
Hardware Software Partitioning Problem in Embedded System Design

Using Particle Swarm Optimization Algorithm

Alakananda Bhattacharya
1
, Amit Konar

1
, Swagatam Das

1
, Crina Grosan

2
 and Ajith Abraham

3

Department. of Electronics and Telecommunication Engg, Jadavpur University, Kolkata, India
1

b_alaka2@hotmail.com, konaramit@yahoo.co.in,, swagatamdas19@yahoo.co.in

Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca, Romania
2

cgrosan@cs.ubbcluj.ro

Center of Excellence for Quantifiable Quality of Service
3

Norwegian University of Science and Technology, Norway

ajith.abraham@ieee.org

Abstract

Hardware/software partitioning is a crucial

problem in embedded system design. In this paper, we

provide an alternative approach to solve this problem

using Particle Swarm Optimization (PSO) algorithm.

Performance analysis of the proposed scheme with

Integer Linear Programming, Genetic Algorithm and

Ant Colony Optimization technique has been compared

using standard benchmark datasets, and the computer

simulations reveal that the proposed approach

outperforms all the meta-heuristic based existing

techniques with respect to cumulative runtimes for

several runs of the same program. The Integer Linear

Programming has been found to yield the optimal

solutions, and the proposed swarm scheme yields sub-

optimal solution, sufficiently close to the reported

results obtained for integer programming.

Keywords: Genetic Algorithm, Hardware/Software

Partitioning, Integer Linear Programming, Particle

Swarm Optimization

1. Introduction

An embedded system is a computing system rather

than desktop computers/laptops/palmtops, capable of

reacting spontaneously with sensory inputs in real time

and designed for dedicated applications. Typical

applications that employ embedded systems include fax

machines, copiers, printers, scanners, cash registers,

alarm systems, card readers, mobile phones, digital

cameras, washing machines, DVD players, speech

recognizers and many more. Like typical computer

systems, embedded systems too include hardware and

software components. In other words, it is common to

use both application-specific hardware accelerator

circuits and general-purpose programmable units with

appropriate software for embedded system design.

Usually application specific hardware is much faster

than software and also more power efficient, but

expensive at the some time. Software, on the other

hand, is cheaper, but slow and consumes much power

when implemented on a general purpose processor.

Hence for faster realization or power-critical situations,

hardware based systems are preferred, whereas non-

critical modules of embedded systems are realized in

software. Consequently a trade-off between cost, power

and performance needs to be devised to realize an

embedded system on a mixed hardware/software

platform.

 Among the most crucial steps in embedded system

design, partitioning, that is, deciding which

components/modules of the system should be realized

on hardware and which ones in software is a

fundamental problem. This is referred to

hardware/software partitioning problem in embedded

systems literature [1]. Traditionally hardware/software

partitioning was accomplished manually. However,

with the increased complexity in embedded systems,

researchers currently prefer an automatic approach to

handle this problem.

 Classically there exist two approaches, exact and

heuristic, to handle the hardware/software partitioning

problem. The exact algorithms include branch and

bound [2], dynamic programming [3], [4] and integer

linear programming [1], [5], [6]. Most of the

partitioning algorithms in the existing literature,

however, are heuristic. This is due to the fact that

partitioning is an NP hard problem, and therefore exact

solutions tend to be quite slow for bigger dimensions of

the problem [2], [7]. Among the well known heuristic

based algorithms, Genetic Algorithm (GA) [8-11],

simulated annealing [12-14], tabu search algorithm

[12], greedy algorithms [15], [16] and Ant Colony

Optimization (ACO) [17] are most common.

 Besides the heuristic algorithms referred to above,

sometimes family of heuristics such as hierarchical

clustering [7], [18], [19], [20]. Kernighan-Lin

heuristics [21] are equally useful for application in

partitioning problem. Scheduling best algorithms,

which could be the third variety of partitioning

algorithms, have also been used in the recent literature

[6], [9], [15], [22], [23].

