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Abstract— Web caching is a technology for improving network 
traffic on the internet. It is a temporary storage of Web objects 
(such as HTML documents) for later retrieval. There are three 
significant advantages to Web caching; reduced bandwidth 
consumption, reduced server load, and reduced latency. These 
rewards have made the Web less expensive with better 
performance. The aim of this research is to introduce advanced 
machine learning approaches for Web caching to decide either to 
cache or not to the cache server, which could be modelled as a 
classification problem. The challenges include identifying attributes 
ranking and significant improvements in the classification 
accuracy. Four methods are employed in this research; 
Classification and Regression Trees (CART), Multivariate Adaptive 
Regression Splines (MARS), Random Forest (RF) and TreeNet 
(TN) are used for classification on Web caching. The experimental 
results reveal that CART performed extremely well in classifying 
Web objects from the existing log data and an excellent attribute to 
consider for an accomplishment of Web cache performance 
enhancement.  
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I.  INTRODUCTION 
Caching operation can be executed at the client application, 

and is generally it is embedded in most Web browsers. There are 
a number of products that extend or replace the embedded 
caches with systems that contain larger storage, more features, or 
better performance. In any cases, these systems only cache net 
objects from many servers for a single user.  

Caching can also be operated between the client and the 
server as a part of proxy cache, which is often located close to 
network gateways to decrease the bandwidth connections. These 
systems can serve many users (clients) with cached objects from 
many servers. In fact, the usefulness of web caching (reportedly 
up to 80% for some installations) is in caching objects requested 
by one client for later retrieval by another client. Even for better 
performance, many proxy caches are part of cache hierarchies; a 
cache can appeal neighbouring caches for a requested document 
to lessen the need for direct fetching.  

Furthermore, caches can be situated directly in front of a 
particular server in order to reduce the number of requests that 
the server must handle. Most proxy caches can be used in this 
fashion with different names; reverse cache, inverse cache, or 

sometimes httpd accelerator, to replicate the fact that it caches 
objects for many clients but normally from one server [1]. This 
paper investigates the performance of Classification and 
Regression Trees (CART), Multivariate Adaptive Regression 
Splines (MARS), Random Forest (RF) and TreeNet (TN) for 
classification in Web caching. 

The rest of the paper is organised as follows:  Section 2 
describes the related works, followed by introduction about the 
machine learning approaches in Section 3. Section 4 on 
experimental setup and Section 5 illustrates the performance 
evaluation of the proposed approaches. Section 6 discusses the 
result from the experiment and finally, Section 7 concludes the 
article. 

II. RELATED WORKS 
Many researchers have looked for ways to improve current 

caching techniques. Padmanabhan and Mogul [2] proposed 
predictive model to be used as server hint. The proposed model 
is equipped with server that is able to create Markov model by 
predicting probability of object A will be tag along, with next n 
requests and object B (n is a parameter of the algorithm). The 
server will use the model to produce a forecast for subsequent 
references and throw the forecast to the client. The client will 
use forecast result to pre-fetch an object on the server if only that 
object is not in the client cache. The simulation done was able to 
reduce the latency until 45%. However, their technique has a 
limitation as it also makes network traffic larger by two times 
[2]. That is why a lot of people try to find latency and network 
reduction at the same time. 

Bestavros and Cunha [3] have presented a model for the 
speculative dissemination of World Wide Web data. His work 
illustrates that reference patterns from a Web server can be used 
as a key information source for pre-fetching. They also 
investigate that latency reduction increases until 50%, though it 
still increases the bandwidth utilisation.  

On the other hand, Pallis et al. [4] has proposed a pre-
fetching based on the clustering method. Web pre-fetching is an 
attractive solution to reduce the network resources consumed by 
Web services as well as the access latencies perceived by Web 
users. Unlike Web caching, which exploits the temporal locality, 
Web pre-fetching utilises the spatial locality of Web objects. 
Specifically, Web pre-fetching fetches objects that are likely to 



be accessed in the near future and stores them in advance. In this 
context, a sophisticated combination of these two techniques 
may cause significant improvements on the performance of the 
Web infrastructure. 

