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Abstract: Decision-making is a process of choosing among alternative courses of 
action for solving complicated problems where multi-criteria objectives are 
involved. The past few years have witnessed a growing recognition of Soft 
Computing (SC) technologies that underlie the conception, design and utilization 
of intelligent systems. In this chapter, we present different SC paradigms 
involving an artificial neural network trained using the scaled conjugate gradient 
algorithm, two different fuzzy inference methods optimised using neural network 
learning/evolutionary algorithms and regression trees for developing intelligent 
decision support systems. We demonstrate the efficiency of the different 
algorithms by developing a decision support system for a Tactical Air Combat 
Environment (TACE). Some empirical comparisons between the different 
algorithms are also provided. 
 
1. Introduction 

Several decision support systems have been developed mostly in various fields 
including medical diagnosis [5], business management, control system [41], 
command and control of defence and air traffic control [8] and so on. Usually 
previous experience or expert knowledge is often used to design decision support 
systems. The task becomes interesting when no prior knowledge is available. The 
need for an intelligent mechanism for decision support comes from the well-
known limits of human knowledge processing. It has been noticed that the need 
for support for human decision makers is due to four kinds of limits: cognitive, 
economic, time and competitive demands [13].  Several artificial intelligence 
techniques have been explored to construct adaptive decision support systems.  A 
framework that could capture imprecision, uncertainty, learn from the 
data/information and continuously optimize the solution by providing interpretable 
decision rules would be the ideal technique. Several adaptive learning frameworks 
for constructing intelligent decision support systems have been proposed 
[7][14][16][36]. Figure 1 summarizes the basic functional aspects of a decision 
support system. A database is created from the available data and human 



knowledge. The learning process then builds up the decision rules. The developed 
rules are further fine tuned depending upon the quality of the solution using a 
supervised learning process. 
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Figure 1. Database learning framework for decision support system 

To develop an intelligent decision support system, we need a holistic view on the 
various tasks to be carried out including data management and knowledge 
management (reasoning techniques). The focus of this chapter is knowledge 
management, which consists of facts and inference rules used for reasoning.   
 
Fuzzy logic, when applied to decision support systems, provides formal 
methodology to capture valid patterns of reasoning about uncertainty. Neural 
networks are popularly known as blackbox function approximators. Recent 
research work shows the capabilities of rule extraction from a trained network 
positions [30][31] neurocomputing as a good decision support tool. Recently 
Evolutionary Computation (EC) has been successful as a powerful global 
optimisation tool due to the success in several problem domains 
[2][42][43][44][45]. EC works by simulating evolution on a computer by iterative 
generation and alteration processes operating on a set of candidate solutions that 
forms a population. Due to the complementarity of neural networks, fuzzy 
inference systems and evolutionary computation, the recent trend is to fuse various 
systems to form a more powerful integrated system, to overcome their individual 
weakness.  
 
Decision trees [6] have emerged as a powerful machine learning technique due to 
a simple, apparent, and fast reasoning process. Decision trees can be related to 
artificial neural networks by mapping them into a class of artificial neural 
networks or entropy nets with far fewer connections. 
 



In Section 2, we present the complexity of the Tactical Air Combat Decision 
Support System (TACDSS), followed by some theoretical foundation on neural 
networks, fuzzy inference systems and decision trees in Section 3.  In Sections 4 
and 5, we present the different adaptation procedures for optimising fuzzy 
inference systems. A Takagi-Sugeno [33][41] and a Mamdani-Assilian [24] fuzzy 
inference system learned using neural network learning techniques and 
evolutionary computation is discussed.  Experimentation results using the different 
connectionist paradigms are presented in Section 6. Detailed discussions of the 
different experimental results are given in Section 7 followed by conclusion 
towards the end. 

2. Tactical Air Combat Decision Support Systems (TACDSS) 
Implementation of a reliable decision support system involves two important 
factors: collection and analysis of prior information and the evaluation of the 
solution. The data could be an image or a pattern, real number, binary code or 
natural language text data depending on the objects of the problem environment. 
An object of the decision problem is also known as the decision factor. These 
objects can be expressed mathematically in the decision problem domain as a 
universal set where the decision factor is a set and decision data is an element of 
this set. The decision factor is a subset of the decision problem. If we call the 
Decision Problem (DP) as X and the decision factor (DF) as ‘A’, then the decision 
data (DD) could be labelled as ‘a’. Suppose the set A has members a1, a2, ... , an 
then it can be denoted by A = {a1,a2,..,an} or can be written as:  

{ }nRiiaA ∈=       (1) 

where i is called the set index, the symbol ‘|’ is read as ‘such that’ and Rn is the set 
of n real numbers. A subset ‘A’ of X, denoted A ⊆ X, is a set of elements that is 
contained within the universal set X. For optimal decision-making, the system 
should be able to adaptively process the information provided by words or any 
natural language description of the problem environment. 
  
To illustrate the proposed approach, we consider a case study based on a tactical 
environment problem. We aim to develop an environment decision support system 
for a pilot or mission commander in tactical air combat. We will attempt to present 
the complexity of the problem with some scenarios of the problem. In Figure 2 a 
typical scenario of an air combat tactical environment is presented. The Airborne 
Early Warning and Control (AEW&C) is performing surveillance in a particular 
area of operation. It has two hornets (F/A-18s) under its control at the ground base 
shown as "+" in the left corner of Figure 2. An air-to-air fuel tanker (KB707) "�" is 
on station - the location and status of which are known to the AEW&C. One of the 
hornets is on patrol in the area of Combat Air Patrol (CAP). Sometime later, the 
AEW&C on-board sensors detect hostile aircraft(s) shown as "O". When the 
hostile aircraft enter the surveillance region (shown as a dashed circle) the mission 



system software is able to identify the enemy aircraft and estimate its distance 
from the Hornets in the ground base or in the CAP.  

