuzzy logic to
represent vagueness in linguistics and to further implement
and express human knowledge and inference capability in
a natural way. Fuzzy logic starts with the concept of a
fuzzy set.

A fuzzy set is a set without a crisp, clearly defined
boundary. It can contain elements with only a partial degree
of membership.

A Membership Function (MF) is a curve that defines how
each point in the input space is mapped to a membership
value (or degree of membership) between 0 and 1. The input
space is sometimes referred to as the universe of discourse.

Let X be the universe of discourse and x be a generic
element of X. A classical set A is defined as a collection
of elements or objects x ∈ X, such that each x can either
belong to or not belong to the set A.

By defining a characteristic function (or membership
function) on each element x in X, a classical set A can



896 Elements: B – Signal Conditioning

be represented by a set of ordered pairs (x, 0) or (x, 1),
where 1 indicates membership and 0, nonmembership.

Unlike the conventional set mentioned above, the fuzzy
set expresses the degree to which an element belongs to
a set. Hence, the characteristic function of a fuzzy set is
allowed to have a value between 0 and 1, denoting the
degree of membership of an element in a given set. If X

is a collection of objects denoted generically by x, then a
fuzzy set A in X is defined as a set of ordered pairs:

A = {(x, µA(x))|x ∈ X} (4)

µA(x) is called the membership function of linguistic
variable x in A, which maps X to the membership space
M, M = [0,1], where M contains only two points 0 and 1,
A is crisp and µA is identical to the characteristic function
of a crisp set.

Triangular and trapezoidal membership functions are
the simplest membership functions, formed using straight
lines. Some of the other shapes are Gaussian, generalized
bell, sigmoidal, and polynomial-based curves. Figure 2
illustrates the shapes of two commonly used MFs. The most
important thing to realize about fuzzy logical reasoning is
the fact that it is a superset of standard Boolean logic.

4.1 Fuzzy logic operators

It is interesting to note the correspondence between two-
valued and multivalued logic operations for the AND, OR,
and NOT logical operators.

0

0 2 4 6 8 10

0 2 4 6 8 10

0.25

0.75

0.5

1

0

0.25

0.75

0.5

1

(a)

(b)

Figure 2. Membership functions; (a) Gaussian and (b) trape-
zoidal.

It is possible to resolve the statement A AND B, where
A and B are limited to the range (0, 1) by using the operator
minimum (A, B). Using the same reasoning, we can replace
the OR operation with the maximum operator, so that A

OR B becomes equivalent to maximum (A, B). Finally,
the operation NOT A becomes equivalent to the operation
1 – A.

In fuzzy logic terms, these are popularly known as
fuzzy intersection or conjunction (AND), fuzzy union
or disjunction (OR), and fuzzy complement (NOT). The
intersection of two fuzzy sets A and B is specified, in
general, by a binary mapping T , which aggregates two
membership functions as follows.

µA∩B(x) = T (µA(x), µB(x)) (5)

The fuzzy intersection operator is usually referred to as T-
norm (Triangular norm) operator. The fuzzy union operator
is specified in general by a binary mapping S.

µA∪B(x) = S(µA(x), µB(x)) (6)

This class of fuzzy union operators are often referred to as
T-conorm (S-norm) operators .

5 IF-THEN RULES AND FUZZY
INFERENCE SYSTEMS

The fuzzy rule base is characterized in the form of if-
then rules in which preconditions and consequents involve
linguistic variables. The collection of these fuzzy rules
forms the rule base for the fuzzy logic system. Owing to
their concise form, fuzzy if-then rules are often employed
to capture the imprecise modes of reasoning that play an
essential role in the human ability to make decisions in an
environment of uncertainty and imprecision. A single fuzzy
if-then rule assumes the form

if x is A then y is B

where A and B are linguistic values defined by fuzzy sets in
the ranges (universes of discourse) X and Y, respectively.

