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Abstract—Brain tissue segmentation is one of the most
sought after research areas in medical image processing.
It provides detailed quantitative brain analysis for accurate
disease diagnosis, detection, and classification of abnor-
malities. It plays an essential role in discriminating healthy
tissues from lesion tissues. Therefore, accurate disease
diagnosis and treatment planning depend merely on the
performance of the segmentation method used. In this re-
view, we have studied the recent advances in brain tissue
segmentation methods and their state-of-the-art in neuro-
science research. The review also highlights the major chal-
lenges faced during tissue segmentation of the brain. An
effective comparison is made among state-of-the-art brain
tissue segmentation methods. Moreover, a study of some
of the validation measures to evaluate different segmenta-
tion methods is also discussed. The brain tissue segmen-
tation, content in terms of methodologies, and experiments
presented in this review are encouraging enough to attract
researchers working in this field.

Index Terms—Brain tissue segmentation, clustering
methods, feature extraction and classification-based meth-
ods, region-based methods, thresholding-based methods,
validation measures.

I. INTRODUCTION

IMAGE SEGMENTATION plays a crucial role in medical
image analysis. It extracts tissue from a brain image by

partitioning it into a set of disjoint regions that have similar
characteristics, such as intensity homogeneity, texture, etc. It is
a commonly employed method of extracting tissues like white
matter (WM), gray matter (GM), and cerebrospinal fluid (CSF)
from magnetic resonance (MR) image for quantitative brain
analysis. Segmentation of normal tissues from brain lesions
helps to detect diseases like brain tumor, Alzheimer’s disease
(AD), Parkinson’s disease, etc. It also helps in brain disorder
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identification and whole brain analysis of traumatic injury as
well [1]–[4]. Brain tissue segmentation is one of the commonly
used applications, which pave the way for detection of abnor-
malities like early tumor diagnosis, multiple sclerosis, AD, de-
mentia, schizophrenia, etc., by accurately segmenting WM, GM,
and CSF. Over the years, many popular brain tissue segmenta-
tion methods have been proposed in the literature. These meth-
ods are applied successfully for disease diagnosis and treatment
planning. Nevertheless, in clinical evaluation and neuroscience
research, it is considered as a major challenge because medical
images suffer from many artifacts, such as intensity inhomo-
geneity (IIH), noise and abnormal tissues with heterogeneous
signal intensities. Furthermore, the performance of brain tissue
segmentation methods depends on several factors, such as loca-
tion, size, shape, texture of tissues, and unclear tissue boundary,
which are inherent in the modalities used for image acquisition
[5]–[9].

Brain tissue segmentation methods can be broadly clas-
sified into five categories: 1) manual, 2) region-based, 3)
thresholding-based, 4) clustering-based, and 5) feature extrac-
tion and classification-based. Soft computing techniques can
also be incorporated in these methods. Manual segmenta-
tion is the process of manually dividing pixels having same
intensity range by an expert/physician. It involves a well-
experienced medical professional multidisciplinary board for
decision-making. The multidisciplinary board may consist of
radiologist/ anatomists/ pathologists, and trained technologists,
depending on the research study, to arrive at a final decision.
However, this method suffers from numerous problems occur-
ring due to unclear boundary, poor tissue contrast, and inaccurate
hand to eye coordination. Moreover, the method is subjective
in the sense that segmentation results may change with experts
or the same expert’s view may vary with time. This classi-
cal method of pointing and labeling pixels in the same intensity
range is also wearisome, time taking, and inaccurate. In addition,
recently developed high-dimensional and multimodal imaging
techniques make manual segmentation a challenging task for
experts to extract information. To alleviate this problem, many
automatic methods are suggested in the literature.

Statistical parametric mapping (SPM) is one of the most com-
monly employed methods for automatic brain tissue segmenta-
tion. It is a software package developed by the researchers of
Wellcome Department of Imaging Neuroscience at University
College London [10], [11]. Many of the automatic segmentation
methods suffer from exhaustive search strategy and large
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computation time. To deal with the exhaustive search prob-
lems, segmentation methods incorporate optimization tools like
genetic algorithm (GA), bacterial foraging optimization (BFO),
particle swarm optimization (PSO), etc. In addition, evolution-
ary algorithms (EAs) are able to cope up with many ill-defined
problems in brain tissue segmentation like multimodality, dis-
continuity, and noise [12]–[14].