The mission operator has few options to make a decision on the allocation of 
hornets to intercept the enemy aircraft:  

• Send the Hornet directly to the spotted area and intercept, 
• Call the Hornet in the area back to ground base or send another Hornet from 
the ground base. 
• Call the Hornet in the area for refuel before intercepting the enemy aircraft. 

The mission operator will base his/her decisions on a number of factors, such as: 
• Fuel reserve and weapon status of hornet in the area, 
• Interrupt time of Hornets in the ground base or at the CAP to stop the hostile,  
• The speed of the enemy fighter aircraft and the type of weapons it possesses. 

 
Surveillance 

Boundary 

Fighter on CAP 

Fighters at ground base 

Tanker aircraft 

Hostiles 

 

Figure 2. A Typical Air Combat Scenario 

Table 1. Decision factors for the tactical air combat 
 

Fuel 
reserve 

Time 
Intercept  

Weapon 
Status 

Danger 
Situation 

Evaluation 
Plan 

Full Fast Sufficient Very Danger Good 
Half Normal Enough Danger Acceptable 
Low Slow Insufficient Endanger Bad 

 



From the above scenario, it is evident that there are important decision factors of 
the tactical environment that might directly affect the air combat decision. For 
demonstrating our proposed approach, we will simplify the problem by handling 
only a few important decision factors such as "fuel status", "weapon possession 
status" and "interrupt time" (Hornet in the ground base and in the area of CAP) 
and the "Situation Awareness". These factors are tabulated in Table 1. The 
developed tactical air combat decision rules should be able to incorporate all the 
above-mentioned decision factors. 
 

Knowledge of Tactical Air Combat Environment (TACE) 

How human knowledge could be extracted to a database? Very often people 
express knowledge as natural (spoken) language or using letters or symbolic 
terms. The human knowledge can be analysed and converted into an information 
table. There are several methods to extract human knowledge. Some researchers 
use Cognitive Work Analysis (CWA) [29], others Cognitive Task Analysis (CTA) 
[26]. CWA is a technique to analyse, design and evaluate human computer 
interactive systems. CTA is a method used to identify cognitive skill, mental 
demands and needs to perform task proficiency. CTA focuses on describing the 
representation of the cognitive elements that defines goal generation and decision 
making. It is a reliable method to extract human knowledge because it is based on 
observations or an interview. We have used the CTA technique to set up the 
expert knowledge base for building the complete decision support system. For the 
TACE discussed previously, we have four decision factors that could affect the 
final decision options of “hornet in the CAP” or “hornet at the ground base”. 
These are “fuel status” being the quantity of fuel available to perform the 
intercept, the “weapon possession status” presenting the state of available 
weapons inside the hornet, the “interrupt time” which is required for the hornet to 
fly and interrupt the – hostile, and the “danger situation” providing information 
whether the aircraft is a friend or hostile.  
 
Each of the above-mentioned factors has a different range of units, these being the 
fuel (0 to 1000 litres), interrupt time (0 to 60 minutes), weapon status (0 to 100 %) 
and the danger situation (0 to 10 points). The following are two important decision 
selection rules, which were formulated using expert knowledge: 
 

� The decision selection will have a small value if the fuel is too low, the 
interrupt time is too long, the hornet has low weapon status and the 
Friend or Foe danger is high.  

� The decision selection will have a high value if the fuel reserve is full, 
the interrupt time is fast enough, the hornet has high weapon status and 
the FOE danger is low. 

 
In TACE, decision-making is always based on all states on all the decision factors. 
However sometimes a mission operator/commander can make a decision based on 
an important factor, such as the fuel reserve of the hornet is too low (due to high 



fuel use), enemy has more powerful weapons, the quality and quantity of enemy 
aircraft. Table 2 shows the decision score at each stage of the TACE.  

Table 2.  Some prior knowledge of the TACE  
 

Fuel status 
(litres) 

Interrupt time 
(minutes) 

Weapon status 
(percent) 

Danger 
situation 
(points) 

Decision 
selection 
(points) 

0 60 0 10 0 
100 55 15 8 1 
200 50 25 7 2 
300 40 30 5 3 
400 35 40 4.5 4 
500 30 60 4 5 
600 25 70 3 6 
700 15 85 2 7 
800 10 90 1.5 8 
900 5 96 1 9 

1000 1 100 0 10 
 
3. Soft Computing and Decision Trees 
 
Soft computing paradigms can be used to construct new generation intelligent 
hybrid systems consisting of neural networks, fuzzy inference system, 
approximate reasoning and derivative free optimisation techniques. It is well 
known that the intelligent systems which provide human-like expertise such as 
domain knowledge, uncertain reasoning, and adaptation to a noisy and time 
varying environment, are important in tackling real world problems.  
 
