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Abstract 

 
Evolutionary Algorithms are inspired by biological 

and sociological motivations and can take care of 
optimality on rough, discontinuous and multimodal 
surfaces. During the last few decades, these algorithms 
have been successfully applied for solving numerical 
bench mark problems and real life problems. This 
paper presents the application of two popular 
Evolutionary Algorithms (EA); namely Particle Swarm 
Optimization (PSO) and Differential Evolution (DE) 
for optimizing the average bit rate of an optical disc 
servo system. Two optimization models are considered 
in the present study subject to the various constraints 
due to servo motor. The results obtained by PSO and 
DE are compared with the experimental and the design 
results given in the literature. Simulation results 
clearly show the superior performance of PSO and DE 
algorithms. 
 
1. Introduction 
 

The Electrical Engineering community has shown a 
significant interest in optimization for many years [1] – 
[4]. In particular, there has been a focus on global 
optimization of numerical, real- valued problems for 
which exact and analytical methods do not apply. 
During the last few decades, many general-purpose 
optimization algorithms have been proposed for 
finding optimal solutions, some of which are; 
Evolution strategies [5], evolutionary programming 
[6], Genetic algorithms (GA) [7], Particle Swarm 
Optimization (PSO) [8] and Differential Evolution 
(DE) [9]. These algorithms are also known as 
Evolutionary Algorithms (EAs) or Nature Inspired 
Algorithms because they follow simple rules of nature. 
These algorithms have also become popular because of 
their advantages over the traditional optimization 
techniques (decent method, quadratic programming 
approach, etc). They have been successfully applied to 

a wide range of engineering optimization problems 
[10] - [14] etc. In this study we investigate the 
performance of PSO and DE for optimizing the 
average bit rate of an optical disc servo system. 

Servo motor is one of the most sophisticated motion 
control devices in electric motors. In CD-ROM or 
DVD ROM, the objective function mainly consists of 
maximizing the average bit transfer rate subject to 
various constraints due to servo motor, control circuits 
decoding electronics etc. In the present article we have 
taken a popular yet complex problem of CD/ DVD 
ROM systems where the objective is to optimize the 
speed of the servo motor. We considered two cases of 
optimization (i) average bit rate in seeking and (ii) 
average bit rate of zoned CLV. The mathematical 
models are taken from Jung and Sheu [15]. A 
preliminary version of this study was already presented 
by Pant et al [16], but in the present study more 
elaborated analysis is given. 

The structure of the paper is as follows; Section 2 
briefly describes the mathematical models of the 
optimization problems. Section 3, gives a general 
introduction to PSO and DE algorithms. In Section 4, 
the penalty approach for handling constraints is 
discussed. Section 5 gives the parameter settings and 
numerical results; finally this paper concludes with 
section 6. 

. 
 
2. Mathematical Model of the Problem 
 

With the boost in CD/ DVD ROM market, the 
demand of smaller access times and higher data rates 
are also increasing. The design of a CD servo system 
employs a constant linear velocity (CLV) strategy in 
which the disc is rotated at a varying rotation speed to 
maintain a synchronized velocity between the pickup 
head and track across the disc radius [17], [18]. 
Several adaptive speed algorithms for CD ROM 
systems are proposed in [19]. The objective of the 



present paper is to observe the effectiveness of PSO 
and DE algorithms for solving two different 
optimization models to maximize the average bit rate, 
subject to various constraints imposed by the servo 
motor, control circuits, decoding electronics and other 
limitation factors. The model of the design of the speed 
profile has been adopted from Jung and Sheu [15]. 
 
2.1. Speed Profile in Seeking 
 

One advantage of adaptive speed control in 
optical disc servo system is reduction of seek time and 
hence access time during seek motion. Typically there 
are two simultaneous control activities involved in 
seek motion. The spindle motor is controlled to adjust 
the speed and the sledge motor (as well as the voice 
coil) is commanded to move the optical head to the 
desired position. If the speed profile is well designed 
the system is able to read out data for processing once 
the pickup head is in its target position. Otherwise, the 
access time will be increased. 
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The objective function is a linear function with 
unknown vector ω.  