The primary contribution of this paper is to survey the most
recent segmentation algorithms for brain tissue segmentation
and their state-of-the-art. This paper particularly focuses on
three main aspects: recent trends in algorithms for brain tissue
segmentation, their future scope to make the existing algorithms
more robust, and the open problems. The study also focusses
on the challenges faced by segmentation methods due to in-
herent problems in the modalities. The advantages and disad-
vantages of the studied algorithms are summed up in a table
to provide a structured vision aspect. We have also presented
and discussed standard validation measures used to quantify
the performance of a segmentation method. Its applicability for
clinical use and hardware implementation for real-time utiliza-
tion is also discussed. The organization of the rest of the paper
is as follows. Section II presents an overview of the various
brain tissue segmentation methods. Section III presents the val-
idation and performance indices for comparing the algorithms.
Section IV presents the discussion and finally Section V is the
conclusion.

II. BRAIN TISSUE SEGMENTATION METHODS

In this section, we have explicitly studied the state-of-
the-art as well as recent advances in brain tissue segmenta-
tion methods. We have discussed segmentation methods using
two-dimensional (2-D) and 3-D MRI. The brain tissue seg-
mentation methods include standard image processing tech-
niques like deformable models (DM) which is a contour- and
shape-based method, region growing, fuzzy c-means (FCM),
Gaussian mixture model (GMM), etc. Finally, the advantages
and disadvantages of the studied methods are summarized in
Table I.

A. Region-Based methods

Region-based segmentation methods depend on the homo-
geneity of intensity in the image to detect the object boundary.
Popular techniques under this method are as follows:

1) contour- and shape-based method;
2) region growing;
3) region-based level set method;
4) graph-based method (see Fig. 1).

The contour- and shape-based method uses T1-weighted MR
images. The region-based level set methods and graph-based
methods use T2-weighted MR images.

1) Contour and Shape-Based Methods: In contour-
and shape-based method, an initial contour is specified close
to the desired boundary. Then, the method adjusts the contour
toward the target boundary as per minimization of a predefined
criterion. One of the popular contour- and shape-based method
is DM. A knowledge-based segmentation method uses prior
knowledge about the shape of the target object. It starts with

an arbitrary initial boundary shape in the form of a curve. In
general, active contours are DMs in which the contour deforms
and develops toward the desired boundary. Kass et al. [15] pro-
posed the first DM for detecting object boundary from an image.
The deformation of the contour is controlled by minimizing an
energy function. The energy function consists of internal and ex-
ternal energy terms. Internal energy handles the smoothness of
the contour. The external energy term pushes the contour toward
the desired features, such as gradient, texture, edge information,
etc., in the image domain. Classical active contour methods de-
pend on gradient information. In this method, the initial contour
is located close to the boundary of the object of interest. This
results in a strong external energy, which makes it possible to
move the contour toward the desired object boundary. However,
the method cannot handle the topological changes of the curve.
In this regard, level set methods use parameterized curves to
track contours and surface [3], [15]–[23]. Mesejo et al. [24]
proposed a hybrid level set (HLS) method for segmentation of
medical images. The method combines both region- and edge-
based information with prior shape knowledge. In addition, GA
estimates the parameters of the level set. Furthermore, scatter
search derives the shape prior.

Active contours are of two types: 1) parameterized active con-
tours (PAC) and 2) geometric/geodesic active contours (GAC).
PAC characterizes a parameterized curve in a Lagrangian
formulation. Explicit characterization of the curve makes user
interaction and specification of a priori shape constraints sim-
ple. GACs are based on surface evolution theory and geometric
flows essentially in light of Euler formulation. The method ap-
plies the gradient information to define an edge and is efficient
enough to handle these curves. First, it takes a specified ini-
tial contour, which is close to the desired boundary. Second, it
develops the contour toward the strongest gradient as per min-
imization of a boundary-based energy function. A level set of
2-D function implicitly characterizes this model, in which the
number of iterations decide the stopping criteria [15]–[23].