3.1 Artificial Neural Networks 
 
Artificial Neural Networks (ANNs) have been developed as generalizations of 
mathematical models of biological nervous systems. A neural network is 
characterised by the network architecture, the connection strength between pairs 
of neurons (weights), node properties, and update rules. The updating or learning 
rules control the weights and/or states of the processing elements (neurons). 
Normally, an objective function is defined that represents the complete status of 
the network, and its set of minima corresponds to different stable states [40]. It can 
learn by adapting its weights to changes in the surrounding environment, can 
handle imprecise information, and generalise from known tasks to unknown ones. 
The network is initially randomised to avoid imposing any of our own prejudices 
about an application of interest. The training patterns can be thought of as a set of 
ordered pairs {(x1, y1), (x2, y2) ,..,(xp, yp)} where xi represents an input pattern and 
yi represents the output pattern vector associated with the input vector xi. A 
valuable property of neural networks is that of generalisation, whereby a trained 



neural network is able to provide a correct matching in the form of output data for 
a set of previously unseen input data. Learning typically occurs through training, 
where the training algorithm iteratively adjusts the connection weights (synapses). 
In the Conjugate Gradient Algorithm (CGA) a search is performed along 
conjugate directions, which produces generally faster convergence than steepest 
descent directions. A search is made along the conjugate gradient direction to 
determine the step size, which will minimize the performance function along that 
line. A line search is performed to determine the optimal distance to move along 
the current search direction. Then the next search direction is determined so that it 
is conjugate to the previous search direction. The general procedure for 
determining the new search direction is to combine the new steepest descent 
direction with the previous search direction. An important feature of CGA is that 
the minimization performed in one step is not partially undone by the next, as it is 
the case with gradient descent methods. An important drawback of CGA is the 
requirement of a line search, which is computationally expensive. The Scaled 
Conjugate Gradient Algorithm (SCGA) [27] was designed to avoid the time-
consuming line search at each iteration, and incorporates the model-trust region 
approach used in the CGA Levenberg-Marquardt algorithm [2]. 
 
3.2 Fuzzy Inference Systems (FIS) 
 
Fuzzy inference systems are a popular computing framework based on the 
concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The basic 
structure of the fuzzy inference system consists of three conceptual components: a 
rule base, which contains a selection of fuzzy rules; a database, which defines the 
membership functions used in the fuzzy rule; and a reasoning mechanism, which 
performs the inference procedure upon the rules and given facts to derive a 
reasonable output or conclusion. Figure 3 shows the basic architecture of a FIS 
with crisp inputs and outputs implementing a non-linear mapping from its input 
space to its output [7]. 

 
Figure 3. Block diagram of a fuzzy inference system 

 
We now introduce two different fuzzy inference systems that have been widely 
employed in various applications. These fuzzy systems feature different 
consequents in their rules, and thus their aggregation and defuzzification 
procedures differ accordingly. 
 



Most fuzzy systems employ the inference method proposed by Mamdani-Assilian 
in which the rule consequence is defined by fuzzy sets and has the following 
structure [24]: 
 

1111 CzthenBisyandAisxIf =     (2) 
 
Takagi, Sugeno and Kang proposed an inference scheme in which the conclusion 
of a fuzzy rule is constituted by a weighted linear combination of the crisp inputs 
rather than a fuzzy set, and which has the following structure [33]: 
 

ryqxpzthenBisyandAisxIf ++=
1111,1   (3) 

 
Takagi-Sugeno FIS usually needs a smaller number of rules, because their output 
is already a linear function of the inputs rather than a constant fuzzy set [1].  

3.3 Evolutionary Algorithms (EAs) 
Evolutionary Algorithms are population-based adaptive methods, which may be 
used to solve optimization problems, based on the genetic processes of biological 
organisms [10],[42]. Over many generations, natural populations evolve according 
to the principles of natural selection and "survival-of-the-fittest", first clearly 
stated by Charles Darwin in "On the Origin of Species" [10]. By mimicking this 
process, EAs are able to "evolve" solutions to real world problems, if they have 
been suitably encoded. The procedure may be written as the difference equation 
[10]: 

]))[((]1[ txvstx =+       (4) 

where x (t) is the population at time t, v is a random operator, and s is the selection 
operator. The algorithm is illustrated in Figure 4. 

Figure 4. Pseudo Code of an Evolutionary Algorithm 

1. Generate the initial population P(0) at random and set i=0; 

2. Repeat until the number of iterations or time has reached or the population 
has converged. 

a. Evaluate the fitness of each individual in P(i) 

b. Select parents from P(i) based on their fitness in P (i) 

c. Apply reproduction operators to the parents and produce offspring, the 
next generation, P(i+1) is obtained from the offspring and possibly 
parents. 



A conventional fuzzy controller makes use of a model of the expert who is in a 
position to specify the most important properties of the process. Expert knowledge 
is often the main source to design the fuzzy inference systems. According to the 
performance measure of the problem environment, the membership functions and 
rule bases are to be adapted. Adaptation of fuzzy inference systems using 
evolutionary computation techniques has been widely explored [3][4]. In the 
following section, we will discuss how fuzzy inference systems could be adapted 
using neural network learning techniques. 
 

3.4 Neuro- Fuzzy Computing 

Neuro Fuzzy (NF) computing is a popular framework for solving complex 
problems. If we have knowledge expressed in linguistic rules, we can build a FIS, 
and if we have data, or can learn from a simulation (training) then we can use 
ANNs. For building a FIS, we have to specify the fuzzy sets, fuzzy operators and 
the knowledge base. Similarly for constructing an ANN for an application the user 
needs to specify the architecture and learning algorithm. An analysis reveals that 
the drawbacks pertaining to these approaches seem complementary and therefore 
it is natural to consider building an integrated system combining the concepts. 
While the learning capability is an advantage from the viewpoint of FIS, the 
formation of a linguistic rule base will be advantageous from the viewpoint of 
ANN [1].  

