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Abstract
In this paper, we present a novel fuzzy rule extraction approach by employing the Gaussian
kernels and fuzzy concept lattices. First we introduce the Gaussian kernel to interval type-2
fuzzy rough sets tomodel fuzzy similarity relations and introduce a fewconcepts and theorems
to improve the classification performance with fewer attributes accordingly. Based on this
idea, we propose a novel attribute reduction algorithm, which can achieve better classification
performance of deducing reduction subset of fewer attributes, and this will be used in the
subsequent decision rule extraction. Then we justify the necessary and sufficient conditions
of our fuzzy rule extraction approach through three implicit rule theorems and present a
novel fuzzy decision rule extraction algorithm using fuzzy concept lattices and introduce the
concepts of frequent nodes and candidate 2-tuples to our pruning strategy. Also, comparative
performance experiments are carried out on theUCI datasets, and the results of both reduction
subset size and classification ability show the advantages of our algorithm.

Keywords Interval type-2 fuzzy rough sets · Gaussian kernel · Fuzzy formal concept ·
Fuzzy similarity relation · Granular computing

1 Introduction

Granular computing has a wide range of applications in artificial intelligence [46,52], cluster-
ing [24,34], and classification [2,25,27]. The basic idea of granular computing points out that
mathematical universes of discourse must be partitioned in agreement with the limitations
of human perception, and this is critical in knowledge representation and rule-based systems
[12,60]. In general, the problems related to incompleteness, uncertainty, and vagueness are
referred to as granular computing [29,43], in which the conventional tools include rough sets
[55], fuzzy sets [48], and concept lattices [41].
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It is well known that rule extraction is a main task in granular computing-based informa-
tion system [1,28,57], and the fuzzy logic can effectively extract fuzzy rules [26]. Typically,
the fuzzy rule extraction methods are based on type-1 fuzzy logic system (FLS). It is note-
worthy, however, that type-2 fuzzy sets can provide better performance than type-1 fuzzy
sets, especially when there exists lots of uncertainties [22], so it is necessary to thoroughly
study type-2 fuzzy sets-based granular computing models. Meanwhile, although association
rules [30] can be extracted by knownmethods, there usually exists redundancy in its decision
rules. This not only has tremendous restriction on rule extraction in time and space, but also
affects the accuracy of decision classification [18,37]. Therefore, it is important to explore a
new approach to extract decision rules without redundancy.

Interval type-2 fuzzy rough sets [11] combining with rough sets provide an effective
means of overcoming the problem of discretization on rough sets. As we know, the attribute
reduction and rule extraction are the main concerns in the fuzzy rough sets-based granular
computing, in which attribute reduction can select useful features and can be used effectively
in dimensionality reduction and rule extraction [56]. When addressing attribute reduction in
the fuzzy rough sets-based granular computing, the fuzzy similarity relation [51] is used to
measure the similarity between different samples and to formulate the fuzzy lower and upper
approximations of a decision [53]. Thus, fuzzy similarity relations have great influence on the
performance of interval type-2 fuzzy rough set-based intelligent data analysis. Fortunately,
Gaussian kernel can be used tomodel fuzzy similarity relations on fuzzy rough sets and type-2
fuzzy sets [5,17], and it has significant advantages in nonlinear divisionof numerical and fuzzy
data [40]; thus, it provides a newway to expand the theory of interval type-2 fuzzy rough sets.

Concept lattice is one of the most powerful mathematical tools to extract rules [44]. The
relation between one object and one attribute is traditionally represented by 0 or 1, which
means that the rules extracted are assumed to be consistent without uncertainty. However,
when extracting knowledge in reality, deterministic rules are biased and less reliable, so it
is reasonable to introduce fuzzy logic into concept lattice theory [42]. Although association
rules [30] can be extracted with traditional concept lattices efficiently, much less is known
about extracting non-redundant decision rules. It is therefore necessary to explore an approach
to extract decision rules without redundancy, basing on fuzzy concept lattices.

In this paper, we propose a novel Gaussian kernel-based interval type-2 fuzzy rough sets
attribute reduction algorithm and a fuzzy concept lattices-based rule extraction algorithm,
respectively. The contributions of this paper are summarized as follows:

– We propose an attribute reduction algorithm on Gaussian kernel-based interval type-2
fuzzy rough sets.Wealso introduce theGaussian kernel function into interval type-2 fuzzy
rough sets to model fuzzy similarity relations. The relevant concepts and theorems, such
as fuzzy upper and lower approximations, fuzzy equivalence relations, positive region and
dependency, are defined. Then we present the attribute reduction algorithm on Gaussian
kernel-based interval type-2 fuzzy rough sets.

– We fully justify the necessary and sufficient conditions of extracting non-redundant deci-
sion rules based on fuzzy concept lattices. Meanwhile, we characterize three intension
cases of child node in fuzzy concept lattices, and we present three implicit rule theorems
that guarantee the non-redundancy of the extracted decision rules.

– We propose a linear decision rule extraction algorithm based on fuzzy concept lattices
(FCLRE), through introducing a novel pruning strategy in the search of frequent nodes
and candidate 2-tuples in its concept lattices.Moreover, our implicit rule theorems ensure
that the FCLRE can extract the non-redundant decision rules, which were concerned in
few other methods before.
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The rest of the paper is organized as follows. In Sect. 2, we briefly review the related pre-
vious work. In Sect. 3, we present theoretical descriptions of Gaussian kernel-based interval
type-2 fuzzy rough sets and propose a novel attribute reduction algorithm. In Sect. 4, we
justify three implicit rule theorems that are used to extract non-redundant decision rules with
respect to fuzzy concept lattices and further propose the corresponding rule extraction algo-
rithm. In Sect. 5, we carry out comparative performance experiments on theUCI datasets, and
the results show that our algorithm outperforms the FSRR, FRS, and IM-IT2FRS algorithms
both in reduction subset size and classification ability. Lastly, in Sect. 6, we conclude the
paper with some comments and propose some related future work.

2 Related work

In this section, we briefly introduce the notations and definitions of fuzzy rough sets, type-2
fuzzy sets, interval type-2 fuzzy sets, and concept lattices. Most of the details can be found
in [13,35,39,62].

2.1 Fuzzy rough sets

Fuzzy rough set theory is a mathematical tool to deal with two distinct types of uncertainty
in data, namely the vagueness and the incompleteness [50].