In another aspect, DMs are of two types based on the feature
of the object of interest, 1) edge-feature (EF) and 2) region-
feature (RF). EFs are most often used approach for segmenting
brain image into tissues such as WM, GM, and CSF for disease
diagnosis. In EFs, edge-detection algorithms generate arbitrary
contour lines around the target object. The object of interest is
extracted by combining these contour lines using some similar-
ity measures. However, edge detectors depend on image gra-
dient information. Thus, the detectors are only able to detect
objects defined by strong gradient function in the image do-
main. The performance of the above methods highly depends
on the location of the initial contour, edge opening, weak edges,
inhomogeneity, and noise. To overcome the above problems,
researchers have incorporated expectation maximization (EM)
algorithm, gradient vector flow or self-affine mapping system in
the classical models. RFs depend on statistical and homogene-
ity property to identify the region of interest (ROI). Unlike EFs,
RFs use certain region statistics to develop the curve toward
ROI. However, they are unable to localize object boundaries.
To overcome the problems in the RFs, researchers proposed to
use a priori shape information or statistical information in the
energy function [16]–[42].



DORA et al.: STATE-OF-THE-ART METHODS FOR BRAIN TISSUE SEGMENTATION: A REVIEW 237

TABLE I
ADVANTAGES AND DISADVANTAGES OF THE MOST COMMONLY USED BRAIN TISSUE SEGMENTATION METHODS

Name of the
method

Advantages Disadvantages

Deformable model The method produces good results, when contour is initialized close
to the desired object boundary. Expansion or contraction of the
contour over time is controlled by minimizing an energy function.

The performance of the method completely depends on initial
contour location. Sensitive to noisy images with unclear boundary.

Level set Able to control cavities, concavities, convolution, splitting, or
merging. Involve simple parameter tuning.

Highly sensitive to noise, weak boundaries, low contrast between
regions, false gradients, etc. Causes leakage of boundary or
development of false gradient in heterogeneous regions.

PAC PACs involve simple computations and are efficient models. PACs cannot handle topological changes of the curve.
GAC GACs have the capacity to handle topological changes of the curve,

which makes them desirable in segmentation of complex shapes.
They are capable of detecting interior contours, cups,
multijunctions, and so forth. With the help of level set function.

Sensitive to initial contour location.

EF Local edge information is used to deform and move the curve
toward the target object boundaries.

Major drawbacks are weakly defined edges, noise, IIH, and
computational complexity. Postprocessing is required to obtain
hole-free objects.

RF Able to suppress the problems of initialization and noise faced in
EFs.

Performance degrades in the presence of IIH, noise and
heterogeneous objects.

Region growing Advantages of considering both visual features and spatial
information. It is insensitive to changes in inner parts which results
in closed regions.

Suffer from three main problems: 1) order of the pixel processing;
2) automatic selection of initial seed; 3) regions with hole and
noise. Moreover, region growing fails to perform in the
segmentation of multiple objects.

CV model It is an effective means to overcome the limitations of edge-based
methods. Able to detect interior contours and thus, could be used
for medical images with weak boundaries. Piecewise smooth model
could work for medical images with IIH.

Limited by images with complicated background and irregular
intensity. Piecewise constant case only works with images having
homogeneous regions. Nonconvex and nonunique nature of energy
function often results to local minima during contour evolution.
This case of convergence often leads to undesired segmentation
result.

Graph-based Integrate global information into local pairwise pixel similarities
for efficient segmentation.

Difficult to discriminate pixels having same or minor differences
between foreground and background using only statistical
classification.

Fixed thresholding This approach performs well for images with homogeneous
intensity, high contrast, and discriminant gray values between
object and background. It is used in brain tissue segmentation
because of its easy implementation and computational efficiency.

A major drawback of this approach is that the correlation of pixels
is not taken into account. Furthermore, they lead to
misclassification of pixels due to noise, IIH, and tissues
overlapping. These artifacts corrupt the histogram of the image,
making segmentation using global thresholding a difficult task.

Adaptive
thresholding

This approach is preferred when a single threshold value is unable
to segment or a threshold value cannot obtain from histogram of an
image. This is an efficient means of segmenting multiple objects
from intensity histogram.

The performance of these methods is sensitive to the gray scale
distribution, noise, multichannel images, and images with
multimodal regions.