In a fused NF architecture, ANN learning algorithms are used to determine the 
parameters of the FIS. Fused NF systems share data structures and knowledge 
representations. A common way to apply a learning algorithm to a fuzzy system is 
to represent it in a special ANN-like architecture. However the conventional ANN 
learning algorithm (gradient descent) cannot be applied directly to such a system 
as the functions used in the inference process are usually non differentiable. This 
problem can be tackled by using differentiable functions in the inference system or 
by not using the standard neural learning algorithm. Two neuro-fuzzy learning 
paradigms are presented in Section 4 and 5. 

3.5 Classification and Regression Trees (CART) 

Tree-based models are useful for both classification and regression problems. In 
these problems, there is a set of classification or predictor variables (Xi) and a 
dependent variable (Y). The Xi variables may be a mixture of nominal and/or 
ordinal scales (or code intervals of equal-interval scale) and Y may be a 
quantitative or a qualitative (in other words, nominal or categorical) variable [6] 
[32]. 

The CART methodology is technically known as binary recursive partitioning. 
The process is binary because parent nodes are always split into exactly two child 



nodes, and recursive because the process can be repeated by treating each child 
node as a parent. The key elements of a CART analysis are a set of rules for 
splitting each node in a tree:  

• deciding when a tree is complete, and  
• assigning each terminal node to a class outcome (or predicted value for 

regression)  

CART is the most advanced decision-tree technology for data analysis, pre-
processing and predictive modelling. CART is a robust data-analysis tool that 
automatically searches for important patterns and relationships and quickly 
uncovers hidden structure even in highly complex data. CART's binary decision 
trees are more sparing with data and detect more structure before further splitting 
is impossible or stopped. Splitting is impossible if only one case remains in a 
particular node, or if all the cases in that node are exact copies of each other (on 
predictor variables). CART also allows splitting to be stopped for several other 
reasons, including that a node has too few cases [32]. 
 
Once a terminal node is found we must decide how to classify all cases falling 
within it. One simple criterion is the plurality rule: the group with the greatest 
representation determines the class assignment. CART goes a step further: 
because each node has the potential for being a terminal node, a class assignment 
is made for every node whether it is terminal or not. The rules of class assignment 
can be modified from simple plurality to account for the costs of making a mistake 
in classification and to adjust for over- or under-sampling from certain classes. 
 
 A common technique among the first generation of tree classifiers was to 
continue splitting nodes (growing the tree) until some goodness-of-split criterion 
failed to be met. When the quality of a particular split fell below a certain 
threshold, the tree was not grown further along that branch. When all branches 
from the root reached terminal nodes, the tree was considered complete. Once a 
maximal tree is generated, it examines smaller trees obtained by pruning away 
branches of the maximal tree. Once the maximal tree is grown and a set of sub-
trees is derived from it, CART determines the best tree by testing for error rates or 
costs. With sufficient data, the simplest method is to divide the sample into 
learning and test sub-samples. The learning sample is used to grow an overly large 
tree. The test sample is then used to estimate the rate at which cases are 
misclassified (possibly adjusted by misclassification costs). The misclassification 
error rate is calculated for the largest tree and also for every sub-tree.  
 
The best sub-tree is the one with the lowest or near-lowest cost, which may be a 
relatively small tree. Cross validation is used if data are insufficient for a separate 
test sample. In the search for patterns in databases it is essential to avoid the trap 
of over fitting or finding patterns that apply only to the training data. CART's 
embedded test disciplines ensure that the patterns found will hold up when applied 
to new data. Further, the testing and selection of the optimal tree are an integral 
part of the CART algorithm. CART handles missing values in the database by 



substituting surrogate splitters, which are back-up rules that closely mimic the 
action of primary splitting rules. The surrogate splitter contains information that is 
typically similar to what would be found in the primary splitter [32]. 

4 TACDSS Adaptation Using Takagi Sugeno FIS 
We used the Adaptive Network based Fuzzy Inference System (ANFIS) 
framework [17] to develop the TACDSS based on a Takagi-Sugeno fuzzy 
inference system. The six-layered architecture of ANFIS is depicted in Figure 5. 

Suppose there are two Input Linguistic Variables (ILV) X and Y and each ILV has 
three membership functions (MF) A1, A2 and A3 and B1, B2 and B3 respectively, 
then a Takagi-Sugeno type fuzzy if-then rule could be set up as 

Rulei : If X is Ai and Y is Bi then fi = pi X + qi Y+ ri   (5) 

where i is an index i = 1,2..n and  p, q and r are the linear parameters.  
 
Some layers of ANFIS have the same number of nodes and nodes in the same 
layer have similar functions.  Output of nodes in layer-l are denoted as Ol,i,, where 
l is the layer number and i is neuron number of the next layer. The function of 
each layer is described as follows. 
 

 
Figure 5. Architecture of ANFIS 

Layer 1 

The outputs of this layer is the input values of the ANFIS 



O1,x = x 

O1,y = y         (6) 

For TACDSS the four inputs are fuel status, weapons inventory levels, time 
intercept and the danger situation.  