Definition 1 (Fuzzy Rough Set) A tuple (U , R) is called a fuzzy rough set, where U is the
domain of objects and R is a set of a series of fuzzy equivalence relations. For each Ri ∈ R
and fuzzy set X on U , the fuzzy upper and lower approximations are defined as in Eqs. (1)
and (2), respectively:

Ri X
∗(x) = sup

y∈U
min{X(y), R(x, y)}, (1)

Ri X∗(x) = inf
y∈U max{X(y), (1 − R(x, y))}. (2)

The fuzzy equivalence relations address the discretization of any real-valued features that
rough set theory requires, and it should meet three properties, namely symmetry, reflexivity
and max–min transitivity. We also know that kernel methods allow mapping data from low-
dimension spaces to high-dimension spaces [39]. To model fuzzy similarity relations, Hu et
al. proposed type-1 fuzzy rough sets using Gaussian kernel, and the fuzzy similarity matrix
obtained satisfied symmetry, reflexivity and Tcos-transitivity [17].

2.2 Type-2 fuzzy sets

The concept of type-2 fuzzy sets was proposed by Zadeh [62].

Definition 2 (Type-2 Fuzzy Sets) A type-2 fuzzy set, denoted by Ã with domain U , is char-
acterized by

Ã =
∫
x∈U

μ Ã(x)

x
=

∫
x∈U

∫
u∈Jx

fx (u)
u

x
. (3)

Here μ Ã(x) = ∫
u∈Jx

fx (u)
u is the secondary membership function, where Jx ⊆ [0, 1] is the

primary membership of x , and fx (u) is the secondary membership of x .
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The union of Jx is called the footprint of uncertainty (FOU). The upper and lower limits
of FOU are the upper and lower membership functions of Ã, respectively.

As an extension of type-1 fuzzy sets, the membership of type-2 fuzzy sets is not a precise
set. In fact, it is a fuzzy set in the interval [0, 1]. Thus, the type-2 fuzzy sets possess more
flexibility to present uncertainties than type-1 fuzzy sets [8]. Accordingly, the type-2 fuzzy
sets and type-2 fuzzy systems have applications in various fields [15,54]. The computation
cost of type-2 fuzzy sets is relative higher, as the operations of type-2 fuzzy sets are on
three-dimensional spaces that generalized from two-dimensional spaces of type-1 fuzzy sets
[62]. Recently, more attentions have been paid to the research of simple type-2 fuzzy sets,
e.g., interval type-2 fuzzy sets [45], constrained type-2 fuzzy sets [14], and concavoconvex
type-2 fuzzy sets [47].

The definition of interval type-2 fuzzy sets is as below.

Definition 3 (Interval Type-2 Fuzzy Sets) We call Ã an interval type-2 fuzzy set if all the
secondary membership grades of Ã are l, namely, μ Ã(x) = 1, as shown in Eq. (4).

Ã =
∫
x∈U

μ Ã(x)

x
=

∫
x∈U

∫
u∈Jx

1
u

x
, Jx ⊆ [0, 1]. (4)

Since interval type-2 fuzzy sets can simplify type-2 fuzzy sets from the spatial region to the
band type region, the computational complexity of interval type-2 fuzzy sets is dramatically
reduced [4,10].

Figure 1a illustrates two type-2 fuzzy sets Ñ and Z̃ . The shadow parts in Fig. 1b are the
FOU of Ñ and Z̃ . Figure 1b illustrates an example of a secondary membership function
μÑ (−0.4). For Fig. 1, it is easy to see that the primary membership of −0.4 is J−0.4 =
[0.4, 0.6], and the secondary membership of −0.4 is 1.

It is well known that fuzzy decision making [9] and rule extraction are two main tasks
in interval type-2 fuzzy sets-based knowledge systems. By combining the Gaussian kernel
with interval type-2 fuzzy sets, we can solve the fuzzy rules interpolation of sparse fuzzy
rule-based systems and can achieve better performance than any other existing methods [5].
Nevertheless, the study of the Gaussian kernel-based interval type-2 fuzzy rough sets seems
to have eluded our attention.

2.3 Concept lattices

The concept lattice is a core data structure in formal concept analysis [13,35]. Generally,
the data analyzed by the concept lattice are represented by a formal context [3]. In formal
concept analysis, a formal context is usually denoted as a triple (U , A, I ), where U is the
domain, A is the set of attributes, and I is a set of binary relations between U and A. In a
formal context (U , A, I ), there is a unique partially ordered set corresponding to I .

The definition of concept lattice is as below.

Definition 4 (Concept Lattice) A concept lattice L is a lattice structure generated by the
partially ordered set. We also call each node in L a concept.

The concept lattice is complementary to other granular computing methods [59]. Because
of fuzzy sets, we can use concept lattices to handle continuous data [42]. In fuzzy concept
lattices-based fuzzy formal concept analysis, the uncertainties can be described directly by
membership degrees and the similarity between any two different concepts can be computed
[20]. Currently, concept lattices are widely used in rule extraction and information retrieval
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Fig. 1 Type-2 fuzzy sets

[21,23]. However, current rule extraction methods based on concept lattices generally focus
on association rules [31], and little attention is paid to decision rules that can extract rules
without redundancy.

3 Gaussian Kernel-based interval type-2 fuzzy rough set and its
attribute reduction

In this section, we provide an overview of the relevant concepts and introduce the theoretical
descriptions of Gaussian kernel-based interval type-2 fuzzy rough sets. Based on these, we
propose a novel attribute reduction algorithm.
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3.1 Gaussian Kernel-based fuzzy rough sets

Let U be a non-empty finite set, and let an object xi ∈ U be represented as xi =
〈xi1, xi2, . . . , xin〉 ∈ Rn . Then, U can be considered as a subset of Rn . For convenience,
let R represent Rn . For any two objects xi and x j , we define the similarity between them by
Gaussian kernel function as

k(xi , x j ) = exp

(−‖xi − x j‖2
2δ2

)
, (5)

where ‖ · ‖ is the Euclidean distance, δ is the kernel parameter, and k : U ×U → [0, 1] is a
kernel function. Let RG(xi , x j ) := k(xi , x j ), and RG is the similarity matrix of all objects.
When RG(xi , xi ) = 1, the kernel function satisfies Tcos-transitivity (see Eq. (6)):

Tcos(r , s) = max{rs −
√

(1 − r2)(1 − s2), 0}, (6)

where r and s represent the relationship values in RG , and Tcos(r , s) is a triangular norm
of r and s. It is easy to see that RG is a fuzzy similarity matrix [36]. Since one can use
the Gaussian kernel to model fuzzy relations between any two different objects, the fuzzy
upper and lower approximations can be defined by the Gaussian kernel in fuzzy rough sets
as follows.