Kroeger et al. [5] observed a local proxy caching which is 
able to decrease latency until 26%, while pre-fetching could 
decrease latency at 57%. The combination of both of them will 
give better latency reduction until 60%. Furthermore, he had also 
found that algorithm on pre-fetching has contribution on 
reducing latency. From his work, it also explained that pre-
fetching can provide double improvement on caching. However, 
it is only for decreasing the latency. 

Xu et al. in [6] proposed solutions by creating proxy 
management. The Caching dynamic content is obtained by 
generating data and personalise data that contributes up to 30-
40% of the total traffic. These types of data are normally 
identified as “uncachable”. To further improve Web 
performance, reverse caching has also been suggested to make 
more dynamic content cachable and manageable [4]. Xu et al. 
[6] also proposed collaboration among proxies is based on the 
premise that it would be faster and cheaper to fetch an object 
from another close proxy rather than the origin server. See Fig. 1 
for the cooperative cache organization. However, the challenge 
still stuck on how to efficiently maintain consistency between 
the cached content and the data source that frequently change. 
Another important issue is the analysis of query semantics to 
evaluate a complex query over the cached content. 

 
Figure 1.  Examples of different cooperative cache organizations. [6] 

Caching streaming objects: It is predicted that streaming 
media such as music or video clips will symbolize a significant 
portion of Web traffic over the Internet. Due to the distinct 
features of streaming objects like big size, long duration, 
intensive use of bandwidth, and interactivity, conventional proxy 
caching techniques are not able to solve this problem. To solve 
these problems, many partial caching algorithms have been 
proposed in recent years [7,8]. The proposed algorithms 
expressed that even if small size of video is stock up on the 
proxy, the consumption of network will be reduced significantly. 

Teng et al., in [9] proposed a combination between Web 
caching and Web pre-fetching. These two techniques can go 
together since the Web caching technique use the temporal 
locality while Web pre-fetching technique utilizes the spatial 
locality of Web objects. The proposed technique is obtained by 
evaluating the pre-fetching rules.  

Lots of future works have been drawn by previous 
researchers especially on clustering pre-fetching, caching on 

proxy level or even designing cache organization. Considering 
that there have been several caching policies proposed in the 
past, the challenge is to extend them by using data mining 
techniques. It presented a clustering-based pre-fetching scheme 
where a graph-based clustering algorithm identifies clusters of 
‘‘correlated’’ Web pages based on the users’ access patterns and 
to create adaptive websites [10]. 

Nevertheless, this research has proposed a scheme that can be 
realise to integrate data mining techniques into a cache server for 
Web object classification thus improving its performance. 
Through a simulation environment, using a real data set, CART, 
MARS, RF and TN can be an effective way in improving the 
performance of the Web caching environment. 

In this research, real data set were used for classification of 
Web object data based on two different Web log data; Boston 
University (BU) and E-learning@UTM (EL). According to the 
related work, the issues of performance to classify the Web 
objects and implementation on cache server were highlighted. 

III. MACHINE LEARNING APPROACHES 

3.1. CART 
Classification and Regression Trees (CART) is a robust 

decision-tree tool for data mining, pre-processing and predictive 
modelling, suggested by Breiman et al. [11].  CART can be used 
by complex data for patterns and relationships and uncovering a 
hidden structure [12]. Moreover, it is a nonparametric technique 
that can select from among a large number of variables, and their 
interactions that are most important in determining the outcome 
variable to be explained.  