Subject to the constraints: 
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2.2. Zoned Constant Linear Velocity Control 
(CLV) 
 
In zoned CLV control, the disc area is partitioned into 
m zones R1 = Rin, R2, R3… Rm. Zoned CLV assumes 
that within each zone the linear velocity or over speed 
factor is fixed. If Ni denotes the over speed factor in 
the ith zone, then the rotation speed is given as 
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The objective function for maximizing the average bit 
rate is given as 
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Subject to the constraints 
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Table 1 Design Parameters 
Parameter Value Unit 

Rin 25 mm 
Rout 58 mm 
B0 150 KB/sec 
p 1.6 µm 
v0 1.3 m/sec 
vh 12 mm/sec 
Km 0.0062 Nm/A 
Kb 0.0062 Nm/A 
Ra 5 Ω 
D 5.0 x 10-6 Kg m2 

Nmin 12 - 
Nmax 24 - 

maxω  7500 rpm 
 



3. Particle Swarm Optimization and 
Differential Evolution 
 

PSO and DE algorithms may be termed as general 
purpose algorithms for solving optimization problems. 
Both of these methods are assisted with special 
operators that are based on some natural phenomenon. 
These algorithms are iterative in nature and in each 
iteration the operators are invoked to reach to optimal 
(or near optimal) solution. Pseudo codes of all the 
algorithms used in this study are given in Appendix A. 
A brief description of PSO and DE are given in the 
following subsections:  
 
3.1. Particle Swarm Optimization 
 

PSO was proposed by Kennedy and Eberhart in 
1995 [8]. It is inspired by the complex socio 
cooperative behavior displayed by various species like 
flocks of birds and shoals of fish. In PSO, the members 
of the swarm or the particles are placed in the 
parameter space of a particular problem, and each 
particle evaluates the fitness at its current location. The 
movement of each particle in space is determined by 
the history of its own fitness and also by the fitness of 
its neighbors. It then moves through the parameter 
space with a velocity determined by the locations and 
processed fitness values of those other members, along 
with some random perturbations. The members of the 
swarm that a particle can interact with are called its 
social neighborhood. Together the social 
neighborhoods of all particles form a social network of 
PSO.  

For a D-dimensional search space the position of 
the ith particle is represented as Xi = (xi1,xi2,..xiD). Each 
particle maintains a memory of its previous best 
position Pi = (pi1, pi2… piD) and a velocity Vi = (vi1, 
vi2,…viD) along each dimension . At each iteration, the 
P vector of the particle with best fitness in the local 
neighborhood, designated g, and the P vector of the 
current particle are combined to adjust the velocity 
along each dimension and a new position of the 
particle is determined using that velocity. The two 
basic equations which govern the working of PSO are 
that of velocity vector and position vector are given 
by: 

)()( 2211 idgdidididid xprcxprcvv −+−+=ω  (12) 
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The first part of equation (12) represents the inertia 
of the previous velocity, the second part is tells us 
about the personal thinking of the particle and the third 

part represents the cooperation among particles and is 
therefore named as the social component [20]. 
Acceleration constants c1, c2 [21] and inertia weight ω 
[22] are predefined by the user and r1, r2 are the 
uniformly generated random numbers in the range of 
[0, 1]. 

 
3.2. Differential Evolution 
 

Differential evolution (DE) is an Evolutionary 
Algorithm (EA) proposed by Storn and Price in 1995 
[9]. DE is similar to other EAs particularly Genetic 
Algorithms (GA) [23] in the sense that it uses the same 
evolutionary operators like selection recombination 
and mutation like that of GA. However the significant 
difference is that DE uses distance and direction 
information from the current population to guide the 
search process. The performance of DE depends on the 
manipulation of target vector and difference vector in 
order to obtain a trial vector.  

A general DE variant may be denoted as 
DE/X/Y/Z, where X denotes the vector to be mutated, 
Y specifies the number of difference vectors used and 
Z specifies the crossover scheme which may be 
binomial or exponential. For the more details the 
interested reader may please refer to [24]. In this study, 
the mutation strategy DE/rand/1/bin [9] is considered. 
It is also known as the classical version of DE and is 
perhaps the most frequently used version of DE. DE 
works as follows: First, all individuals are initialized 
with uniformly distributed random numbers and 
evaluated using the fitness function provided. Then the 
following will be executed until maximum number of 
generation has been reached or an optimum solution is 
found. 