Definition 5 (Fuzzy Upper and Lower Approximations) With the above notations, we define
the fuzzy upper approximations of a fuzzy set X on domain U as in Eqs. (7) and (8):

RGT X
∗(x) = sup

y∈U
Tcos(RG(x, y), X(y)), (7)

RGσ X
∗(x) = sup

y∈U
σcos(N (RG(x, y)), X(y)), (8)

and the fuzzy lower approximations as in Eqs. (9) and (10):

RGθ X∗(x) = inf
y∈U θcos(RG(x, y), X(y)), (9)

RGS X∗(x) = inf
y∈U Scos(N (RG(x, y)), X(y)), (10)

where N is an involutory negator, i.e., N (N (x)) = x for each x ∈ [0, 1], Scos is the inverse
triangular norm of Tcos, θcos is the residual implication of Tcos defined as

θcos(r , s) = sup{t |t ∈ [0, 1], Tcos(r , t) ≤ s},
and σcos is a generalized triangular norm function of Scos defined as

σcos(r , s) = inf{t |t ∈ [0, 1], Scos(r , t) ≥ s}.
We say Tcos and Scos are dual to N if Tcos(r , s) = N (Scos(N (r), N (s))).

3.2 Gaussian Kernel-based interval type-2 fuzzy rough sets

In order to combine interval type-2 fuzzy sets and rough sets, we propose the following dual
theorem.

Theorem 1 Suppose that Tcos and Scos are dual to N. Then the residual implication θcos of
Tcos and the generalized triangular norm function σcos of Scos are dual to N.
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Proof Note that

N (σcos(N (r), N (s))) = N (inf{t |t ∈ [0, 1], Scos(N (r), t) ≥ s})
= N (inf{t |t ∈ [0, 1], N (Tcos(r , N (t))) ≥ s})
= sup{N (t)|t ∈ [0, 1], Tcos(r , N (t)) ≤ s}.

Let d = N (t). Then,

N (σcos(N (r), N (s))) = sup{d|d ∈ [0, 1], Tcos(r , d) ≤ s} = θcos(r , s).

Hence the theorem follows. ��
The residual implication of Tcos can also be expressed as shown in Eq. (11):

θcos(r , s) =
{
rs + √

(1 − r2)(1 − s2) if r > s,
1 otherwise.

(11)

Combing Definitions 3, 5, Eq. (11) and Theorem 1, Tcos and θcos which can be considered
as the upper and lower approximation operator, respectively, are introduced to Gaussian
kernel-based interval type-2 fuzzy rough sets (G-I2FRS) as in Definition 6.

Definition 6 (G-I2FRS) The Gaussian kernel-based interval type-2 fuzzy set is defined by
the fuzzy Tcos-upper and θcos-lower approximations. The Tcos-upper approximation fuzzy
operator, RGT X∗(x), is determined as shown in Eq. (12):

RGT X
∗(x) = [RGT X

∗(x), RGT X
∗(x)], (12)

where

RGT X
∗(x) = sup

y∈U
Tcos(RG(x, y), X(y)),

and

RGT X
∗(x) = sup

y∈U
Tcos(RG(x, y), X(y)).

The θcos-lower approximation fuzzy operator, RGθ X∗(x), is determined as in Eq. (13):

RGθ X∗(x) = [RGθ X
∗(x), RGθ X

∗(x)], (13)

where

RGθ X∗(x) = inf
y∈U θcos(RG(x, y), X(y)),

and

RGθ X∗(x) = inf
y∈U θcos(RG(x, y), X(y)).

For a decision class di , its upper and lower approximations are defined as in Eqs. (14)
and (15), respectively:

RGT d
∗
i (x) = sup

y∈di
RG(x, y), (14)

RGθdi∗(x) = inf
y /∈di

√
1 − R2

G(x, y). (15)

The upper and lower bounds of the lower approximation are defined as in Eq. (16):
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RGθdi∗(x) = inf
y /∈di

√
1 − R2

G(x, y),

RGθdi∗(x) = inf
y /∈di

√
1 − R2

G(x, y).
(16)

In the rough set theory, the positive region of a set X is the maximal set of objects that
fully belongs to X . Also, the dependency can measure the importance of attributes. The
two important concepts in attribute reduction of rough sets, namely the positive region and
dependency of our interval type-2 fuzzy rough sets with Gaussian kernel, are defined below.

Definition 7 (Positive Region) LetU/P = {P1, P2, . . . , Pn} andU/D = {D1, D2, . . . , Dn}
be interval type-2 fuzzy partitions ofU , in which P is a subset of condition attributes and D
is the set of decision attributes. The positive region of D related to P is defined as

POSP (D) =
⋃

Di∈U/D

RGθ Di∗ . (17)

The upper and lower membership functions of POSP (D), denoted by POSP (D) and
POSP (D), are

POSP (D) =
⋃

Di∈U/D

RGθ Di∗ ,

POSP (D) =
⋃

Di∈U/D

RGθ Di∗ .
(18)

Definition 8 (Upper and Lower Dependency) The upper and lower dependency of D related
to P , denoted by γ P (D) and γ

P
(D), are defined as follows:

γ P (D) = POSP (D)

|U | , (19)

γ
P
(D) = POSP (D)

|U | . (20)

3.3 Attribute reduction algorithm on Gaussian Kernel-based interval type-2 fuzzy
rough sets

For an object x , we use RGθdi∗(x) (see Eq. (14)) to denote the degree that x certainly belongs
to a decision class di , and use RGT d∗

i (x) (see Eq. (15)) to denote the degree that x possibly
belongs to a decision class di . Note that, the objective of attribute reduction is to remove
redundant attributes while keeping the classification performance. Based on the theoretical
results in Sect. 3.2, we propose an attribute reduction algorithm on Gaussian kernel-based
interval type-2 fuzzy rough sets (see Algorithm 1 for details).