The if part of the rule ‘x is A’ is called the antecedent
(precondition) or premise, while the then part of the rule ‘y
is B’ is called the consequent or conclusion. Interpreting an
if-then rule involves evaluating the antecedent (fuzzification
of the input and applying any necessary fuzzy operators)
and then applying that result to the consequent (known
as implication). For rules with multiple antecedents, all
parts of the antecedent are calculated simultaneously and
resolved to a single value using the logical operators. Simi-
larly, all the consequents (rules with multiple consequents)



Nature and Scope of AI Techniques 897

Start Initialization
of population

Valuation
(fitness value)

Solution
found?

Yes
Stop

Reproduction
No

Figure 3. Flowchart of genetic algorithm iteration.

are affected equally by the result of the antecedent. The
consequent specifies a fuzzy set be assigned to the output.
The implication function then modifies that fuzzy set to the
degree specified by the antecedent. For multiple rules, the
output of each rule is a fuzzy set. The output fuzzy sets
for each rule are then aggregated into a single output fuzzy
set. Finally, the resulting set is defuzzified, or resolved, to
a single number.

The defuzzification interface is a mapping from a space
of fuzzy actions defined over an output universe of dis-
course into a space of nonfuzzy actions, because the output
from the inference engine is usually a fuzzy set, while for
most practical applications, crisp values are often required.

The three commonly applied defuzzification techniques
are max-criterion, center-of-gravity, and the mean-of-
maxima. The max-criterion is the simplest of these three
to implement. It produces the point at which the possibility
distribution of the action reaches a maximum value.

The reader can refer to Nguyen and Walker (1999) for
more information related to fuzzy systems. It is typically
advantageous if the fuzzy rule base is adaptive to a certain
application. The fuzzy rule base is usually constructed
manually or by automatic adaptation by some learning
techniques using evolutionary algorithms and/or neural
network learning methods (Abraham, 2001).

6 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EA) are adaptive methods, which
may be used to solve search and optimization problems,
based on the genetic processes of biological organisms.
Over many generations, natural populations evolve accord-
ing to the principles of natural selection and ‘survival of
the fittest’, first clearly stated by Charles Darwin in his
work ‘The Origin of Species’. By mimicking this pro-
cess, evolutionary algorithms are able to ‘evolve’ solutions
to real-world problems, provided they have been suitably
encoded (Fogel, 1999).

Usually grouped under the term evolutionary algorithms
or evolutionary computation, we find the domains
of genetic algorithms (GA) (Holland, 1975), (Goldberg,
1989); evolution strategies (Rechenberg, 1973), (Schwefel,

1977); evolutionary programming (Fogel, Owens and
Walsh, 1967); genetic programming (Koza, 1992); and
learning classifier systems. They all share a common
conceptual base of simulating the evolution of individual
structures via processes of selection, mutation, and
reproduction. The processes depend on the perceived
performance of the individual structures as defined by the
environment (problem).

EA’s deal with parameters of finite length, which are
coded using a finite alphabet, rather than directly manipu-
lating the parameters themselves. This means that the search
is unconstrained neither by the continuity of the function
under investigation nor by the existence of a derivative
function. Figure 3 depicts the functional block diagram of
a genetic algorithm, and the various aspects are discussed
below. It is assumed that a potential solution to a problem
may be represented as a set of parameters. These parame-
ters (known as genes) are joined together to form a string
of values (known as a chromosome). A gene (also referred
to as a feature, character, or detector) refers to a specific
attribute that is encoded in the chromosome. The particular
values that the genes can take are called its alleles.

Encoding issues deal with representing a solution in a
chromosome and, unfortunately, no one technique works
best for all problems. A fitness function must be devised
for each problem to be solved.

Given a particular chromosome, the fitness function
returns a single numerical fitness or figure of merit,
which will determine the ability of the individual that the
chromosome represents.

Reproduction is the second critical attribute of GAs,
where two individuals selected from the population are
allowed to mate to produce an offspring, which will com-
prise the next generation. Having selected the parents, the
offsprings are generated, typically using the mechanisms of
crossover and mutation.