Decision Tree (DT) induction is one of the classification 
algorithms in data mining. The classification algorithm is 
inductively learned to construct a model from the pre-classified 
data set. Inductive learning means making general assumptions 
from the specific examples in order to use those assumptions to 
classify unseen data. The inductively learned model of 
classification algorithm is known as classifier. Classifier may be 
viewed as mapping from a set of attributes to a particular class.  
Data items are defined by the values of their attributes and X is 
the vector of their values {x1, x2 ….xn}, where the value is either 
numeric or nominal.  Attribute space is defined as the set 
containing all possible attribute vectors and is denoted by Z. 
Thus X is an element of Z (X∈Z). The set of all classes is 
denoted by C = {c1, c2,...,cn}. A classifier assigns a class c ∈ C 
to every attribute of the vector X∈Z. The classifier can be 
considered as a mapping f, where f: X  C. This classifier is 
used to classify the unseen data with a class label. A decision 
tree classifies the given data item using the values of its 
attributes. The decision tree is initially constructed from a set of 
pre-classified data. Each data item is defined by values of the 
attributes.   

The main issue is to select the attributes which best divides 
the data items into their classes. According to the values of these 
attributes the data items are partitioned. This process is 
recursively applied to each partitioned subset of the data items. 



The process terminates when all the data items in the current 
subset belongs to the same class.   

A decision tree consists of nodes, leaves and edges. A node 
of a decision tree specifies an attribute by which the data is to be 
partitioned. Each node has a number of edges, which are labelled 
according to a possible value of edges and a possible value of 
the attribute in the parent node. An edge connects either two 
nodes or a node and a leaf. Leaves are labelled with a decision 
value for categorization of the data. Induction of the decision 
tree uses the training data, which is described in terms of the 
attributes. The main problem here is deciding the attribute, 
which will best partition the data into various classes.  

3.2. MARS 
Multivariate Adaptive Regression Splines (MARS) model is 

a spline regression model that uses a specific class of basis 
functions as predictors in place of the original data [13,14]. The 
MARS basis function transform makes it possible to selectively 
blank out certain regions of a variable by making them zero, 
allowing MARS to focus on specific sub-regions of the data. 
MARS excels at finding optimal variable transformations and 
interactions, as well as the complex data structure that often 
hides in high-dimensional data. 

Given the number of predictors in most data mining 
applications, it is infeasible to approximate a function y=f(x) in a 
generalization of splines by summarizing y in each distinct 
region of x. Even if we could assume that each predictor x had 
only two distinct regions, a database with just 35 predictors 
would contain 235 or more than 34 billion regions. This is 
known as the curse of dimensionality. For some variables, two 
regions may not be enough to track the specifics of the function. 
If the relationship of y to some x's is different in three or four 
regions, for example, with only 35 variables the number of 
regions requiring examination would be even larger than 34 
billion. Given that neither the number of regions nor the knot 
locations can be specified a priori, a procedure is needed that 
accomplishes the following: 

• judicious selection of which regions to look at and their 
boundaries, and 

• judicious determination of how many intervals are 
needed for each variable. 

A successful method of region selection will need to be 
adaptive to the characteristics of the data. Such a solution will 
probably reject quite a few variables (accomplishing variable 
selection) and will take into account only a few variables at a 
time (also reducing the number of regions).  

A key concept underlying the spline is the knot, which marks 
the end of one region of data and the beginning of another. Thus, 
the knot is where the behaviour of the function changes. 
Between knots, the model could be global (e.g., linear 
regression). In a classical spline, the knots are predetermined and 
evenly spaced, whereas in MARS, the knots are determined by a 
search procedure. Only as many knots as needed are included in 
a MARS model. If a straight line is a good fit, there will be no 
interior knots. In MARS, however, there is always at least one 

"pseudo" knot that corresponds to the smallest observed value of 
the predictor.  