First, we partition the objects against the condition attributes and decision attributes in
decision table using the interval type-2 fuzzy according to the Gaussian kernel function (see
Eq. (5)) as shown in line 1 of Algorithm 1. Then, the relationship matrix of D related to C
and the positive region POSC (D) can be determined as in line 2 (see Eq. (17)). In line 3, we
initialize the reduction set B, and set the threshold ε. Thenwe take an attribute subset B−{bi }
of B one by one to determine the reduction subset (see lines 4 to 14). For the attribute subset
B − {bi }, we can also obtain the positive region POSB−{bi }(D) (see line 7). Then we judge
whether bi is in an attribute that can be reduced (see line 8) by comparing POSC (D) and
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POSB−{bi }(D). If the condition (see line 9) is not satisfied, B will be updated (see line 10),
and continue the cycle after updating variable i . Finally, the reduction set B will be outputted
when the Algorithm 1 terminates (see line 15). It is easy to see that the time complexity of
Algorithm 1 is O(n2m logm), where n is the number of attributes, and m is the number of
objects.

Algorithm 1 Attribute reduction algorithm on Gaussian kernel-based interval type-2 fuzzy
rough sets (ARGIRS)
Input:

The decision table T = (U ,C, D, V , f ), threshold ε.
Output:

Reduction set B.
1: Conduct the interval type-2 fuzzy partition to each condition attribute ci ∈ C (i = 1, 2 . . . , |C |) and

decision attribute D = {d};
2: Compute the relation matrix RG of D related to C , and get positive region POSC (D);
3: Let B = C and set the value of ε in [0, 1];
4: while |B| = 1 and E = ∅ do
5: E = ∅;
6: for i = 1 to |B| do
7: Compute the relationshipmatrix of D related to B−{bi }, and get the positive region POSB−{bi }(D),

bi ∈ B(i = 1, 2 . . . , |B|);
8: Compute E = E ∪ {bi ∈ B|||POSB−{bi }(D)| − |POSC (D)||/|U | < ε ∧ ||POSB−{bi }(D)| −

|POSC (D)||/|U | < ε}
9: if E = ∅ then
10: Take an attribute b

′ ∈ E , and let B = B − {b′ };
11: end if
12: i = i + 1.
13: end for
14: end while
15: Output reduction set B.

For the sake of better demonstrating the procedure of Algorithm 1, we provide an illus-
trative example as follows.

Example 1 Let U = {x1, x2, x3, x4, x5} be the five job application candidates. Four inter-
viewers C = {a, b, c, e} grade the candidates using centesimal system. The final result is
shown in terms of decision attribute D = {d}, where ‘1’ stands for passing while ‘0’ repre-
sents failing. Example 1 is illustrated in Table 1.

We only consider the condition attributes {a, b, c, e}. After interval type-2 fuzzy operation,
the Gaussian kernel similarity matrix RG between any two objects can be computed as
follows:

Table 1 Example 1 x a b c e d

x1 81.5 71 87 89.7 1

x2 65 86.5 73.5 80.5 0

x3 76.5 89 94 85 1

x4 91 78.5 85.5 87 1

x5 83 92 79 65.5 0
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⎛
⎜⎜⎜⎜⎝

1 [0.848, 0.901] [0.903, 0.952] [0.901, 0.953] [0.942, 0.960]
[0.848, 0.901] 1 [0.892, 0.959] [0.900, 0.968] [0.803, 0.883]
[0.903, 0.952] [0.892, 0.959] 1 [0.917, 0.957] [0.902, 0.927]
[0.901, 0.953] [0.900, 0.968] [0.917, 0.957] 1 [0.916, 0.933]
[0.942, 0.960] [0.803, 0.883] [0.902, 0.927] [0.916, 0.933] 1

⎞
⎟⎟⎟⎟⎠

From the above matrix RG , we can see that RG satisfies the symmetry, reflexivity, and the
Tcos-transitivity. Therefore, RG is a Tcos fuzzy equivalence relation.

With Algorithm 1, we can divide the final score d into two decision classes, 1 (d1) and 0
(d2), respectively, where d1 = {x1, x3, x4}. The lower approximation sets of decision class
d1 can be obtained as follows:

RGθd1∗(x1) = inf
y /∈d1

√
1 − R2

G(x1, y) = inf
y∈{x2,x5}

√
1 − R2

G(x1, y)

= min{
√
1 − 0.8482,

√
1 − 0.9422} = 0.3356,

RGθd1∗(x1) = inf
y /∈d1

√
1 − R2

G(x1, y) = inf
y∈{x2,x5}

√
1 − R2

G(x1, y)

= min{
√
1 − 0.9012,

√
1 − 0.9602} = 0.2800.

Similarly, we can obtain RGθd1∗(xi ) and RGθd1∗(xi ) for the case of i = {3, 4}. The lower
approximation sets of decision class d1 are

RGθd1∗ = {0.3356/x1, 0.4297/x3, 0.4007/x4},
RGθd1∗ = {0.2800/x1, 0.2811/x3, 0.2490/x4},

and the lower approximation sets of decision class d2 (d = 0) are

RGθd2∗ = {0.4349/x2, 0.3330/x5},
RGθd2∗ = {0.2490/x2, 0.2779/x5}.

Then the upper and lower membership degrees can be computed as follows:

POSC (D) = ∪i∈{1,2}RGθdi∗ = RGθd1∗ ∪ RGθd2∗
= {0.2800/x1, 0.2490/x2, 0.2811/x3, 0.2490/x4, 0.2779/x5},

POSC (D) = ∪i∈{1,2}RGθdi∗ = RGθd1∗ ∪ RGθd2∗
= {0.3355/x1, 0.4349/x2, 0.4297/x3, 0.4007/x4, 0.3330/x5}.

Let B = C and ε = 0.08. We compute POSB−{i}(D) and POSB−{i}(D) of all elements

in B (i ∈ B) in the first cycle similarly to computing POSC (D) and POSC (D). Then we

compute ||POSB−{i}(D)| − |POSC (D)||/|U | and ||POSB−{i}(D)| − |POSC (D)||/|U | of
all elements in B as follows:

||POSB−{a}(D)| − |POSC (D)||/U = 0.149967,

||POSB−{a}(D)| − |POSC (D)||/U = 0.0902363,

||POSB−{b}(D)| − |POSC (D)||/U = 0.0779337,

||POSB−{b}(D)| − |POSC (D)||/U = 0.0140327,

||POSB−{c}(D)| − |POSC (D)||/U = 0.0901133,

||POSB−{c}(D)| − |POSC (D)||/U = 0.057081,
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||POSB−{e}(D)| − |POSC (D)||/U = 0.0588185,

||POSB−{e}(D)| − |POSC (D)||/U = 0.0828353.