In a D-dimensional search space, for each target 
vector gix , , a mutant vector is generated by 
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where },....,2,1{,, 321 NPrrr ∈ are randomly chosen 
integers, which are different from each other and also 
different from the running index i. F (>0) is a scaling 
factor which controls the amplification of the 
differential vector )

32
( ,, grgr xx − .  

Once mutation phase is complete, crossover is 
introduced in order to increase the diversity of the 
perturbed parameter vectors. The parent vector is 
mixed with the mutated vector to produce a trial 
vector 1, +gjiu , 
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where j , k ∈ {1, 2,……, D}; k is a random parameter 
index, chosen once for each i .

 
]1,0[∈jrand ; Cr is the 

crossover constant takes values in the range [0, 1].  
Finally selection takes place where a tournament is 

held between the target vector and trial vector and the 
one with better fitness function is allowed to enter the 
next generation. In this way individuals in a new 
generation are as good as or better than the individuals 
in the previous generation. 
 
4. Penalty Approach for Handling 
Constraints 
 

Many real-world optimization problems are solved 
subject to sets of constraints. The search space in 
Constrained Optimization Problems (COPs) consists of 
two kinds of solutions: feasible and infeasible. Feasible 
points satisfy all the constraints, while infeasible points 
violate at least one of them. Therefore the final 
solution of an optimization problem must satisfy all 
constraints. 

In this paper, the two algorithms PSO and DE 
handle the constraints using the concept of penalty 
functions. In the penalty function approach, the 
constrained problem is transformed into an 
unconstrained optimization algorithm by penalizing the 
constraints and building a single objective function, 
which is minimized using an unconstrained 
optimization algorithm. 
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with α a positive constant, representing the power of 
the penalty. The inequality constraints are considered 
as g(x) and h(x) represents the equality constraints. ng 
and nh denotes the number inequality and equality 
constraints respectively. λ is the constraint penalty 
coefficient. 

5. Experimental Settings and Results 
 

In this section we analyze the numerical results 
obtained after applying the PSO and DE algorithms to 
the optimization models given in Section 2. It can be 
seen that both the problems are constrained in nature. 
For handling constraints, penalty approach is used. We 
would like to point out that the authors in [15] have 
suggested the use of Linear Programming approach for 
solving the speed profile in seeking and semi-infinite 
approach (SIA) for solving CLV control. However in 
the present article we used PSO and DE for solving 
both the cases.  

There are certain parameters associated with PSO 
and DE which require a proper setup for the optimum 
performance of the algorithm. The population size is 
fixed at 30 for both the algorithms. Inertia weight w is 
taken as linearly decreasing, which starts at 0.9 and 
ends at 0.4. The acceleration constants c1, c2 are fixed 
at 2.0. The DE parameter Cr = 0.5 and F = 0.5. For 
each algorithm, the stopping criteria is to terminate the 
search process when one of the following conditions is 
satisfied: (1) the maximum number of generations is 
reached (assumed 500 generations), (2) | fmax - fmin  | < 
10-4 where f is the value of objective function. Since 
PSO and DE are stochastic techniques, more than one 
run is required to ascertain the final solution. In the 
present article, PSO and DE algorithms are executed 
30 times and the best value throughout the run is 
recorded. 

 
Table 2 Results of PSO and DE for Seeking 

Number of 
Segments 

Bit rate (KB/sec) 
PSO DE 

5 4194.126987 4194.145646 

6 4227.906719 4227.771129 

7 4298.238376 4298.22215 

8 4382.221168 4382.221215 

9 4478.242506 4478.24225 

10 4582.023881 4582.02379 
 
The numerical results of both the problems are 

given in Table 2 – 5. Figures 1 – 4 show the 
performance of PSO and DE algorithms for Seeking 
and Zoned CLV. From the numerical results of Table 
2, we can see that PSO and DE gave more or less same 
results in terms of objective function values i.e. in 
terms of Bit rate. But if we compare the average 
number of generations and time taken by the 
algorithms for seeking then DE performs better than 



PSO in 3 cases out of 6 cases tried. In the remaining 3 
cases PSO gave better results than DE. Likewise for 
zoned CLV, the results given by PSO are better than 
DE in 3 test cases out of 4 cases. If we compare the 
results of PSO and DE for both the problems (Seeking 
and Zoned CLV) with the results in the literature [15] 
then both the algorithms perform better than the results 
quoted in the literature. 