 In this paper, we propose a meta-heuristic

algorithm, which was originated from the sociological

behavior of the intelligent creatures such as eagles,

bees, ants. These creatures compete for food and

thereby follow a dynamics to obtain optimal food from

a given pool of resource food-grains. Such algorithms

based on the collective behavior of these creatures are

referred to as swarm intelligence algorithm. Particle

Swarm Optimization (PSO) is one such well known

swarm intelligence algorithm. In PSO, we define

particles to represent agents to search optima of a given

non-linear and rough search landscape. Classical

optimization techniques that employ derivatives to find

optima cannot be used in many engineering problems

because of several discontinuities of the search surface.

PSO is a possible scheme to determine optima for such

engineering optimization problems. Hardware/software

partitioning problem can be formulated as an

optimization problem, and multi-agent search such as

PSO can be invoked to find optimal solution to the

partitioning problem. Here each particle position

denotes a trial solution to the problem. Trial solutions

are iterated using the steps of the PSO algorithm to

determine better candidate solution and the process is

repeated until no further improvement in solution is

detected. The position of the best particles at this stage

is considered as the final solution to the problem.

 In this paper, we compare PSO with ACO, GA and

other heuristic/meta-heuristic algorithms using standard

benchmarks available in the literature. The paper has

been divided into six major Sections. Section 2 offers a

formal definition to the problem. In Section 3 we

briefly outline the main steps of the PSO algorithm,

and also illustrate the scope of PSO in

hardware/software partitioning problem. Computer

simulation and comparison with other heuristic/meta-

heuristic algorithm are presented in Section 4 and

conclusions are listed in Section 5.

2. Formal Definitions

Arato et al. [8] formalized the hardware/software

partitioning problem by an undirected graph G = (V,

E), where V denotes the set of vertices and E denotes

the set of edges. The vertices refer to tasks, and edges

refer to communication between the selected pair of

vertices. They took an attempt to partition the set of

vertices V into VH and VS, where VH denotes the tasks

to be realized on a hardware and VS denotes the tasks to

be realized on software. Obviously VH ∩ VS = ∅ and

VH U VS = V. In this paper, we, however formalize the

hardware/software partitioning problem by using a task

graph following Marwedel [24].

 A task graph is a directed graph consisting of

nodes/vertices V and edges E. Thus the task graph T =

<V, E> where V = {V1, V2, ……, Vn} denotes the set

of tasks and E = {eij} for i, j = 1 to n denotes the set of

edges from vertex i to vertex j. The edges here refer to

dependencies. In other words, the existence of a

directed edge eij indicates that task representing node i

has to be executed prior to execution of the task

denoted by node j.

3. Hardware/Software Partitioning by

Particle Swarm Optimization Algorithm

In this Section we first briefly outline the particle

swarm optimization (PSO) algorithm, and then

demonstrate the scope of the algorithm in the

partitioning problem.

3.1 Classical PSO Algorithm

Motivated by the behavioral and sociological

characteristics of bees and flies, Eberhartt and Kenedy

[25] proposed the PSO algorithm. It has been observed

that bees usually identify their food by a collective

effort. The dynamics of a bee to move towards the

target position (location of food resources) depends on

three factors: i) the current direction of its motion, ii)

the global best position identified by all its fellow bees

until this time, and iii) the local best position that the

bee has experienced so far.

Let xi (t) be the current position of the ith particle

at time t, vi (t) be the velocity of the ith bee at time t, pi
l

(t) be the local best position experienced by the ith bee

until time t, p
g

(t) be the global best position of all the

bees at time t, the dynamics of the ith bee then can be

described by the following two equations:

vi (t) = w vi(t − 1) + αt
l
 (pi

 l
(t) − xi (t))

 + αt
g
 (p

g
 (t) − xi (t)) (1)

xi (t) = xi (t − 1) + vi (t) (2)

where w, αt
l
 and αt

g
 denote the inertial velocity,

local acceleration coefficient (LAC) and global

acceleration coefficient (GAC). The second equation

apparently seems to have unmatched dimensions on the

two sides of the equality. The confusion regarding

dimension can be resolved by considering the

following interpretation:

xi (t) = xi (t − 1) + (t − t − 1) vi (t) (3)

The coefficient of the velocity term in the last

equation being one is implicitly mentioned by the

original equation (1).