Similarly, we will have E = {b} and B = {a, c, e} when this cycle terminates, and we will
obtain E = ∅ after the second running. Finally, the reduction subset {a, c, e}will be outputted
after the termination of Algorithm 1.

4 Fuzzy concept lattices and rule extraction

In this section, first we will introduce fuzzy concept lattice theory and a novel fuzzy pruning
strategy for the sake of reducing the search space; then we present and prove three implicit
rule theorems for extracting non-redundant decision rules. Lastly, we present the novel rule
extraction algorithm.

4.1 Fuzzy concept lattices

In concept lattice theory, the relation between an object and an attribute in formal context is
represented crisply by ‘1’ or ‘0’, where ‘1’ indicates that the object possesses this attribute and
‘0’ otherwise. In order to describe these non-crisp relations between objects and attributes,
in what follows, we will introduce the fuzzy logic into concept lattices.

Definition 9 (Fuzzy Formal Context) A fuzzy formal context is a triple (U , A
′
, I

′
), whereU

and A
′
are finite sets of objects and attributes, respectively, and I

′
is a fuzzy set of U × A

′
.

Each (x, a) ∈ I
′
, where x ∈ U and a ∈ A

′
, has a membership value μ(x, a) ∈ [0, 1]. For

a fuzzy formal context (U , A
′
, I

′
), given a confidence threshold T and X ⊆ U , B ⊆ A

′
, we

denote the fuzzy extension and fuzzy intension as

FO(B) = {x ∈ U
′ |∀a(a ∈ B ∧ μ(x, a) ≥ T )},

FA(X) = {a ∈ A
′ |∀x(x ∈ X ∧ μ(x, a) ≥ T )}. (21)

If both FA(X) = B and FO(B) = X hold, we call (X , B) a fuzzy formal concept under T .
Let (X1, B1) and (X2, B2) be two fuzzy concepts in the fuzzy formal context (U , A

′
, I

′
).

If X1 ⊆ X2, we call (X1, B1) a ‘sub-concept’ (or ‘child node’) of (X2, B2), and (X2, B2)

a ‘parent concept’ (or ‘parent node’) of (X1, B1). If there is no node (X3, B3) satisfy-
ing (X1, B1) ⊆ (X3, B3) ⊆ (X2, B2), we call (X1, B1) a ‘direct sub-concept’ (or ‘direct
child node’) of (X2, B2), and (X2, B2) a ‘direct parent concept’ (or ‘direct parent node’) of
(X1, B1).

For the subsets of objects X and attributes A, let |X | and |A| be the cardinalities of X and
A, respectively. For any a ∈ A, we define the fuzzy pruning parameters σ and ψ as follows:

σa =
∑

x∈X μ(x, a)

|X | , (22)

σ =
∑

a∈A σa

|A| , (23)

ψa =
√∑

x∈X (μ(x, a) − σa)2

|X | , (24)
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ψ =
∑

a∈A ψa

|A| . (25)

Note that ‘
∑

’ in Eqs. (22)–(25) is not the summation symbol but an ordinary symbol in
fuzzy sets.

The fuzzy pruning parameter σ in a fuzzy concept K = (X , A) is in fact the average
membership degree of all attributes that correspond to the whole objects, which can reflect
the degree of each attribute in K . Also, the parameter ψ is actually the average value of all
ψa(K ), which reflects the divergence degree of K . Then it is easy to see that when the fuzzy
pruning parameters reach the thresholds, the pruning strategy will be triggered and the search
space of rule extraction algorithm can be reduced.

4.2 Decision rule extraction algorithm

Definition 10 (Association Rule and Decision Rule) An implicit rule B ⇒ B
′
is called an

association rule, if B ∈ A
′
, B

′ ∈ A
′
and B ∩ B

′ = ∅. Here B is the antecedent and B
′
is the

consequent. If B
′
is a decision attribute, then we call B ⇒ B

′
a decision rule.

Definition 11 (Support and Confidence) Let B ⇒ B
′
be a decision rule in a fuzzy formal

context (U , A
′
, I

′
), and let S = (X , B) and S

′ = (X
′
, B

′
) be the fuzzy concept lattices of B

and B
′
, respectively. Then the support of the rule B ⇒ B

′
is defined as follows:

Supp(B ⇒ B
′
) = P(B ∪ B

′
). (26)

The confidence of this rule is a conditional probability:

Con f (B ⇒ B
′
) = P(B ∪ B

′
)/P(B). (27)

To reduce the search space of fuzzy concept lattices, we can introduce a pruning strategy
while searching for the frequent nodes and candidate 2-tuples. We call the node S in a fuzzy
concept lattice a frequent node, if its fuzzy pruning parameterσ is not smaller than the pruning
threshold ϑ (i.e., σ ≥ ϑ), and its fuzzy pruning parameter ψ is not greater than the pruning
threshold γ (i.e., ψ ≤ γ [61]). For two frequent nodes S = (X , B) and S

′ = (X
′
, B

′
) in a

fuzzy concept lattice, we call (S, S
′
) the ‘frequent nodes pair’. Suppose that S is the parent

node and S
′
is the child node. Then (S, S

′
) is a ‘candidate 2-tuple’ if Con f (B ⇒ B

′
) ≥ η

and Supp(B ⇒ B
′
) ≥ ζ , where η is the minimum confidence and ζ is the minimum support

[33].
Next, we give a basic theorem of redundant rule.

Theorem 2 For rules B1 ⇒ B2 and B3 ⇒ B4 with B1 ∪ B2 = C and B3 ∪ B4 = C
′
, if

C
′ ⊆ C, B1 ⊆ B3, B3 ⇒ B4 is redundant to B1 ⇒ B2, and B1 ⇒ B2 holds with a certain

degree of support and confidence, then B3 ⇒ B4 must exist.

Proof By Eq. (26), we have Supp(B1 ⇒ B2) = P(B1 ∪ B2) = P(C) and Supp(B1 ⇒
B2) = P(B3 ∪ B4) = P(C

′
). Since C

′ ⊆ C , there is P(C) ≤ P(C
′
), and Supp(B1 ⇒

B2) ≤ Supp(B3 ⇒ B4).Meanwhile, since B1 ⊆ B3, we have P(B3) ≤ P(B1). By Eq. (27),
there are

Con f (B1 ⇒ B2) = P(B1 ∪ B2)/P(B1) = Supp(B1 ⇒ B2)/P(B1),

and

Con f (B3 ⇒ B4) = P(B3 ∪ B4)/P(B3) = Supp(B3 ⇒ B4)/P(B3).
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Then we have Supp(B1 ⇒ B2)/P(B1) ≤ Supp(B3 ⇒ B4)/P(B3), namely, Con f (B1 ⇒
B2) ≤ Con f (B3 ⇒ B4). Therefore, if B1 ⇒ B2 exists with a certain degree of support and
confidence, the B3 ⇒ B4 must exist, and B3 ⇒ B4 is redundant to B1 ⇒ B2. ��

The following three implicit rule theorems (Theorems 3 to 5) follow from Theorem 2.
They are used to extract non-redundant rules.