Layer 2 

The output of nodes in this layer are presented as Ol,ip,i,, where ip is the ILV and m 
is the degree of membership function of particular MF. 

O2,x,i= µAi(x)  or O2,y,i = µBi(y)  for  i = 1,2 and 3    (7) 

With three MFs for each input variable, "fuel status" has 3-membership functions: 
full, half and low,  "time intercept" has fast, normal and slow, "weapon status" has 
sufficient, enough and insufficient and the “danger situation” has very dangerous, 
dangerous and endangered.  

Layer 3 

The output of nodes in this layer is the product of all the incoming signals, 
denoted by:  

O3,n  = Wn= µAi(x) x µBi(y)      (8)  

where i = 1,2 and 3, n is the number of the fuzzy rule. In general, any T-norm 
operator will perform the fuzzy ‘AND’ operation in this layer. With 4 ILV and 3 
MFs for each input variable the TACDSS will have 81 (34 = 81) fuzzy if-then 
rules. 

Layer 4 

The nodes in this layer calculate the ratio of the ith fuzzy Rule Firing Strength 
(RFS) to the sum of all RFS. 

O4,n  =  nw  = 
�
=

81

1n
n

n

w

w
 where n = 1,2,..,81    (9) 

The number of nodes in this layer is the same as the number of nodes in layer-3. 
The outputs of this layer are also called normalized firing strengths.  

Layer 5 

The nodes in this layer are adaptive, defined as: 

O5,n = nn fw =  nw (pnx + qny + rn)    (10) 
where pn, qn, rn are the rule consequent parameters. This layer also has the same 
number of nodes as layer-4 (81 numbers). 



Layer 6 

The single node in this layer is responsible for the defuzzification process using 
the center of gravity technique to compute the overall output as the summation of 
all the incoming signals: 

O6,1 = nn fw
n
�
=

81

1
= 

�

�

=

=
81

1

81

1

n

n

n

n

w

fnw

       (11) 

ANFIS makes use of a mixture of backpropagation to learn the premise 
parameters and least mean square estimation to determine the consequent 
parameters. Each step in the learning procedure comprises two parts: In the first 
part the input patterns are propagated, and the optimal conclusion parameters are 
estimated by an iterative least mean square procedure, while the antecedent 
parameters (membership functions) are assumed to be fixed for the current cycle 
through the training set. In the second part the patterns are propagated again, and 
in this epoch, backpropagation is used to modify the antecedent parameters, while 
the conclusion parameters remain fixed. This procedure is then iterated. Details 
are given below [17]. 
 

ANFIS output f = O6,1 = 1
1

f

n
wn

w

�
 + 2

2
f

n
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w
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 + … + fn
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wn

wn

�
 

               = 1w (p1x + q1y + r1) + 2w (p2x + q2y + r2) + … + nw (pnx + qny +rn) 

               = ( 1w x)p1 + ( 1w y)q1 + 1w r1 + ( 2w x)p2 + ( 2w y)q2 + 2w r2 + … + 

        ( nw x)pn + ( nw y)qn + nw rn    (12) 

where n is the number of nodes in layer 5. From this, the output can be rewritten 
as  

f = F(i,S)       (13) 

where F is a function,  i is the vector of input variables and S is a set of total 
parameters of consequent of the nth fuzzy rule. If there exists a composite function 
H such that H o F is linear in some elements of S, then these elements can be 
identified by the least square method. If the parameter set is divided into two sets 
S1 and S2, defined as: 

S = S1 ⊕ S2       (14) 

where ⊕ represents direct sum and o is the product rule, such that H o F is linear 
in the elements of S2, the function f can be represented as: 

H (f) = H o F(I,S)       (15) 



Givens values of S1, the S training data can be substituted into equation 15. H(f) 
can be written as the matrix equation of AX = Y. 
where X is an unknown vector whose elements are parameters in S2. 
If  |S2| = M (M being the number of linear parameters) then the dimensions of 
matrices A, X and Y are P× M, M × l and P × l, respectively. This is a standard 
linear least-squares problem and the best solution of X that minimizes ||AX – Y||2 
is the least square estimate (LSE) X* 

X* = (ATA)-1ATY       (16) 

where AT is the transpose of A, (ATA)-1AT is the pseudo inverse of A if ATA is a 

non-singular. Let the ith row vector of matrix A be a T
i and the ith element of Y be 

y T
i , then X can be calculated as: 

Xi+1 = Xi + Si+1ai+1(y
T
i  - y T

i 1+  - a T
i 1+ Xi)     (17) 

Si+1 = Si - 
1

i1+ii

T
1i

T
1i

a1

 S -  yaS

++

+

+ ii aS
, I = 0,1,…, P  -1    (18) 

The LSE X* is equal to Xp. The initial conditions of Xi+1 and Si+1 are X0 = 0 and S0 
= γ I, where γ is a positive large number and I is the identity matrix of dimension 
M × M.  
 
When hybrid learning is applied in batch mode, each epoch is composed of a 
forward pass and a backward pass. In the forward pass, the node output I of each 
layer is calculated until the corresponding matrices A and Y are obtained. The 
parameters of S2 are identified by the pseudo inverse equation as mentioned 
above. After the parameters of S2 are obtained, the process will compute the error 
measure for each training data pair. In the backward pass, the error signals (the 
derivatives of the error measure with respect to each node output) propagates from 
the output to the input end. At the end of the backward pass, the parameter S1 is 
updated by the steepest descent method as follows: 

α = −η
α∂

∂ E        (19) 

where � is a generic parameter and � is a learning rate and E is an error measure .   