Hard clustering Suitable for images with homogeneous regions. Due to less
computational time, it is best suited for real-time image
segmentation.

Sensitive to noise, IIH, and images with heterogeneous regions.

Soft clustering As compared to hard clustering, it does not use a sharp boundary to
divide the pixels into groups. It defines a membership function to
cluster the pixels.

Sensitive to noise and IIH. Does not consider spatial information
for clustering the pixels in the image domain. Furthermore, it
generates local optimal solution due to poor initialization.

Mixture model Statistically characterize an image. They are capable of handling
bias field correction and spatial regularization in the local region by
modeling the intensity variation of each tissue type by a Gaussian
distribution.

Lack of spatial relation among neighboring pixels within a class.
Often results in local optimum.

DWT Able to analyze an image at various resolutions. Preserves edge
sharpness. Provide valuable information about the localized
frequency of a signal, useful for correct classification.

Sensitive to shifting in time, poor directionality, and lack of phase
information. Usually includes dimension reduction scheme to
improve performance. High computational complexity.

Gabor filter Able to capture local features of the image, such as orientation,
spatial frequency (scale), and localization.

Selection of scale and orientation is done on hit and trial basis.
Results in a high-dimensional feature vector. Requires a large
memory space. High computational complexity.

Statistical feature
extraction
methods

Consider the relationship between pixels. Capture local image
properties, helpful to discriminate special structures like a brain
tumor tissue from normal tissue. Less computational complexity.

Sensitive to images with heterogeneous intensities. Performance
depends on a number of factors, such as location, size, shape and
texture of tissues, unclear tissue boundary and noise, which are
inherent in MR images.

KNN It is an instance-based classifier. Capable of preserving information
in the training images. Easy to implement.

For large databases, response time is very high. Sensitive to
unwanted features as their contribution toward similarity leads to
misclassification.

ANN Popular machine learning algorithm. Organized structure of
processing elements, resembled to the human brain. Able to
perform well on complicated and multivariate nonlinear domain.
Compared to statistical models, ANN avoids data allocation.
Resistance to noise.

High computational complexity and response time.

SVM Mostly preferred in high-dimensional feature space. High
generalization performance.

Takes large training time. Requires large storage space.
Patient-specific learning.
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Fig. 1. Region-based methods in brain tissue segmentation.

Many techniques like region growing, region-based level set
[16], [43]–[45], and graph-based methods [46], [47] overcome
the limitations of the above methods by exploiting statistical
estimation of regions or graph theory.

2) Region Growing: Region growing method depends on
the homogeneity and connectivity conditions. The classical re-
gion growing method takes a selected seed point (pixel) from
each region. The surrounding pixels are collected depending
upon their homogeneity criteria (e.g., intensity similarity). The
process of accumulating the seed points continues until the ter-
mination condition is achieved. This results in a set of connected
regions.

Region growing is a commonly practiced technique in the
brain tissue segmentation. To satisfy homogeneity, it is pre-
sumed that the regions of the object of interest have same or
slightly varying intensity values. Therefore, initial seed selection
and different homogeneity criteria could alter the segmentation
performance. For homogeneous MR images, region growing
mostly produce suitable results. Furthermore, it is well suited
for medical image segmentation, where images consist of mostly
object and background. A possible measure to ease the problems
is combining region growing method with other methods such
as edge detection. Moreover, homogeneity criteria for multiple
brain lesions are still to be assessed [3], [48]—[50].

3) Region-Based Level Set Methods: Region-based
level set methods depend on the level set to evolve the contour.
The standard clustering methods like k-means, FCM, and GMM
are used to develop the energy function of the region-based level
set methods. Chan and Vese [16] proposed a region-based level
set method, also called as the CV model. It is based on the idea of
minimizing an energy function to deform the curve surrounding
the target object. It is based on level set to develop the contour
and is suited for both the piecewise constant case [16] as well as
the piecewise smooth case [40]. In [16], k-means is employed
to derive Mumford and Shah function in piecewise (PC) level
set algorithm to solve two homogeneous segments. The multi-
phase level set algorithm uses the same concept to solve multiple
segments. This approach overcomes noise and blurred bound-
aries. In [51] and [52], FCM and MRF are used with multiphase
level set energy function to reduce the IIH effect. Furthermore,
to eliminate convergence to local minima in the CV model,
metaheuristic optimization algorithms are used to minimize the
energy function. These types of algorithms are nongradient-type
optimization and could achieve global optima. Mandal et al. [12]
suggested a modified CV model formulated as an optimization
problem. The authors used PSO to minimize the fitting energy
function. This modified method is capable to achieve global min-
ima irrespective of initial contour choice [12], [43], [53], [54].