In MARS, Basis Functions (BFs) are the machinery used for 
generalizing the search for knots. BFs are a set of functions used 
to represent the information contained in one or more variables. 
Much like principal components, BFs essentially re-express the 
relationship of the predictor variables with the target variable. 
The hockey stick BF, the core building block of the MARS 
model is often applied to a single variable multiple times. The 
hockey stick function maps variable X to new variable X*: 

max (0, X -c), or max (0, c - X) 

In the first form, X* is set to 0 for all values of X up to some 
threshold value c and X* is equal to X for all values of X greater 
than c (actually X* is equal to the amount by which X exceeds 
threshold c). The second form generates a mirror image of the 
first. It starts with a constant in the model and then begins the 
search for a variable-knot combination that improves the model 
the most (or, alternatively, worsens the model the least). The 
improvement is measured in part by the change in Mean Squared 
Error (MSE). Adding a basis function always reduces the MSE. 
MARS searches for a pair of hockey stick basis functions, the 
primary and mirror image, even though only one might be 
linearly independent of the other terms. This search is then 
repeated, with MARS searching for the best variable to add 
given the basis functions already in the model. The brute search 
process theoretically continues until every possible basis 
function has been added to the model. 

In practice, the user specifies an upper limit for the number 
of knots to be generated in the forward stage. The limit should 
be large enough to ensure that the true model can be captured. A 
good rule of thumb for determining the minimum number is 
three to four times the number of basis functions in the optimal 
model. This limit may have to be set by trial and error. 

3.3. RF 
The Random Forests (RF) algorithm was proposed by Leo 

Breiman in 1999[15]. The algorithm can be used for both 
regression and classification, as well as for variable selection, 
interaction detection, clustering etc. This technology represents a 
substantial advance in data mining technology and it is based on 
novel ways of combining information from a number of decision 
trees [11] [15].  

A Decision Tree Forest (DTF) is an ensemble (collection) of 
decision trees whose predictions are combined to make the 
overall prediction for the forest. A decision tree forest grows a 
number of independent trees in parallel, and they do not interact 
until after all of them have been built. Decision tree forest 
models often have a degree of accuracy that cannot be obtained 
using a large, single-tree model. An outline of the algorithm 
used to construct a decision tree forest consisting of N 
observations is given below:  

(1) Take a random sample of N observations from the data set 
with replacement. Some observations will be selected more 
than once, and others will not be selected. On average, about 
2/3 of the rows will be selected by the sampling. The 



remaining 1/3 of the rows are called the out of bag rows. A 
new random selection of rows is performed for each tree 
constructed.  

(2) As the tree is built, allow only a subset of the total set of 
predictor variables to be considered as possible splitters for 
each node. Select the set of predictors to be considered as a 
random subset of the total set of available predictors. For 
example, if there are ten predictors, choose a random five as 
candidate splitters. Perform a new random selection for each 
split. Some predictors (possibly the best one) will not be 
considered for each split, but a predictor excluded from one 
split may be used for another split in the same tree. 
 

(1)  and (2) are repeated a large number of times to construct a 
forest of trees. 

Decision tree forests have two stochastic elements: (1) the 
selection of data rows used as input for each tree, and (2) the set 
of predictor variables considered as candidates for each node 
split. For reasons that are not well understood, these 
randomizations along with combining the predictions from the 
trees significantly improve the overall predictive accuracy. 

3.4. TN 
TreeNet (TN) is a robust multi-tree technology for data 

mining, predictive modelling and data processing. This 
technology is an exclusive implementation of Jerome Friedman’s 
MART methodology [16]. It offers exceptional accuracy, blazing 
speed, and a high degree of fault tolerance for dirty and 
incomplete data.  It can handle both classification and regression 
problems and has been proven to be remarkably effective in 
traditional numeric data mining and text mining [16].  

TN is an enhancement of the CART model using stochastic 
gradient boosting [16]. Boosting means that endeavours to 
“boost” the accuracy of any given learning algorithm by fitting a 
series of models each having a low error rate and then 
combining into an ensemble that may perform better [18, 17]. 
The key features of TN models consist of [18]: automatic 
variable subset selection; ability to handle data without pre-
processing; resistance to outliers; automatic handling of missing 
values; robustness to dirty and partially inaccurate data; high 
speed; and resistance to over-training. A TN model can be 
thought of as a series expansion approximating the true 
functional relationship [19] (1): 

        F (X) = F0+ β1 T1(X)+ β2 T2(X)+…+ βM TM(X)         (1)        
 

where Ti is a small tree. Each tree refines and improves on its 
predecessors. TN models are thus typically composed of 
hundreds of small trees, each of which contributes slight 
refinement to the overall model. 