�
∂
∂

=

α α

η

)(
2E

k
        (20) 

where k is the step size.    

For the given fixed values of parameters in S1, the parameters in S2 are guaranteed 
to be global optimum points in the S2 parameters space due to the choice of the 



squared error measure. This hybrid learning method can decrease the dimension of 
the search space using the steepest descent method, and can reduce the time 
needed to reach convergence. The step size k will influence the speed of 
convergence. Observation shows that if k is small, the gradient method will 
closely approximate the gradient path; convergence will be slow since the gradient 
is being calculated many times. If the step size k is large, convergence will 
initially be very fast. Based on these observations the step size k is updated by the 
following two heuristic rules[17]:  

� If E undergoes four continuous reductions then increase k by 10%, and 

� If E undergoes continuous combinations of increase and decrease, then 
reduce k by 10%. 

5 TACDSS Adaptation Using Mamdani FIS 
We have made use of the Fuzzy Neural Network  (FuNN) framework [18] for 
learning the Mamdani-Assilian fuzzy inference method. A functional block 
diagram of the FuNN model is depicted in Figure 6 [19]; it consists of two phases 
of learning.  
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Figure 6. A general schematic diagram of the hybrid fuzzy neural network 

The first phase is the structured learning (if-then rules) using the knowledge 
acquisition module. The second phase is the parameter learning for tuning 
membership functions to achieve a desired level of performance. FuNN uses a 
gradient descent learning algorithm to fine-tune the parameters of the fuzzy 
membership functions. In the connectionist structure, the input and output nodes 
represent the input states and output control-decision signals, respectively, while 
in the hidden layers, there are nodes functioning as quantification of membership 
functions (MFs) and if-then rules. We used the simple and straightforward method 
proposed by Wang and Mendel [38] for generating fuzzy rules from numerical 
input-output training data. The task here is to generate a set of fuzzy rules from the 
desired input-output pairs and then use these fuzzy rules to determine the complete 
structure of the TACDSS.  



 
Suppose we are given the following set of desired input (x1, x2) and output (y) 
data pairs (x1, x2, y): (0.6, 0.2; 0.2), (0.4, 0.3; 0.4). In TACEDSS, the input 
var iab le  fue l  re serve  has a degree of 0.8 in half, a degree of 0.2 in full. 
Similarly, the input variable t ime  in tercep t  has a degree of 0.6 in empty and 
0.3 in normal. Secondly, assign x1

i, x2
i, and yi to a region that has maximum 

degree. Finally, obtain one rule from one pair of desired input-output data, for 
example: 
 (x1

1, x2
1, y1) =>  [x1

1 (0.8 in half), x2
1 (0.2 in fast), y1 (0.6 in acceptable)], 

• R1: if x1 is half and x2 is fast, then y is acceptable   (18) 
 
(x1

2,x2
2,y2), => [x1(0.8 in hal f ) ,x 2 (0 .6 in normal),y2(0.8 in acceptable)], 

• R2:  if x1 is half and x2 is normal, then y is acceptable  (19) 

Assign a degree to each rule. To resolve a possible conflict problem, that is, rules 
having the same antecedent but a different consequent, and to reduce the number 
of rules, we assign a degree to each rule generated from data pairs and accept only 
the rule from a conflict group that has a maximum degree. In other words, this 
step is performed to delete redundant rules, and therefore obtain a concise fuzzy 
rule base. The following product strategy is used to assign a degree to each rule. 
The degree of the rule denoted by: 

Ri : if x1 is A and x2 is B, then y is C(wi)    (20) 

The rule weight is defined as: 

wi = µA(xl)µB(x2)µc(y)      (21) 

For example in the TACE, R1 has a degree of 

W1 = µhalf(x1) µfast (x2) µacceptable (y) = 0.8 x 0.2 x 0.6 = 0.096  (22) 

and R2 has a degree of 

W2 = µhalf(x1) µnormal(x2) µacceptable (y) = 0.8 x 0.6 x 0.8 = 0.384 (23) 

Note that if two or more generated fuzzy rules have the same preconditions and 
consequents, then the rule that has maximum degree is used. In this way, assigning 
the degree to each rule, the fuzzy rule base can be adapted or updated by the 
relative weighting strategy: the more task-related the rule becomes, the more 
weight degree the rule gains. As a result, not only is the conflict problem resolved, 
but also the number of rules is reduced significantly. After the structure-learning 
phase (if-then rules), the whole network structure is established, and the network 
enters the second learning phase to optimally adjust the parameters of the 
membership functions using a gradient descent learning algorithm to minimise the 
error function: 

 E = � �
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       (24)  



where d and y are the target and actual outputs for an input x. This approach is 
very similar to the MF parameter tuning in ANFIS. 

5.1 Membership Function Parameter Optimisation Using EAs 
We have investigated the usage of evolutionary algorithms (EAs) to optimise the 
number of rules and fine-tune the membership functions [35]. Given that the 
optimisation of fuzzy membership functions may involve many changes to many 
different functions, and that a change to one function may affect others, the large 
possible solution space for this problem is a natural candidate for a EA based 
approach. This has already been investigated in [25], and has been shown to be 
more effective than manual alteration. A similar approach has been taken to 
optimise membership function parameters. A simple way is to represent only the 
parameter showing the centre of MF’s to speed up the adaptation process and to 
reduce spurious local minima over the center and width. 
 