Fig. 2. Types of thresholding-based methods in brain tissue
segmentation.

However, complex intensity distribution of medical images de-
generates the performance of this method. In [44], estimation
of phase value is overcome by using finite mixture models and
GMM with the level set method. The method simultaneously
estimates foreground homogeneous intensity distribution and
background complex intensity distribution.

Many medical images contain complex structures. Hence,
homogeneous intensity assumption for foreground is no longer
valid. To improve the accuracy of the level set methods, statis-
tical variational models like shape and additional features are
utilized. For different patients, size, shape, and intensity distri-
bution of tissues and organs would vary significantly. Conse-
quently, it becomes a difficult task to collect training data with
all types of variations. Thus, level set methods incorporating sta-
tistical prior models are limited by the segmentation accuracy
[34], [55].

4) Graph-Based Methods: Recently, graph-based
methods are receiving attention in brain tissue segmentation.
Unlike the other region-based methods, they use foreground
and background seeds to locate the objects in the image.
The introduction of this additional information added with
local pairwise pixel similarities enhances the segmentation
accuracy as compared to other methods [3]. Some of the
commonly used graph-based methods are graph-cut [46],
random walker (RW) [47], and geodesics shortest path [56].
Generally, medical images contain nonuniform foreground and
background due to noise, complex intensity distribution, and
heterogeneous intensity of abnormal tissue. In such a situation,
performance of the method degrades. Recently, Li et al. [23]
proposed a coupled statistical and graph (CSG) variational
model to achieve accurate segmentation. Statistical functional
estimates the multimodal intensity distribution of foreground
and background. The methods also include a prior probability
map to discriminate pixels with small deviations. The method
is used for segmentation of tissues in computed tomography,
MR images, and for tumor detection. These seed points act as
hard constraints and combine global information with local
pairwise pixel similarities for optimal segmentation results.

B. Thresholding-Based Methods

Thresholding is one of the popular segmentation method,
where the target objects are segmented by comparing their in-
tensity values with one or more thresholds. It is also named as
an intensity thresholding method. The threshold values can be
global or local. Thresholding-based methods are of two types:
1) fixed thresholding and 2) adaptive thresholding (see Fig. 2).
The thresholding-based methods use T2-weighted MR images.
In fixed thresholding, pixels above the threshold level are as-
signed to a group and below the threshold are considered as
background. However, the object of interest in MRI suffers
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from many artifacts. Thus, fixed thresholding-based methods
includes criterion, such as entropy, between-class variance, etc.,
to detect the object of interest.

If an image histogram is a bimodal pattern, then a single
threshold value can separate the object from the background. It
assigns intensity values above the threshold to one and below
the threshold to zero, respectively. For an image I(x, y), a global
threshold T segments the image given as

S (x, y) =
{

1,
0,

if I (x, y) ≥ T
otherwise

(1)

where pixels with value 1 represents object and pixels with
value 0 represents background. The segmentation accuracy of
such approach highly depends on statistical fluctuations. With
the increase in the number of regions, threshold selection be-
comes a challenging task. It may be noted that the brain tissue
segmentation requires segmentation of more than two tissues
(i.e., WM, GM, and CSF).

When fixed thresholding adaptively determines the threshold
value for the object of interest, it is called an adaptive threshold-
ing. In this approach, a local neighborhood surrounding a pixel
adaptively determines the threshold value. Prior knowledge or
local statistical properties usually estimate the threshold values.
Stadlbauer et al. [57] used Gaussian distribution of pixel inten-
sity levels to determine the threshold value from a T2-weighted
MRI. The value determines a delineated area to identify it as a
pathological tissue [57]–[59]. However, they may not perform
well, when the imaging parameters use spatial information with
a priori knowledge. To suppress the effect of these problems,
many researchers have proposed a thresholding method based
on spatial information or maximum entropy principle.