Selection is the survival of the fittest within GAs. It
determines which individuals are to survive to the next
generation. The selection phase consists of three parts.

The first part involves determination of the individual’s
fitness by the fitness function. A fitness function must be
devised for each problem; given a particular chromosome,
the fitness function returns a single numerical fitness value,



898 Elements: B – Signal Conditioning

which is proportional to the ability, or utility, of the
individual represented by that chromosome.

The second part involves converting the fitness function
into an expected value, followed by the last part where
the expected value is then converted to a discrete number
of offspring.

Some of the commonly used selection techniques are
roulette wheel and stochastic universal sampling. If the
GA has been correctly implemented, the population will
evolve over successive generations so that the fitness of the
best and the average individual in each generation increases
toward the global optimum.

7 INTELLIGENT PARADIGMS

7.1 Probabilistic computing

Probabilistic models are viewed as being similar to that of a
game; actions are based on expected outcomes. The center
of interest moves from the deterministic to probabilistic
models using statistical estimations and predictions.

In the probabilistic modeling process, risk means uncer-
tainty for which the probability distribution is known.
Therefore, risk assessment means a study to determine
the outcomes of decisions along with their probabilities.
Decision makers often face a severe lack of definite infor-
mation. Probability assessment quantifies the information
gap between what is known and what needs to be known
for an optimal decision. Probabilistic models are used for
protection against adverse uncertainty and exploitation of
propitious uncertainty (Pearl, 1997).

A good example is the probabilistic neural network
(Bayesian learning) in which probability is used to represent
uncertainty about the relationship being learned. Before
we have seen any data, our prior opinions about what
the true relationship might be can be expressed in a
probability distribution over the network weights that define
this relationship.

After we look at the data, our revised opinions are
captured by a posterior distribution over network weights.
Network weights that seemed plausible before, but which
do not match the data very well, will now be seen as
being much less likely, while the probability for values of
the weights that do fit the data well will have increased.
Typically, the purpose of training is to make predictions
for future cases in which only the inputs to the network
are known. The result of conventional network training
is a single set of weights that can be used to make such
predictions.

7.2 Swarm intelligence

Swarm intelligence is aimed at collective behavior of
intelligent agents in decentralized systems. Although there
is typically no centralized control dictating the behav-
ior of the agents, local interactions among the agents
often cause a global pattern to emerge (Eberhart, Shi and
Kennedy, 2001).

Most of the basic ideas are derived from the real swarms
in nature, which includes ant colonies, bird flocking, honey-
bees, bacteria and microorganisms, and so on. Ant Colony
Optimization (ACO) has already been applied successfully
to solve several engineering optimization problems.

Swarm models are population based and the population
is initialized with a population of potential solutions. These
individuals are then manipulated (optimized) over several
iterations using several heuristics inspired from the social
behavior of insects in an effort to find the optimal solution.

Ant colony algorithms are inspired by the behavior
of natural ant colonies, in the sense that they solve
their problems by multiagent cooperation using indirect
communication through modifications in the environment.
Ants release a certain amount of pheromone (hormone)
while walking, and each ant prefers (probabilistically) to
follow a direction that is rich in pheromone. This simple
behavior explains why ants are able to adjust to changes
in the environment, such as optimizing the shortest path
to a food source or a nest. In ACO, ants use information
collected during past simulations to direct their search
and this information is available and modified through the
environment. Recently, ACO algorithms have also been
used for clustering data sets.

8 HYBRID INTELLIGENT SYSTEMS

Several adaptive hybrid intelligent systems have, in recent
years, been developed for model expertise, image, and
video segmentation techniques, process control, mechatron-
ics, robotics, complicated automation tasks and so on.

Many of these approaches use the combination of dif-
ferent knowledge representation schemes, decision-making
models, and learning strategies to solve a computational
task. This integration aims at overcoming limitations of
individual techniques through hybridization or fusion of
various techniques.