The EA module for adapting FuNN is designed as a stand-alone system for 
optimising the MF’s if the rules are already available. Both antecedent and 
consequent MF’s are optimised. Chromosomes are represented as strings of 
floating-point numbers, rather than strings of bits. In addition, mutation of a gene 
is implemented as a re-initialisation, rather than an alteration of the existing 
allegation. Figure 7 shows the chromosome structure including the input and 
output MF parameters. One point crossover is used for the chromosome 
reproduction. 
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Figure 7. The chromosome of the centres of inputs and output MF’s 
 



6. Experimental Results for Developing the TACDSS 

Our master data set comprised 1000 numbers. To avoid any bias on the data, we 
randomly created two training sets (Dataset A - 90% and Dataset B- 80%) and test 
data (10% and 20 %) from the master dataset. All experiments were repeated three 
times and the average errors are reported here. 

6.1 Takagi Sugeno FIS 

In addition to the development of the Takagi Sugeno FIS, we also investigated the 
behaviour of TACEDSS for different membership functions (shape and quantity 
per ILV). We also explored the importance of different learning methods for fine-
tuning the rule antecedents and consequents. Keeping the consequent parameters 
constant, we fine-tuned the membership functions alone using the gradient descent 
technique (backpropagation). Further, we used the hybrid learning method 
wherein the consequent parameters were also adjusted according to the least 
squares algorithm. Even though backpropagation is faster than the hybrid 
technique, learning error and decision scores were better for the latter technique. 
We used three Gaussian MFs for each ILV. Figure 8 shows the three MFs for the 
“fuel reserve” ILV before and after training. The fuzzy rule consequent parameters 
before training was set to zero and the parameters were learned using the hybrid 
learning approach.  

Comparison of the shape of membership functions of FIS 

In this section, we demonstrate the importance of the shape of membership 
functions. We used the hybrid-learning technique and each ILV had three MFs. 
Table 3 shows the convergence of the training RMSE during the 15 epoch 
learning using four different membership functions for 90% and 80% training 
data.  81 fuzzy if-then rules were created initially using a grid-partitioning 
algorithm. We considered Generalised bell, Gaussian, trapezoidal and isosceles 
triangular membership functions. Figure 9 illustrates the training convergence 
curve for different MF’s. 

 
(a) 



 
(b) 

Figure 8. The membership function of the “fuel reserve” ILF (a) before and (b) 
after learning 

 
Figure 9.  Effect on training error for the different membership functions 



Table 3.  Learning performance showing the effect of the shape of MF 

Root Mean Squared Error (E- 05) 

       Gaussian       Gbell     Trapezoidal        Triangular 

Epochs Data A Data B Data A Data B Data A Data B Data A Data B 

1 1.406 1.305 1.706 1.581 2.459 2.314 0.9370 0.8610 

2 1.372 1.274 1.652 1.537 2.457 2.285 1.789 1.695 

3 1.347 1.249 1.612 1.505 2.546 2.441 1.789 1.695 

4 1.328 1.230 1.586 1.483 2.546 2.441 1.789 1.695 

5 1.312 1.214 1.571 1.471 2.546 2.441 1.789 1.695 

6 1.300 1.199 1.565 1.466 2.546 2.441 1.789 1.695 

7 1.288 1.186 1.564 1.465 2.546 2.441 1.789 1.695 

8 1.277 1.173 1.565 1.464 2.546 2.441 1.789 1.695 

9 1.265 1.160 1.565 1.459 2.546 2.441 1.789 1.695 

10 1.254 1.148 1.565 1.448 2.546 2.441 1.789 1.695 

11 1.243 1.138 1.565 1.431 2.546 2.441 1.789 1.695 

12 1.236 1.132 1.565 1.409 2.546 2.441 1.789 1.695 

13 1.234 1.132 1.565 1.384 2.546 2.441 1.789 1.695 

14 1.238 1.138 1.565 1.355 2.546 2.441 1.789 1.695 

         

Test 
RMSE 1.44 1.22 1.78 1.36 2.661 2.910 1.8583 1.8584 

 
As evident from Table 3 and Figure 9, the lowest training and testing error was 
obtained using Gaussian MF.   
 



 

Figure 10. Convergence of training using evolutionary algorithms 

 

6.2 Mamdani Fuzzy Inference System 

We used the FuzzyCOPE [39] to investigate the tuning of membership functions 
using backpropagation and evolutionary algorithms. The learning rate and 
momentum were set at 0.5 and 0.3 respectively for 10 epochs. We obtained 
training RMSE of 0.2865 (Data A) and 0.2894 (Data B). We further improved the 
training performance using evolutionary algorithms. The following settings were 
used for the evolutionary algorithm parameters. 

Population size = 50 
Number of generations = 100 
Mutation rate = 0.01 
 
We used the tournament selection strategy and Figure 10 illustrates the learning 
convergence during the 100 generations for Datasets A and B. 54 fuzzy if-then 
rules were extracted after the learning process. Table 4 summarizes the training 
and test performance. 
 