Some popular and efficient thresholding-based methods used
for brain tissue segmentation of MRI are entropy-based, Otsu’s
method, and evolutionary-based methods. Kapur et al. [60] pro-
posed maximization of entropy, to obtain the optimal threshold
values from the histogram. Otsu [61] proposed a nonparametric
approach called Otsu’s method to find optimal threshold au-
tomatically by maximizing the between class variance of grey
levels. In both the methods, computational time increases due to
the extensive search strategy with the increase in the number of
thresholds. Many multilevel thresholding methods are available
in the literature to reduce the computational time [13], [14],
[62]– [66].

Recently, EAs are used with thresholding to find the optimal
threshold values efficiently by reducing the computational time.
EAs are easily adaptable to ill-defined problem domain like mul-
timodality, discontinuity, time-variance, randomness, and noise.
Maitra and Chatterjee [67] used BFO in the histogram-based
thresholding method for segmentation of several standard brain
MRI. Manikandan et al. [68] obtained the optimal threshold
values by maximizing the entropy using real-coded GA (RGA)
with simulated binary crossover (SBX) in multilevel threshold-
ing for segmentation of T2-weighted MRI [14], [65]–[69].

C. Clustering Methods

In brain tissue segmentation, clustering methods are statistical
techniques based on pixels. In this approach, some similarity

Fig. 3. Clustering methods in brain tissue segmentation.

measures, such as distance, connectivity, and intensity, divide
the pixels into groups or clusters. Clustering methods are broadly
of two types: 1) hard clustering and 2) soft clustering (see Fig. 3).
The clustering methods use T1-weighted MR images.

The first approach uses crisp boundary values to divide the
pixels into clusters. k-means is an example of hard clustering.
The soft clustering is again classified into FCM and mixture
models. In this approach, division of pixels is gradual, i.e., a
membership function (based on FCM) or an underline proba-
bility (based on mixture models) is used to define whether a
pixel belongs to a cluster or not. The membership function in
FCM-based methods defines the degree by which a pixel be-
longs to a cluster by assigning it a membership grade value.
The mixture models assume some distributional form for the
underlying probability of the data to cluster it into different
groups [4], [70]–[75]. A dedicated software named SPM based
on the mixture models is reported in the literature for brain tis-
sue segmentation. It can perform tasks such as skull stripping,
bias field correction, and automatic segmentation. Brain tissue
segmentation using SPM can be accomplished in three ways:

1) default segmentation;
2) new segmentation using SPM8;
3) modified design using hidden Markov random field

(HMRF).
The SPM package has been widely adopted in the neuroimag-

ing community for the analysis of functional and structural brain
images in an automatic way. Yet, few works are described re-
garding the segmentation accuracy of the software as compared
to other methods for segmenting GM, WM, and CSF [11]. Fur-
thermore, a domain expert’s presence may be helpful while
designing any sophisticated software for improved brain tissue
segmentation results.

1) FCM: Among all methods, FCM is the most popular
soft clustering method, which presumes that image pixels (or
voxels) belong to more than one cluster. The division of pixels
into clusters uses a similarity criterion. Therefore, it may not be
suitable for segmenting images corrupted by noise and artifacts
like IIH or shading effect in MRI. Thus, many modified FCM
approaches presented in the literature help us to prepare FCM
for better tissue segmentation [72]–[75].

Additionally, to suppress intensity nonuniformity (INU) ef-
fect, researchers modeled it as a multiplicative bias field (i.e.,
B-spline surface) and used dissimilarity index for spatial voxel
connectivity. The method effectively segments brain MRI af-
fected by noise and INU. Chuang et al. [75] proposed spatial
FCM (sFCM), which uses a weighted membership function.
The main attraction of this method is suppression of INU, elim-
ination of noisy spots, and compression of spurious blobs. It
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efficiently segments T1- and T2-weighted brain MRI scans. A
way to modify sFCM is using wrapping-based curvelet mapping
as a preprocessing step to remove noise in MRI. Fast spatial con-
straint, fuzzy kernel FCM (FKFCM) map input data (i.e., pixel
intensities) to a higher dimensional space using kernel technique
for clustering. FKFCM performs a satisfactory segmentation of
MRI. The experiments with synthetic images, digital phantom,
and clinical images affected by noise shows the strength of the
method [4], [76]– [79].