Theorem 3 If a node S = (X , B) has only one immediate parent S
′ = (X

′
, B

′
), then:

(i) The antecedent of implicit rule generated by S consists of only one attribute;
(ii) The number of implicit rules generated by S is |B| − |B ′ |;
(iii) For every attribute value p j ∈ B−B

′
, j ∈ {1, 2, . . . , |B−B

′ |}, there is p ⇒ B−{p j }.

Proof Suppose that the implicit rule generated by S is p1 p2 . . . pn ⇒ B−{p1 p2 . . . pn} (n >

1). Then we discuss it in two cases: (1) p1 p2 . . . pn ∈ B
′
and (2) p1 p2 . . . pn /∈ B

′
.

If p1 p2 . . . pn ∈ B
′
, then we have the rule p1 p2 . . . pn ⇒ B − {p1 p2 . . . pn} (n > 1) for

each x ∈ X
′
. This rule should be extracted in parent node S

′
and thus S should be merged

into S
′
, contradicting with the fact that S is the child of S

′
.

If p1 p2 . . . pn /∈ B
′
, then rules like p j ⇒ B − {p j } can be extracted, where

p j ∈ B − B ′, j ∈ {1, 2, . . . , |B − B
′ |}. By Theorem 2, we have that p1 p2 . . . pn ⇒

B − {p1 p2 . . . pn} (n > 1) is redundant to p j ⇒ B − {p j }. So the antecedent of implicit
rules generated by S consists of only one attribute and the number of implicit rules generated
by S is |B| − |B ′ |. ��

Theorem 4 Suppose that a node S = (X , B) has n direct parent nodes S1 = (X1, B1),
S2 = (X2, B2), . . . , Sn = (Xn, Bn), satisfying B ⊃ B1 ∪ B2 ∪ · · · ∪ Bn, and for each
p ∈ B − (B1 ∪ B2 ∪ · · · ∪ Bn), p ⇒ B − {p}. Then the number of implicit rules is
|B| − |B1 ∪ B2 ∪ · · · ∪ Bn |.

Proof Similar to Theorem 3, for each p ∈ B − (B1 ∪ B2 ∪ · · · ∪ Bn), we have that p is in the
sublattice and the rule p ⇒ B − p can be extracted correspondingly. All rules containing p
in its antecedent are redundant to p ⇒ B −{p}. The number of implicit rules for these types
is thus |B| − |B1 ∪ B2 ∪ · · · ∪ Bn |. ��

Theorem 5 If a node S = (X , B) has two direct parent nodes S1 = (X1, B1) and S2
= (X2, B2) with B = B1 ∪ B2, and for each pi ∈ B1 − (B1 ∩ B2) and q j ∈ B2 − (B1 ∩ B2),
pi q j ⇒ B − {piq j } (i = 1, 2, . . . , |B1 − (B1 ∩ B2)| and j = 1, 2, . . . , |B2 − (B1 ∩ B2)|).
Then the number of implicit rules is |B1 − (B1 ∩ B2)| · |B2 − (B1 ∩ B2)|.

Proof If both pi and q j come from the same direct parent node, then the corresponding rules
can be obtained when their direct parent node is visited.

If pi and q j come from different direct parent node, e.g., pi ∈ B1 − (B1 ∩ B2) and
q j ∈ B2 − (B1 ∩ B2), then by Theorem 2, we have that all rules containing piq j in its
antecedent are redundant to pi p j ⇒ B−{pi p j }. So the antecedent of implicit rules generated
by S consists of only two attributes, and the number of implicit rules generated by S is
|B1 − (B1 ∩ B2)| · |B2 − (B1 ∩ B2)|. ��

Theorem 5 can be naturally extended to the case that a node S has n direct parent nodes
S1 = (X1, B1), S2 = (X2, B2), . . . , Sn = (Xn, Bn) with B = B1 ∪ B2 ∪ · · · ∪ Bn .
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Based on the three implicit rule theorems, we propose the rule extraction Algorithm
2. Line 1 of Algorithm 2 initializes the set of decision rules that are extracted from the
lattice L , and the rules can be extracted from all nodes in the lattice L one by one
(see lines 2 to 26). Line 3 initializes the set of decision rules extracted from a node Si
in L , and line 4 interprets symbols used in the rest of Algorithm 2. The case that the
intension of the child node properly includes the union of all intension of its immedi-
ate parent nodes is discussed in lines 5 to 13, and the corresponding decision rules are
extracted according to Theorems 3 and 4. The other case is considered as well in lines
14 to 22, and the corresponding decision rules are extracted according to Theorem 5.
The set Is will be updated base on the union of Is and the set of decision rules of node
Si . After extracting the decision rules of all nodes in L , the final rule set Is can be
obtained.

As the form of rules generated by a node S depends on its parent’s form, and the number
of rules depends on the number d of its parent nodes, we know that the maximum number
of rules that can be extracted from S can be computed. Since the cycle for extracting rules
executes Ck

d times when k (k ≤ d) rules are extracted, the maximum number of generating
all the rules of S is thus 1+C2

d +· · ·+Cd
d = 2d −d . We can also see that the time complexity

of Algorithm 2 is O(2n |L|), where n is the number of attributes and |L| is the number of
objects, and it is linear in terms of the number of objects.