IV. EXPERIMENTAL SETUP 
In this experiment, two different log records were utilised. 

The first data from BU Web Trace (client-side) [20] collected by 
Oceans Research Group at BU functioned as the experiment data 

set. BU traces records collected 9,633 files, instead of a 
population of 762 different users, and recording 109,759 
requests for data transfer. The browser log data (from November 
1994 to May 1995) were obtained from Mosaic clients at the BU 
[21][ 22][23].  

The second data was from EL (Web server) from Universiti 
Teknologi Malaysia (UTM). The server log data that was 
obtained on 13 and 14 January 2008 with 65,015 records were 
from one of EL Apache servers at Centre of Information and 
Communication Technology (CICT) [24].  

A. Pre-processing and Normalise Data 
The pre-processing is the key component to classify an object 

to cache. Fig. 2 shows the actual data prior to data pre-processing, 
and Fig. 3 depicts the pre-process data for BU, and EL logs data. 
Each line of a condensed log in BU Web traces corresponds to a 
single URL requested by the user; it contains the machine name, 
the time stamp when the request was made (seconds and 
microseconds), the URL, the size of the document (in bytes) and 
the object retrieval time in seconds. Detail explanation can be 
referred to [20][21][24]. 

 

 

 

 

 

 

 

Figure 2.  Examples data from BU and EL log data: (a) BU (b) EL. 

 

Fig. 5. Preprocess BU and EL log data (a) BU (b) EL. 

 
 
 

 
 
 

Figure 3.  Pre-process BU and EL log data: (a) BU (b) EL. 

Meanwhile, each line in EL file represents an incoming 
HTTP request, and Apache records information about it using a 
format known as the Common Log Format (CLF). Reading from 
left to right, this format contains the following information about 
the request; the source IP address, the client’s identity the remote 
user name (if using HTTP authentication), the date, time, and 
time zone of the request, the actual content of the request, the 
server’s response code to the request, and the size of the data 
block returned to the client, in bytes. 

 
(a) 

 
(b) 

 
(a) 

 
(b) 



Three common variables or attributes have been identified in 
Web performance analysis [25][26]. The attributes used in this 
study are: 

Web Object Size: the size is expressed in bytes and kilobytes. 
Numbers of Hits: the number of hits per data. Each completed 
request for a Web file will increase the number of hit for 
requested file. 
Retrieval Time: the counter that observes the time takes to 
receive a data in seconds. 
 

Each variable or attribute must be multiplied with defined 
Priority Value (PV) [27] to get the total of the attributes for 
target output generation of the network. Equation (2) explains an 
example of PV calculation: 
Expected target = (Size *0.266667) + (Num_of_hits*0.200000) + 
                             (Retrieval_time *0.066667)                                 (2) 

                                          
The total value determines the expected target for current 

data. The total value is compared to a threshold number, and this 
threshold values are dynamic. A new threshold calculation is 
proposed based on the latency ratio on singular hit rate data [28]. 

The threshold is calculated and updated for every epoch of 
the training (3). If the expected_target is smaller than the 
threshold, then the expected target would be 0, or else it 
becomes 1 if the expected_target is equal or greater than to the 
threshold [21][ 24] shown below: 

 
      (3)                                                                                                                              

 
The network incorporates simplicity in generating output for 

the Web caching to cache or not to cache. For each output 
generated from the non-training mode, the outputs can be 
illustrated by employing sigmoid function that bounded between 
0 and 1.  For each output values that represents between the 
interval of [0.5,1], the data will be cached in the caching storage, 
and for each output that represents values less than 0.5 the data 
will be fetched directly from the originating database resource in 
case the data is not found in the cache storage [21][ 24]. 