 The PSO algorithm has been used for solving

optimization, search and machine learning problems. In

this section, we would like to illustrate the scope of

PSO in optimization problems. Classical optimization

problems usually require computing partial/total

derivatives of the given objective function to be

optimized. Unfortunately, in many engineering and

scientific optimization problems, the surface of the non

linear objective function being discontinuous at several

points, derivative based optimization techniques can no

longer be employed for such problems. PSO is one

such derivative free optimization technique, where

given the objective function, we can determine the

optima by executing the PSO algorithm. For

convenience let us consider a simple two dimensional

surface z = x1
2
 + x2

2
, which has the minima at the

origin; (0, 0). To make the PSO amenable for such

optimization problem, we define

 f = x1
2
 + x2

2

as the fitness function, which will measure the

fitness of a particle in the PSO algorithm.

 The ants/bees/swaps in PSO algorithm are

modeled by particles. Suppose a number of bees are

left on a surface z = x1
2
 + x2

2
, where they have a food

resource at the origin, the minima of the surface. Here,

each bee (or the particle) has two dimensions x1 and x2

and they can measure their height by evaluating f = x1
2

+ x2
2
. Each particle in his trial motions over iterations

remembers its local best position so far attained, and

reports the local best position to a black board manager

who determines the minimum of the local best

positions attained by all the particles at the end of a

iteration. The particles change their position following

the basic PSO dynamics presented in equations (1) and

(2). The basic PSO algorithm is outlined below.

PSO Algorithm

Input: Initial position xi (0) and velocity vi (0) for

each particle i, the fitness function f (•);

Output:The global best position attained by the

best particle;

Step 1:For each particle i,

 Evaluate f (xi);

 If fi (xi) < pi
l
 (t),

 pi
l
 (t) ←ni (t),

 end for;

 p
g
 (t) ←Min (pi

l
 (t));

 ∀i

Step 2: Evaluate the particle’s next position by

executing the basic PSO equations (1) and (2) in order.

Step 3: Repeat steps 1 and 2 until convergence

occurs by exhibiting xi (t) − xi (t − 1) < δ, ∀i, where

δ is a pre-assigned small positive number.

3.2. PSO in Hardware/Software Partitioning

Problem

The PSO can be employed for hardware/software

partitioning problem. Here, we consider each particle

to be n dimensional, where n denotes the number of

tasks on the given task graph.

Tasks

Figure 1: Representation of a particle by a n-

dimensional string

Figure 1 provides one way of representing a particle

by a n-dimensional binary string, where a “1” and a “0”

respectively denote hardware and software

representation of the task. Each particle thus attempts

to determine the optimal solution for the

hardware/software partitioning problem. The fitness

function of the ith particle is defined by

 N

 Fi = ∑ Aj Tj, (4)

 j = 1

where Aj denotes the area required for the VLSI

implementation of the task and Tj denotes the execution

time on that platform. When the task j is realized on

software, Aj is considered unity and Tj denotes the

execution time of the task on a given software platform.

1 0 0 …… 1

T1 T2 T3 Tn

Figure 2. Results of computer simulations for cumulative running time of the algorithms on benchmark problems.

Figure 3. Results of computer simulation for cumulative cost of found solution of different algorithms on different

benchmark problems.