Algorithm 2 Rule extraction algorithm based on fuzzy concept lattice (FCLRE)
Input:

A lattice L , set of decision attributes D.
Output:

Rule set Is .
1: Is = ∅;
2: for i = 1 to |L| do
3: The rule of node Si = (Xi , Bi ) is Rules(Si ) = ∅;
4: Let d be the number of candidate 2-tuples, where Si is the child node and Sik = (Xik , Bik ) is the parent

node (k ≥ 1);
5: if Bi = Bi1 ∪ Bi2 ∪ · · · ∪ Bik then
6: P = Bi − (Bi1 ∪ Bi2 ∪ · · · ∪ Bik );
7: for j = 1 to |P| do
8: p j = Pj ;
9: if p j /∈ D ∧ D ∩ (Bi − p j ) = ∅ then
10: Rules(Si ) = Rules(Si ) ∪ {p j ⇒ D ∩ (Bi − p j )};
11: end if
12: j = j + 1;
13: end for
14: else
15: Z = Bi1 ∩ Bi2 ∩ · · · ∩ Bik , r = 2 ;
16: while r ≤ d and |Bi | > r do
17: Take all of the combination of r subsets from {Bi1− Z , Bi2− Z , . . . , Bik − Z}, bir is an attribute

in {Bir − Z};
18: if {bi1, bi2, . . . , bir } ∩ D = ∅ ∧ Bi − {bi1, bi2, . . . , bir } ∩ D = ∅ then
19: Rules(Si ) = Rules(Si ) ∪ {bi1, bi2, . . . , bir } ⇒ Bi − {bi1, bi2, . . . , bir };
20: end if
21: r = r + 1.
22: end while
23: end if
24: Is = Is ∪ Rules(Si );
25: i = i + 1.
26: end for
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5 Experimental results

In this section, we carry out the fuzzy rule extraction experiments on 14 datasets from theUCI
Machine Learning Repository (as shown in Table 2). The maximum number of objects in
these datasets is 690, and themaximumnumber of attributes is 60. First we analyze the impact
of parameters involved in reduction algorithm ARGIRS, then we evaluate the ARGIRS by
comparing it with other methods.

As we noted before, the goal of attribute reduction is to find a minimal attribute subset
that maintains the classification performance. Furthermore, parameters δ and ε exhibit a
significant impact on the effectiveness associated with the corresponding Gaussian kernel-
based interval type-2 fuzzy rough set, where δ is the kernel parameter used to model fuzzy
similarity relation, and ε is the precision parameter used to compare positive regions during
attribute reduction. Although we know that the kernel parameter δ determines the granular
space generated by Gaussian kernel function, and parameter ε determines the precision of
final reduction results, there is no theoretical result on specifying these two parameters. In
what follows, we will carry out several experiments to determine the range of ‘optimal’
values of δ and ε, and we illustrate the impact of δ and ε on two datasets, Sonar and Wine,
respectively (see Figs. 2, 3).

From Figs. 2 and 3, we can see the trend that the number of attributes in reduction subsets
decreases as ε increases and δ decreases. The effects of δ and ε on classification accuracy are
the same.When the classification accuracy reaches 80%,we compare the number of attributes
in reduction subsets obtained with different intervals of δ and ε and select the intervals that
the length of their corresponding reduction subset is less than that of other intervals’ on most
of the datasets. We also find that when δ ∈ [0.3, 0.4] and ε ∈ [0.02, 0.03], the higher the
classification accuracy of reduced data, the less the number of attributes.

In order to verify the superiority of the proposed reduction algorithm, we carry out com-
parative experiments on datasets in Table 2 with ARGIRS, fuzzy swarm rough set reduction
algorithm (FSRR) [58], fuzzy rough sets-based reduction algorithm (FRS) [32], and inclu-
sion measures-based interval type-2 fuzzy rough sets reduction algorithm (IM-IT2FRS) [63].
The reduction subset sizes on different datasets with each algorithm are shown in Table 3 for
comparison.

Table 2 UCI Datasets ID Datasets Objects Attributes Classes

1 Credit 690 15 2

2 Heart 270 13 2

3 Hepatitis 155 19 2

4 Horse 368 27 2

5 Sonar 208 60 2

6 Wdbc 569 32 2

7 Wpbc 198 34 2

8 Wine 178 13 3

9 Iris 150 4 3

10 Zoo 101 17 7

11 Ionosphere 351 34 2

12 Climate 540 18 2

13 Qualitative Bankruptcy 250 7 2

14 Glass 214 10 7
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Fig. 2 Trends of the number of attributes (a) and classification accuracy (b) varying with ε and δ (Sonar)
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Fig. 3 Trends of the number of attributes (a) and classification accuracy (b) varying with ε and δ (Wine)
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Table 3 Comparisons of
reduction subset sizes on
different datasets

ID Datasets FSRR FRS IM-IT2FRS ARGIRS

1 Credit 8 11 7 5

2 Heart 10 9 8 8

3 Hepatitis 7 12 4 7

4 Horse 8 8 6 6

5 Sonar 10 7 7 4

6 Wdbc 12 12 9 14

7 Wpbc 14 7 8 7

8 Wine 7 12 6 6

9 Iris 3 3 2 3

10 Zoo 10 9 8 8

11 Ionosphere 12 9 8 7

12 Climate 7 6 6 6

13 Qualitative
Bankruptcy

4 4 4 4

14 Glass 9 9 9 7

Credit Heart Hepatitis Horse Sonar Wdbc Wpbc Wine Iris Zoo Ionosp Climate Q-Bank Glass
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Datasets
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FSRR FRS IM-IT2FRS ARGIRS

Fig. 4 Comparisons of classification accuracy using the kNN algorithm

As one can see, the performance of ARGIRS is better than FSRR, FRS, and IM-IT2FRS in
terms of the number of attributes in reduction subsets on Credit, Sonar, Ionosphere and Glass
datasets. On other datasets, the performance of ARGIRS is similar to other three algorithms.
In general, we can obtain a minimal attribute subset with ARGIRS.

We also use different classifiers, such as k-Nearest Neighbor classifier (kNN) [16], Naive
Bayes (BayesNet) [19] and decision tree algorithm (C4.5) [38], to compare the classification
accuracy with our proposed reduction algorithm.

As shown in Figs. 4, 5 and 6, the classification performance of ARGIRS is better than the
other algorithms on themajority of the datasets. On datasets such asWine, Climate andGlass,
ARGIRS is superior to other algorithms in terms of reduction subset size and classification
accuracy. On other datasets, even if its performance is not optimal, the difference is subtle.
The sizes of reduction subsets obtained by ARGIRS are small. Overall, with ARGIRSwe can
find a minimal reduction subset while maintain the classification performance of the original
data, and the performance of ARGIRS is better than other methods.
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Fig. 5 Comparisons of classification accuracy using the BayesNet algorithm
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Fig. 6 Comparisons of classification accuracy using the C4.5 algorithm

Basing on the reduction results on these 14 datasets, we carry out the rule extraction
experiments using the FCLRE algorithm, and the comparisons of the classification error rate
between the FCLRE algorithm and the classical algorithms C4.5, kNN, and BayesNet are
listed in Table 4.