 
 
 



Table 4. Training and test performance of Mamdani FIS using EAs 
 

Root Mean Squared Error (RMSE) 
Data A Data B 

Training Test Training Test 

0.0548 0.0746 0.0567 0.0612 

 
6.3 Neural Networks 
 
We used 30 hidden neurons for Data A and 32 hidden neurons for Data B. We 
used a trial-and-error approach to finalize the architecture of the neural network. 
We used the scaled conjugate gradient algorithm to develop the TACEDSS. 
Training was terminated after 1000 epochs. Figure 11 depicts the convergence of 
training during 1000 epochs learning. Table 5 summarizes the training and test 
performance. 

6.4 Classification and Adaptive Regression Trees 

We used the CART [9] simulation environment to develop the decision trees. We 
selected the minimum cost tree regardless of tree size. Figures 12 and 13 illustrate 
the variation of error with reference to the number of terminal nodes for Datasets 
A and B. For Data A, the developed tree has 122 terminal nodes as shown in 
Figure 14 while for Data B the rest of tree had 128 terminal nodes as depicted in 
Figure 15. Training and test performance are summarized in Table 5. 



 
Figure 11. Neural network training using SCGA 

 
Figure 12. Dataset A: Variation of relative error for the number of terminal nodes 

 
Figure 13. Dataset B: Variation of relative error for the number of terminal nodes 
 



 
 

Figure 14. Dataset A: Developed decision tree with 122 nodes 
 

 
 

Figure 15. Dataset B: Developed decision tree with 128 nodes 
 
Table 5. Training and test performance of neural networks and decision trees 
 

Data A Data B 
Training Testing Training Testing 

 

RMSE 

CART 0.00239 0.00319 0.00227 0.00314 

Neural Network 0.00105 0.00095 0.00041 0.00062 

 
Figure 16 compares the performance of the different intelligent paradigms used in 
developing the TACDSS (for clarity we have chosen only 20% of the test results 
of Dataset B). 



 
 
Figure 16. Test results illustrating the efficiency the different intelligent 
paradigms for developing the TACEDSS. 
 
7. Discussions  
 
The focus of this research is to create accurate and highly interpretable (using 
rules or tree structures) decision support systems for a tactical air combat 
environment problem.  
 
Experimental results using two different datasets revealed the importance of fuzzy 
inference system to construct accurate decision support systems. As expected, by 
providing more training data (90% of the randomly choosed master data set), the 
models were able to learn and generalize more accurately. Takagi-Sugeno fuzzy 
inference system has the lowest RMSE on both test datasets. Since learning 
involves a complicated procedure, the training process of the Takagi-Sugeno 
fuzzy inference system took longer compared to Mamdani-Assilian fuzzy 
inference method - hence there is a compromise between performance and 
computational complexity (training time). Our experiments using different 



membership function shapes also reveal that Gaussian membership function is the 
‘optimum’ shape for the constructing accurate decision support systems.  
 
Neural networks can no longer be considered as ‘black boxes’. Recent research 
has revealed that it is possible to extract rules from trained neural networks. In our 
experiments we used a neural network trained using the scaled conjugate gradient 
algorithm. Results depicted in Figure 5 also reveal that the trained neural network 
could not learn and generalize accurately compared with the Takagi Sugeno fuzzy 
inference system. The proposed neural network outperformed Mamdani-Assilian 
fuzzy inference system and CART. 
 
Two important features of the developed classification and regression tree are its 
easy interpretability and low complexity. Due to its one pass training approach; 
the CART algorithm also has the lowest computational load. For Dataset A, the 
best results were achieved using 122 terminal nodes (relative error = 0.00014). As 
shown in Figure 12, when the numbers of terminal nodes were reduced to node 14, 
the relative error increased to 0.016. For Dataset B, the best results could be 
achieved using 128 terminal nodes (relative error = 0.00010). As shown in Figure 
13, when the terminal nodes were reduced to node 14, the relative error increased 
to 0.011.  
 
8. Conclusions 
 
In this Chapter, we have presented different soft computing and machine learning 
paradigms for developing a tactical air combat decision support system. The 
techniques explored were a Takagi-Sugeno fuzzy inference system trained using 
neural network learning techniques, a Mamdani-Assilian fuzzy inference system 
trained using evolutionary algorithms and neural network learning, feedforward 
neural network trained using the scaled conjugate gradient algorithm, and 
classification and adaptive regression trees.  
 
The empirical results clearly demonstrate that all these techniques are reliable and 
could be used for constructing more complicated decision support systems.  
Experiments on the two independent data sets also reveal that the techniques are 
not biased on the data itself. Compared to neural networks and regression trees, 
the Takagi-Sugeno fuzzy inference system has the lowest RMSE and the 
Mamdani-Assilian fuzzy inference system the highest RMSE. In terms of 
computational complexity, perhaps regression trees are best since they use a one 
pass learning approach when compared to the many learning iterations required by 
all other considered techniques. An important advantage of the considered models 
is fast learning, easy interpretability (if-then rules for fuzzy inference systems, m-
of-n rules from a trained neural network [30] and decision trees), efficient storage 
and retrieval capacities and so on. It may also be concluded that fusing different 
intelligent systems knowing their strengths and weakness could help to mitigate 
the limitations and take advantage of the opportunities to produce more efficient 
decision support systems than those built with stand alone systems. 



 
Our future work will be directed towards optimization of the different intelligent 
paradigms [2], which we have already used and also to develop new adaptive 
reinforcement learning systems that can update the knowledge from data 
especially when no expert knowledge is available.  
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