 
 

Table 3 Average number of generations and run time 
taken by PSO and DE for Seeking 

 
Number 

of 
Segments 

PSO DE 

Generation 
Run 
time 
(sec) 

Generation 
Run 
time 
(sec) 

5 500+ 0.8 268 0.5 

6 500+ 1.4 300 0.7 

7 500+ 1.7 324 1.0 

8 257 1.1 313 1.3 

9 268 1.5 337 1.8 

10 276 1.8 370 2.5 

 

Table 4 Results of PSO and DE for Zoned CLV 
 

Number 
of 
Zones  

Bit rate (KB/sec) 

PSO DE Results 
in [15] 

5 2829.854007 2821.483415 2741.313 

6 2887.411097 2880.843368 2770.959 

7 2912.814069 2913.969309 2775.275 

8 2946.866655 2943.485306 2793.640 

 
 

Table 5 Comparison Results of PSO and DE 
 

Speed 
Profile PSO DE Results 

in [15] 
Zoned 
CLV 
(Bit rate 
KB/sec) 

2887.411097 2880.843368 2770.959 

Seeking 4227.906719 4227.771129 2885.414 

 

 
Figure 1 Comparison of PSO and DE in terms of Bit rate for 

Seeking 

 
Figure 2 Comparison of PSO and DE in terms of Average 

number of generations for Seeking 

 

Figure 3 Comparison of PSO and DE in terms of total time for 
Seeking 



 
Figure 4 Comparison results of Zoned CLV 

 
6. Conclusion 
 

This paper discusses the use of PSO and DE 
algorithms for maximizing the average bit rate of 
optical disc servo systems. Two cases are considered. 
The first one being a linear model of optimizing the 
average bit rate in seeking and the second case being 
zoned CLV control. The objective function considered 
in both the cases is to maximize the average bit rate 
subject to various constraints due to Servo motor. 
Simulation results clearly show the superior 
performance of PSO and DE which enhanced the 
speed of data transfer (KB/sec) by programming 
optimum speed in the servo motor. However we would 
like to add that we have used a basic version of PSO 
and DE whereas much advanced versions are available 
in literature. It is very much possible that using the 
more sophisticated versions, the performance can be 
further improved. Besides PSO there are other general 
purpose algorithms like Genetic Algorithms, 
Evolutionary Programming, Ant Colony Optimization 
etc. which may be used for comparison.  
 
7. Appendix 
 
Pseudo codes of algorithms used in this study: 
 
Pseudo code for Particle Swarm optimization 
Step1: Initialization. 
  For each particle i in the population: 
  Step1.1: Initialize X[i] with Uniform distribution. 
  Step1.2: Initialize V[i] randomly. 
  Step1.3: Evaluate the objective function of X[i], and 

assigned the value to fitness[i]. 
  Step1.4: Initialize Pbest[i] with a copy of X[i]. 
  Step1.5: Initialize Pbest_fitness[i] with a copy of 
fitness[i]. 

  Step1.6: Initialize Pgbest with the index of the particle 
with the least fitness. 

Step2: Repeat until stopping criterion is reached: 
  For each particle i: 
  Step 2.1: Update V[i] and X[i] according to 

equations (1) and (2). 
  Step2.2: Evaluate fitness[i]. 
  Step2.3: If fitness[i] < Pbest_fitness[i] then Pbest[i] 

=X[i], Pbest_fitness[i] =fitness[i]. 
  Step2.4: Update Pgbest by the particle with current 

least fitness among the population. 
 
Pseudo code for Differential Evolution 
Initialize the population 
Calculate the fitness value for each particle 
Do 
For i = 1 to number of particles 
 Do mutation, Crossover and Selection 
End for. 
Until stopping criteria is reached. 
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