Normalisation process (see Fig. 4) is done by determining the 
maximum and minimum value for each attribute [21][24]. The 
end values are between 0 and 1 to improve training 
characteristics.  Min-max normalisation is given as in (4): 

 

  (4) 

 

Let X refers to an original attribute value and X* refers to the 
normalised attribute value. From this formula, we can summarise 
the results as shown in Table 1. The summarisation shows the 
normalisation process had reduced the number of data up to 
15.69% and 42.31% for BU and EL data set respectively at a 
proxy cache.  

 
(a) 

 
(b) 

Figure 4.  Normalise BU and EL log data: (a) BU (b) EL. 

TABLE I.  SUMMARISATION OF BU AND EL LOG DATA AFTER THE 
NORMALISATION 

Summary BU EL
Number of actual data 109 759 65 015
Number of pre-process data 17 224 23 105
Maximum size (byte) 16 711 260 16 384 015
Longest retrieval time (seconds) 1 749 0
Highest hits 3 328 1 141

B. Training and testing 
The actual BU log data consists of 109,759 records and EL 

log data involves of 65,015 records. Moreover, 70% of it was 
used for training and the remaining for testing purposes. These 
experiments were carried out on a Core Duo CPU, 2GHz 
Machine and the codes were executed using Salford System 
tools. 

The details of model statistics for CART, MARS, RF and TN 
by using the BU and EL data are shown below: 

CART:  
Number of predictors = 3, 2 
Important = 3, 2 
Nodes = 38, 5 
Min node cases = 2, 312 
MARS: 
Number of predictors = 3, 2 
Basis functions = 3, 1 
Number of effective parameters = 7, 1 
Min observation between knots = 0, 0 
RF: 
Number of predictors = 3, 2 
Max terminal nodes = 8613, 8088 
Trees grown = 500, 500 
Parent node min cases = 2, 2 
TN: 
Number of predictors = 3, 2 
Tree size = 6, 6 
Tree grown = 200, 200 
Last tree data fraction = 0.03, 0.44 

⎧⎪
⎨
⎪⎩

<= ≥
0  if  expected_target  ,       1   if expected_target .         

thresholdExpected Network Output threshold
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V. PERFORMANCE AND RESULTS ACHIEVED 
Table 2 summarises the comparative performances of the 

different CART, MARS, RF and TN in terms of error rate 
training, learning iteration and classification accuracy. 

From the training, we find that the error rate training for TN 
model has resulted as the lowest rate with 0.001 for BU data. 
Simultaneously, CART and TN model is given 0 error rate for 
EL data. However, the highest error rate is 0.242 by using 
MARS model for EL data. The smallest number of training 
iteration is CART, 38 and 5 for BU and EL data. 

TABLE II.  PERFORMANCE COMPARISON BETWEEN CART, MARS, RF AND 
TN FOR BU AND EL LOG DATA  

Technique 
Error Rate 
(Training) 

Learning 
Iteration/ 

Nodes Optimal 
Accuracy (%) 

BU EL BU EL BU EL 
CART 0.002 0.000 38 5 99.86 100 
MARS 0.081 0.242 - - 91.07 59.04 

RF 0.007 0.003 500 500 99.50 99.45 
TN 0.001 0.000 200 200 99.80 100 

 

Testing process is done to determine the accuracy of the 
output generated by all Salford Systems tools. The accuracy is 
done base on the difference in results between the actual value 
and the generated value by CART, MARS, RF and TN. In this 
study, the accuracy is measured as shown in (5): 

                                                                                              

 (5) 

 

Based on this equation, the CART accuracy is 99.86% and 
100% for BU and EL data as the best accuracy compare to other 
models. The second highest is TN, 99.8% (BU) and 100% (EL). 
It depicts that the CART model seems to classify better and less 
iteration than others. 