As shown in Table 4, the error rate of proposed FCLRE algorithm is lower than the
C4.5, kNN, and BayesNet algorithms on nine, eleven, and eight datasets, respectively. On
datasets ‘Credit’, ‘Wpbc’, ‘Iris’, ‘Zoo’, ‘Ionosphere’, ‘Qualitative Bankruptcy’, and ‘Glass’,
the error rate of FCLRE algorithm is the lowest. On the other datasets, although the FCLRE
algorithm is not the best, it still has better classification performances than other compared
algorithms. Also, the average error rate of these algorithms on these 14 datasets can be
computed according to Table 4, and we can see that the average error rate of FCLRE is
11.02, which is lower than 11.97 of C4.5, 15.19 of kNN, and 14.13 of BayesNet. Taking
all these into account in the analysis of their performances, we conclude that the proposed
FCLRE algorithm is the best among all the compared algorithms.

As an illustration example, we list the decision rules extracted by the FCLRE algorithm
on the Zoo dataset in Table 5. From Table 5, we see that there are 45 decision rules without
redundancy. The letters A to G represent different reduction attributes, the number in the
parenthesis after a letter represents the value of its corresponding conditional attribute, and
di (i = 1, 2, . . . , 7) represents decision attribute. The corresponding concept lattices are
illustrated in Fig. 7.
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Table 4 Comparisons of classification error rate (%)

ID Datasets C4.5 kNN BayesNet FCLRE

1 Credit 14.38 17.35 14.60 8.10

2 Heart 5.69 24.2 16.30 16.4

3 Hepatitis 9.20 8.57 11.11 16.6

4 Horse 10.59 4.65 10.32 7.70

5 Sonar 19.15 30.92 23.59 25.4

6 Wdbc 2.26 8.07 2.45 7.10

7 Wpbc 21.63 27.97 23.68 17.0

8 Wine 1.68 5.35 2.67 8.40

9 Iris 11.09 11.91 11.21 4.0

10 Zoo 17.12 15.4 14.40 7.60

11 Ionosphere 13.11 10.04 9.93 6.71

12 Climate 7.61 7.04 6.11 6.32

13 Qualitative Bankruptcy 10.34 11.33 9.33 4.56

14 Glass 19.2 29.92 30.47 18.4

The value of the lowest error rate in each row is shown in bold

Table 5 Decision rules results from Zoo dataset

No. Rule No. Rule

1 A(0), E(1), H(4) ⇒ d1 24 D(0),G(1) ⇒ d4
2 A(0), D(0) ⇒ d1 25 E(0),G(1) ⇒ d4
3 A(0), F(0) ⇒ d1 26 F(1),G(1) ⇒ d4
4 A(0), H(2) ⇒ d1 27 A(1),C(1), E(1), H(4) ⇒ d5
5 A(0),G(1) ⇒ d1 28 B(0),C(1), E(1), H(4) ⇒ d5
6 B(0) ⇒ d1 29 C(1), D(0), H(4) ⇒ d5
7 E(1),G(1) ⇒ d1 30 F(1), H(4) ⇒ d5
8 G(1), H(2) ⇒ d1 31 C(0), H(6) ⇒ d6
9 A(1), H(2) ⇒ d2 32 E(1), H(6) ⇒ d6
10 B(0), H(2) ⇒ d2 33 F(1), H(6) ⇒ d6
11 C(1), D(0),G(0), H(2) ⇒ d2 34 D(0), H(6) ⇒ d6
12 A(0), B(0),C(1) ⇒ d3 35 D(0), F(1) ⇒ d6
13 A(0), B(0), E(0) ⇒ d3 36 A(0), B(0),C(0) ⇒ d7
14 A(0), B(0),G(0) ⇒ d3 37 A(0), B(0), E(1) ⇒ d7
15 C(0), D(1), E(1), F(1) ⇒ d3 38 C(0), H(0) ⇒ d7
16 C(0), D(1), E(1), H(0) ⇒ d3 39 C(1), H(6) ⇒ d7
17 A(1), B(0), E(0) ⇒ d4 40 D(0), E(1), H(0) ⇒ d7
18 A(1),C(1), H(0) ⇒ d4 41 D(0),G(0), H(0) ⇒ d7
19 A(1),G(1) ⇒ d4 42 E(0), H(4) ⇒ d7
20 B(0),G(1) ⇒ d4 43 E(0), H(6) ⇒ d7
21 C(1), F(0), H(0) ⇒ d4 44 H(8) ⇒ d7
22 C(1), D(0), H(0) ⇒ d4 45 H(5) ⇒ d7
23 D(0), E(0) ⇒ d4
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Fig. 7 The concept lattices of Zoo dataset

6 Conclusions

In this paper, we investigated the main concerns in interval type-2 fuzzy rough sets-based
granular computing, namely the attribute reduction and rule extraction. We introduced the
Gaussian kernel and fuzzy concept lattices to formulate fuzzy similarity relations in attribute
reduction and extract fuzzy rules, respectively. We proposed a novel attribute algorithm with
Gaussian kernel-based interval type-2 fuzzy rough sets, in which the kernel and precision
parameters were comprehensively discussed. Then we generalized the attribute reduction
algorithm, and the corresponding concepts and theorems to interval type-2 fuzzy rough
sets. After obtaining reduction subsets, we proposed a rule extraction algorithm based on
fuzzy concept lattices to extract the decision rules. Three implicit rule theorems were proved
theoretically to ensure that the extracted decision rules were without redundancy. Besides,
to reduce the search space of the proposed fuzzy rule extraction algorithm, we proposed a
pruning strategy for searching the frequent nodes and candidate 2-tuples.

Experimental results illustrate that the proposed algorithms have significant advantages in
termsof reduction subset size and classification accuracy.Hence, our rule extraction algorithm
is a successful attempt to extract non-redundant decision rules. However, compared with
classical fuzzy rough sets, our algorithm still has relatively high computational complexity
and thus needs further improvement. For future work, we plan to study the parallelization
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of the proposed algorithms. We may also explore how to tune the membership functions of
interval type-2 fuzzy rough sets and increase the classification accuracy rates by employing
swarm intelligencemethods, such as ant colony optimization [6], particle swarmoptimization
[7], and cat swarm optimization [49].
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