5.0

0.2

ILP

ACO

GA

PSO

 IDEA (112 nodes) RC6 (324 nodes) MARS (412 nodes)

Test case

C
u

m
u

la
ti

v
e

 r
u

n
n

in
g

ti
m

e
 o

f
a

lg
o

r
it

h
m

s

GA

ACO

PSO

ILP

 IDEA (112 nodes) RC6 (324 nodes) MARS (412 nodes)

Test case

 5000

 2500

C
u

m
u

la
ti

v
e

 c
o

st
 o

f
fo

u
n

d

so
lu

ti
o

n

The particles thus traverse in a N-dimensional space

of tasks, and attempt to determine the optimal solution

by minimizing the fitness function. The local best

position and the global best position here refers to the

best position of a particle with respect to smaller fitness

function locally and globally respectively until the

current iteration. The solution for the classical

hardware/software partitioning problem is obtained by

identifying the position of the best particle that has the

smallest fitness function. Each dimension of the ith

particle in the present case being binary (1 for

hardware and 0 for software realization), the solution

for the best particle is a binary string describing the

hardware/software realization of all the n tasks.

4. Experimental Results

A computer simulation of the PSO, ACO, ILP and

GA was performed for the proposed hardware/software

partitioning problem using three standard benchmarks,

such as IDEA, RC6 and MARS, and the results of the

cumulative runtimes and cost of the solutions found by

the algorithms are illustrated in Figures 2 and 3

respectively. It is known that ILP always find the

optimum [26], so we were interested to examine the

performance of the meta-heuristic algorithms: GA,

PSO and ACO that can give rise to a near-optimal

solution, acceptable to embedded system designers.

This is due to the fear that ILP is too costly to realize

for its massive computations. An examination of Figure

2 reveals that PSO outperforms all meta-heuristic

algorithms from the point of views of cumulative

runtimes.

Cumulative cost of found solutions in each

benchmark is given in Figure 3. Figure 3 also reveals

that the cumulative cost, which gives a measure of the

quality of solution, is found to be the best for ILP and

next for PSO. So, the role of PSO as a meta-heuristic

to the partitioning problem becomes evident from the

results of computer simulations.

5. Conclusions

In this paper, we introduced a new simplified model

for hardware/software partitioning problem. Although

it is NP hard in general, we could find an efficient

approach to solve the problem using Swarm

Intelligence techniques. We compare the performance

of the proposed algorithms with already reported

results on ILP [8], GA [8] and ACO [27]. The

empirical test revealed that ILP-based solution works

most efficiently for graphs with as many as few

thousand nodes and yields optimal solutions, whereas

the PSO gives near optimal solution on an average. It is

further observed that the PSO based algorithm

outperforms GA, ACO and ILP with respect to runtime

requirements for the given partitioning problem.

6. References

[1] Z. A. Mann and A. Orban, “Optimization problems

in system-level synthesis,” in Proc.3
rd

 Hungarian-

Japanese Symposium on Discrete Mathematics

and Its Applications, 2003.

[2] N. N. Binh, M. Imai, A. Shiomi, and N Hkichi, “A

hardware/software partitioning algorithm for

designing pipelined ASIPs with least gate counts,”

in Proc.33
rd

 Design Automation Conference, 1996.

[3] J. Madsen, J. Grode, P. V. Knudsen, M. E.

Petersen, and A. Haxthausen, LYCOS: The Lyngby

co-synthesis system. Des. Automat. Embedd. Syst.

2, 2, 195-236, 1997.

[4] M. O’Nils, A. Jantsch, A. Hemani, and H.

Tenhunen, “Interactive hardware-software

partitioning and memory allocation based on data

transfer profiling,” in Proc. International

conference on Recent Advances in Mechatronics,”

1995.

[5] R. Niemann, Hardware/Software Co-Design for

Data Flow Dominated Embedded Systems,”

Kluwer Academic Publishers, Norwell, MA, 1998.

[6] R. Niemann and P. Marwedel, An algorithm for

hardware/software partitioning using mixed integer

linear programming, Des. Automat. Embedd. Syst,

Special issue: Partitioning Methods for Embedded

Systems 2, pp. 165-193, 1997.

[7] F. Vahid and D. Gajski, “Clustering for improved

system-level functional partitioning,” in Proc. 8
th

International Symposium on System Synthesis,

1995.