Table 3 depicts the receiver operating characteristic (ROC) as 
a graphical plot of the sensitivity vs. (1 - specificity) for a binary 
classifier system as its discrimination threshold is varies. The 
ROC analysis recently has been introduced in various fields like 
medicine, radiology and others. Conversely, it has been 
introduced recently in other areas for instance data mining and 
machine learning. ROC approved that CART model is the best 
classifier measure up to other Salford Systems model.   

TABLE III.  ROC COMPARISON BETWEEN CART, MARS, RF AND TN FOR 
BU AND EL LOG DATA 

Technique 
ROC 

BU EL 
Class1(0) Class2(1) Class1(0) Class2(1) 

CART 1.000 1.000 1.000 1.000 
MARS 0.000 1.000 0.000 1.000 

RF 0.989 0.996 0.999 0.995 
TN 0.989 1.000 1.000 1.000 

 

In addition, Table 4 shows the important level of three 
variables. However, EL log data only provided size and number 
of hits variable. The most significant variable is the size, followed 
by the number of hits and retrieval time for each BU and EL log 
data. It proves that size will construct an effective use of space 
for Web caching in the cache server. 

TABLE IV.  VARIABLE IMPORTANCE  

 

VI. DISCUSSION 
In this research, an accomplishment of different machine 

learning approaches for Web caching technology promises 
alleviation of congestion of Internet access mainly for BU and 
EL. Therefore, this study proves that the classification of Web 
object through log mining by using CART, MARS, RF and TN. 

In the literature, various methodology approaches to manage 
proxy cache have been proposed [2-10]. However, we applied 
statistical model to decide and classify the object on Web 
documents either to cache or not cache.   

It is clear from the results presented here that CART and TN 
have a distinct advantage over MARS and RF in classifying the 
cache objects. This scenario happened related to the strengths 
and weaknesses of the models themselves. Subsequently, the 
data set to be modelled also can be considered as a suitability 
factor of the models.  

Based on the experimental results in this study, some 
remarks can be discussed as follows: 

• Intelligent Web caching is able to store ideal objects 
and remove unwanted objects, which may cause 
insufficiency cache. Thus, the caching insufficiency can 
be improved.    

• Both CART and TN achieve correct classification 
accuracy in the range of 99.8% and 100% for testing 
data of BU and EL log data, and in the range of 0 and 
0.002 for training error rate data for both data compared 
to MARS and RF respectively. 

• ROC for CART is the highest sensitivity and specificity 
for testing. Consequently, CART is identified as the 
best classifier that is closest to the convex hull.   

• In all conditions, MARS was the worst model to apply 
in classifying all log data because of MARS is highly 
sensitive to extrapolation caused by the local nature of 
the basis functions. A change in the predictor value 
toward the end of its range can cause the prediction to 
go largely off scale. 

Variable 
Score 

BU EL 
CART MARS RF TN CART MARS RF TN 

Size 
 100 94.17 100 100 100 - 100 100 

Num_of 
_hits 87.50 100 56.85 59.75 26.14 - 25.82 50.20 

Retrieval 
_time 41.19 49.27 13.57 34.51 - - - - 

Number of correct data 100%
Total data

Accuracy = ×



• Size as the most important variable is recognized to 
ensure that intelligent Web caching can be affected the 
performance of cache server. 
 

VII. CONCLUSIONS AND FUTURE WORK 
In this research, an accomplishment of different machine 

learning approaches for Web caching technology promises 
alleviation of congestion of Internet access mainly for BU and 
EL. Therefore, this study proves that the classification of Web 
object through log mining by using CART, MARS, RF and TN 
models can be applied in cache server. Hence, this situation will 
affect the size of data in the cache server and time to retrieve the 
data from the cache server.  In the future, we will evaluate and 
compare the performance analysis of machine learning 
approaches with other hybrid soft computing techniques for Web 
caching technology for BU and EL data. 
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