Many researchers have proposed generalized FCM by modi-
fying its objective function for robust brain tissue segmentation.
Bias-corrected FCM suppresses the effect of IIH caused by bias
field in the MRI. The method modifies the objective function
and introduces a regularization, thereby allowing pixel label-
ing according to its neighborhood. It performs well for MR
images corrupted with salt and pepper noise at an expense of
large computational time. Alternately, for smoothness of bias
field without any regularization, FCM includes a coherent local
intensity clustering (CLIC) criterion. This method assumes in-
tensity at local region to be coherent and intrinsically includes a
Gaussian kernel in the energy function for bias correction. Ad-
dition of regularization further enhances the performance of this
method. Some researchers used CLIC criteria to convert multi-
plicative bias field to an additive form of reducing complexity
at the expense of partial volume effect (PVE) effect. Nonlocal
regularized FCM (NLRFCM) method uses nonlocal spatial reg-
ularization to preserve the fine brain structures [72], [75], [77],
[80]–[90].

Recently, Adhikari et al. [4] proposed a conditional spatial
FCM (csFCM) method that is robust even in the presence of IIH
and noise in MRI. The method considers local intensity relations
between pixels to modify the membership function of standard
FCM. In addition, it uses the conditioning variable related to
each pixel to develop the membership functions and various
clusters. Nevertheless, the presence of high levels of noise and
IIH may lead to undesired segmentation. Inclusion of spatial
information and IIH in the membership function of csFCM
could be a relevant technique to increase its performance.

Many researchers have used EAs like PSO, a probabilistic
heuristic algorithm, to initialize cluster centers in the FCM. For
instance, Benaichouche et al. [91] used PSO to initialize cluster
centers in FCM and obtained global optimum solution. In ad-
dition, it uses spatial information and Mahalanobis distance for
making the method efficient against noise and misclustering.
Mekhmoukh and Mokrani [92] proposed an improved kernel
possibilistic c-means (IKPCM) based on PSO. The author used
PSO for initialization of cluster centers and membership func-
tion. The method effectively segments different brain tissues.

2) Mixture Models: In brain MR images, intensity values
of different substructures and tissues relatively differ. In such
situation, statistical mixture models are employed to charac-
terize an image. In this approach, maximum-likelihood (ML)
similarity criterion or maximum a posteriori (MAP) criterion
using parametric models estimate the probability distribution
of intensity in an image. GMM is a popular statistical model
widely used in neuroscience. This model estimates the intensi-
ties of pixels (or voxel) in a region by a Gaussian distribution.
The expectation maximization (EM) algorithm then estimates

the parameters in GMM by maximizing the likelihood of the
observed image.

Wells et al. [93] proposed an EM-based adaptive segmenta-
tion (AS-EM) algorithm for MRI. AS-EM assumed bias field
to be a Gaussian distribution and modeled it by using ML. The
method uses the EM algorithm to estimate the model parame-
ters. Guillemaud and Brady [94] suggested a more generalized
method, considering the limitations of [93] such as selection of
number of tissue classes for modeling, parameter definitions,
and spatial information about tissues. The method efficiently
segments brain and breast MR images. In [95], an automatic
model based on the EM (AM-EM) method estimates the bias
field. The method uses digital brain atlas of MRI for grouping
tissues into WM, GM, and CSF. Yet, in the above approaches,
estimation of GMM parameters using EM suffers from lack
of spatial information and uncertainty in segmentation. Blekas
et al. [88] added spatial information in GMM using prior Gibbs
distribution. They concluded that if the distance function be-
comes a discrete total variation, regularization could be intro-
duced in the GMM. Their approach gives a spatially constrained
GMM, which is immune to noise but lacks bias correction.
Greenspan et al. [87] proposed a constrained GMM, which in-
cludes local spatial modeling with global intensity modeling.
Liu and Zhang [90] proposed a local GMM, which considered
both bias correction and spatial regularization. Bias correction,
uses a Gaussian kernel in the objective function. Regularization
of an indicator function results in smooth segmentation. How-
ever, their approach lacked in preserving the complete brain
structure. Dong and Peng [96] proposed a variational model by
integrating both local GMM and nonlocal spatial regularization.
To ensure bias field smoothness, the authors used a truncated
kernel function without additional constraints in the GMM. In
addition, nonlocal spatial regularization ensured to preserve the
fine details [74], [95], [97], [98].