These ideas have led to the emergence of several differ-
ent kinds of intelligent system architectures. Most of the
current Hybrid Intelligent Systems (HIS) consist of three
essential paradigms: artificial neural networks, fuzzy infer-
ence systems, and global optimization algorithms (exam-
ple, evolutionary algorithms). Nevertheless, HIS is an



Nature and Scope of AI Techniques 899

Table 1. Hybrid intelligent system basic ingredients.

Methodology Advantage

Artificial neural networks Adaptation, learning,
and approximation

Fuzzy logic Approximate reasoning
Global optimization

algorithms
Derivative free

optimization

open, instead of conservative, concept, that is, it is evolv-
ing those relevant techniques together with the important
advances in other new computing methods. Table 1 lists
the three principal ingredients together with their advan-
tages (Abraham, 2002).

Experience has shown that it is crucial for the design of
HIS to primarily focus on the integration and interaction of
different techniques rather than merge different methods to
create ever-new techniques. Techniques already well under-
stood should be applied to solve specific domain problems
within the system. Their weakness must be addressed by
combining them with complementary methods.

Neural networks offer a highly structured architecture
with learning and generalization capabilities. The general-
ization ability for new inputs is then based on the inherent
algebraic structure of the neural network. However, it is
very hard to incorporate human a priori knowledge into
a neural network. This is mainly due to the fact that the
connectionist paradigm gains most of its strength from a
distributed knowledge representation.

In contrast, fuzzy inference systems exhibit complemen-
tary characteristics, offering a very powerful framework
for approximate reasoning as it attempts to model the
human reasoning process at a cognitive level. Fuzzy sys-
tems acquire knowledge from domain experts and this is
encoded within the algorithm in terms of the set of if-then
rules. Fuzzy systems employ this rule-based approach and
interpolative reasoning to respond to new inputs. The incor-
poration and interpretation of knowledge is straightforward,
whereas learning and adaptation constitute major problems.

Global optimization is the task of finding the absolutely
best set of parameters to optimize an objective function.
In general, it may be possible to have solutions that are
locally optimal but not globally optimal. Evolutionary com-
puting (EC) works by simulating evolution on a computer.
Such techniques could be easily used to optimize neural
networks, fuzzy inference systems, and other problems.

Owing to the complementary features and strengths
of different systems, the trend in the design of hybrid
system is to merge different techniques into a more
powerful integrated system to overcome their individ-
ual weaknesses.

9 MODELS OF HYBRID SYSTEMS

The various HIS architectures could be broadly classified
into four different categories based on the systems overall
architecture:

1. Stand alone
2. Transformational
3. Hierarchical hybrid
4. Integrated hybrid.

9.1 Stand-alone architecture

Stand-alone models of HIS applications consist of inde-
pendent software components, which do not interact in any
way. Developing stand-alone systems can have several pur-
poses. First, they provide direct means of comparing the
problem-solving capabilities of different techniques with
reference to a certain application. Running different tech-
niques in a parallel environment permits a loose approx-
imation of integration. Stand-alone models are often used
to develop a quick initial prototype while a more time-
consuming application is developed. Some of the benefits
are simplicity and ease of development using commercially
available software packages.

9.2 Transformational hybrid architecture

In a transformational hybrid model, the system begins as
one type and ends up as the other. Determining which
technique is used for development and which is used
for delivery is based on the desirable features that the
technique offers. Expert systems and neural networks have
proven to be useful transformational models. Variously,
either the expert system is incapable of adequately solving
the problem, or it requires the speed, adaptability, and
robustness of neural network. Knowledge from the expert
system is used to set the initial conditions and training
set for neural network. Transformational hybrid models are
often quick to develop and ultimately require maintenance
on only one system. Most of the developed models are just
application oriented.

9.3 Hierarchical hybrid architectures

The architecture is built in a hierarchical fashion, associ-
ating a different functionality with each layer. The overall
functioning of the model will depend on the correct func-
tioning of all the layers. A possible error in one of the layers
will directly affect the desired output.