[8] P. Arato, S. Zuhasz, Z. A. Mann, A. Orban, and D.

Papp, “Hardware/software partitioning in

embedded system design,” in Proc. of the IEEE

International Symposium on Intelligent Signal

Processing, 2003.

[9] R. P. Dick and N. K. Jha, “MOGAC: A

multiobjective genetic algorithm for hardware-

software co-synthesis of hierarchical

heterogeneous distributed embedded systems,”

IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst.

17, 10, pp. 920-935, 1998.

[10] G. Quan, X. Hu, and G. Greenwood, “Preference-

driven hierarchical hardware/software

partitioning,” in Proc. of the IEEE/ACM

International Conference on Computer Design,

1999.

[11] V. Srinivasan, S. Radhakrishnan, and R. Vemuri,

“Hardware software partitioning with integrated

hardware design space exploration,” in Proc. of

DATE, 1998.

[12] P. Eles, Z. Peng, K. Kuchcinski, andA. Doboli,

System level hardware/software partitioning based

on simulated annealing and tabu search, Des.

Automat. Embedd. Syst. 2, 1 (Jan.), pp. 5-32, 1997.

[13] R. Ernst, J. Henkel, and T. Brenner,

Hardware/software cosynthesis for

microcontrollers, IEEE Des. Test Comp. 10, 4, pp.

64-75, 1993.

[14] M. Lopez-Vallejo, J. Grazal, and J. C. Lopez,

“Constraint–driven system partitioning,” in Proc.

of DATE, pp. 411-416, 2000.

[15] K. S. Chatha and R. Vemuri, “MAGELLAN:

Multiway hardware-software partitioning and

scheduling for latency minimization of hierarchical

control-dataflow task graphs,” in Proc. of CODES

01, 2001.

[16] J. Grode, P. V. Knudsen, and J. Madsen,

“Hardware resource allocation for

hardware/software partitioningin the LYCOS

system,” in Proc. of Design Automation and Test

in Europe (DATE ’98), 1998.

[17] M. Dorigo and T. Stutzle, Ant Colony

Optimization, MA, MIT Press, 2004.

[18] T. F. Abdelzaher and K. G. Shin, “Period-based

load partitioning and assignment for large real-

time applications,” in IEEE Trans. Comput. 49, 1,

pp. 81-87, 2000..

[19] E. Barros, W. Rosenstiel, and X. Xiong,

“Hardware/software partitioning with UNITY,” in

Proc. 2
nd

 International Workshop on Hardware-

Software Codesign, 1993.

[20] F. Vahid, “Partitioning sequential programs for

CAD using a three-step approach,” ACM Trans.

Des. Automat. Electron. Syst. 7, 3 (July), pp. 413-

429, 2002.

[21] B. W. Kernighan and S. Lin, An efficient heuristic

procedure for partitioning graphs, Bell Syst. Techn.

J. 49, 2, pp. 291-307, 1970.

[22] A. Kalavade and E. A. Lee, The extended

partitioning problem: Hardware/software mapping,

scheduling and implementation-bin selection,”

Des. Automat. Embedd. Syst. 2, 2, pp. 125-164,

1997.

[23] M. Lopez-Vallezo and J. C. Lopez, On the

hardware-software partitioning problem: System

modeling and partitioning techniques, ACM Trans.

Des. Automat. Electron. Syst. 8, 3 (July), pp. 269-

297.

[24] P. Marwedel, Embedded System Design, Springer,

2006.

[25] R. C. Eberhart and J. Kennedy, “A new optimizer

using particle swarm theory,” in Proc. 6
th

 Symp.

Micro Machine and Human Science, Nagoya,

Japan, 1995, pp. 39-43.

[26] L. Wolsey, Integer Programming, John Wiley &

sons, 1998.
[27] G. Wang, W. Gong and R. Kastner, “Application

partitioning on programmable platforms using the ant

colony optimization,” J. of Embedded Computing, vol.

11, no. 19, 2006.