900 Elements: B – Signal Conditioning

9.4 Integrated hybrid architectures

These models include systems, which combine different
techniques into one single computational model. They share
data structures and knowledge representations. Another
approach is to put the various techniques on a side-by-side
basis and focus on their interaction in the problem-solving
task. This method might allow integrating alternative tech-
niques and exploiting their mutuality. The benefits of fused
architecture include robustness, improved performance, and
increased problem-solving capabilities. Finally, fully inte-
grated models can provide a full range of capabilities such
as adaptation, generalization, noise tolerance, and justi-
fication. Fused systems have limitations caused by the
increased complexity of the intermodule interactions, and
specifying, designing, and building fully integrated models
is complex.

10 SUMMARY

Artificial intelligence is the study of intelligent behavior.
Its ultimate goal is a theory of intelligence that accounts
for the behavior of naturally occurring intelligent entities,
and this guides the creation of artificial entities capable
of intelligent behavior. The stagnation of artificial intelli-
gence during the 1970s and 1980s does not have much
bearing on the likelihood of artificial intelligence to succeed
in the future, since we know that the cause responsible for
stagnation (mainly due to insufficient hardware resources)
is no longer present. More detail of the various methods
introduced here is found in Article 129, Artificial Neu-
ral Networks, Volume 2; Article 130, Rule-based Expert
Systems, Volume 2; and Article 131, Evolutionary Com-
putation, Volume 2.

REFERENCES

Abraham, A. (2001) in Neuro-Fuzzy Systems: State-of-the-
art Modeling Techniques, Connectionist Models of Neurons,
Learning Processes, and Artificial Intelligence, Lecture Notes

in Computer Science, Vol. 2084, (eds J. Mira and A. Prieto),
Springer Verlag, Germany, (pp. 269–276).

Abraham, A. (2002) Intelligent Systems: Architectures and Per-
spectives, Recent Advances in Intelligent Paradigms and Appli-
cations, in Studies in Fuzziness and Soft Computing, Chapter 1,
(eds A. Abraham, L. Jain and J. Kacprzyk), Springer Verlag
Germany, (pp. 1–35).

Bishop, C.M. (1995) Neural Networks for Pattern Recognition,
Oxford University Press, UK.

Eberhart, R., Shi, Y. and Kennedy, J. (2001) Swarm Intelligence,
Morgan Kaufmann, San Francisco, CA.

Fogel, D.B. (1999) Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence, 2nd edn, IEEE Press,
Piscataway, NJ.

Fogel, L.J., Owens, A.J. and Walsh, M.J. (1967) Artificial Intelli-
gence Through Simulated Evolution, John Wiley & Sons, New
York.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning, Addison-Wesley Publishing Cor-
poration, Inc, Reading, MA.

Holland, J. (1975) Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Harbor, MI.

Kohonen, T. (1988) Self-organization and Associative Memory,
Springer-Verlag, New York.

Koza, J.R. (1992) Genetic Programming, MIT Press, Cambridge,
MA.

Nguyen, H.T. and Walker, E.A. (1999) A First Course in Fuzzy
Logic, CRC Press, USA.

Pearl, J. (1997) Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, Morgan Kaufmann Publishers,
San Francisco, CA.

Rechenberg, I. (1973) Evolutionsstrategie: Optimierung technis-
cher Systeme nach Prinzipien der biologischen Evolution,
Fromman-Holzboog, Stuttgart.

Schwefel, H.P. (1977) Numerische Optimierung von Com-
putermodellen Mittels der Evolutionsstrategie, Birkhaeuser,
Basel.

Turing, A.M. (1950) Computing Machinery and Intelligence
http://abelard.org/turpap/turpap.htm.

Turing Machine. (2004) http://www.turing.org.uk/turing/.

Zadeh, L.A. (1965) Fuzzy Sets. Journal of Information and
Control, 8, 338–353.