The above EM-based ML estimation methods suffer from
drawbacks like overfitting and prone to be trapped in local op-
tima. When prior knowledge about the image is available, MAP
estimation is preferred to ML. In [99], an adaptive MAP crite-
rion estimates the model parameters. Several researchers also
used MRF with parametric models for brain tissue segmenta-
tion and classification. In MRF-based approach, modeling voxel
class labels as an MRF helps to estimate prior of voxel’s spa-
tial dependence. Iterated conditional modes (ICM) could be a
standard solution [100]–[103]. It is a computationally efficient
way, but results in local optima. Zhang et al. [100] proposed
hidden MRF-EM method for brain image segmentation. It is
a two-step iterative method. First, ICM finds the hidden class
labels. Second, EM algorithm estimates the model parameters.
The method provides high computational efficiency and ease
of implementation. Nonetheless, both EM and ICM are deter-
ministic searching methods, which results in local convergence.
Thus, Markov chain Monte Carlo (MCMC) [104], a global sta-
tistical inference method, replaced the deterministic routines
[105], [106].

Several researchers have used EAs in model-based methods
like EM-based ML estimation. The aim is to overcome their
inherent limitations such as overfitting and tendency of trapping
in local optima. Tohka et al. [107] proposed a GA-EM algorithm
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for likelihood estimation. As stated earlier, HMRF-EM-based
methods also suffer from local convergence. Thus, the EAs sub-
stitute EM algorithm for estimating parameters. Evolutionary
HMRF method uses EAs such as clonal selection algorithm
(CSA) to estimate the parameters of HMRF. The method is
well suited for segmentation of both simulated and real brain
MR images. Recently, a HMRF-CSA algorithm combines both
CSA and MCMC to improve the performance of the HMRF
technique. To demonstrate the performance of the method, clin-
ical brain images are used for segmentation [108], [107], [109],
[110].

D. Feature Extraction and Classification-Based Methods

Feature extraction and classification methods play a vital role
in brain tissue segmentation. It uses T2-weighted MR images. In
this method, the primary task is to obtain a set of most effective
and discriminating features from the MR brain image. The dis-
criminating features are then used for classification. Many state-
of-the-art feature extraction methods such as discrete wavelet
transform (DWT) [111], Gabor filter, and statistical methods
like gray level co-occurrence matrix, gray level run length ma-
trix, etc., [112] are reported in the literature. However, feature
extraction from MR images remains a challenging task due to
artifacts like noise, IIH, etc. In addition, high dimensionality is
an inherent problem with most of the feature extraction methods.
Principal component analysis (PCA), linear discriminant anal-
ysis (LDA), etc., solves the dimensionality problem to some
extent. They obtain a small set of significant features for correct
classification.

State-of-the-art classification methods are k-nearest neigh-
bors (KNN), support vector machine (SVM), artificial neural
network (ANN), self-organizing map, etc. The detail descrip-
tion about their advantages and disadvantages is given in [113].

In most of the above-cited methods, the training process of
a classifier does not affect the nature of the extracted features.
In addition, most of the feature extraction methods require spa-
tial and intensity information for accurate segmentation. Re-
cently, convolutional neural networks (CNNs) and deep learn-
ing are gaining recognition in brain tissue segmentation [114]–
[117]. Unlike classical feature extraction and classification-
based methods, they avoid the explicit requirement of the spatial
and intensity information. CNNs learn from a set of convolu-
tional kernels. The convolutional kernels are explicitly trained
for a desired classification. In addition, CNNs optimize the ker-
nels based on the input training information. Furthermore, the
spatial and intensity information can also be incorporated in
order to differentiate between classes. In [117], a CNN-based
method is proposed using MRI of infants. The authors used T1-
weighted, T2-weighted, and fractional anisotropy images for
segmentation of three tissues: WM, GM, and CSF. In [116], the
authors present a method for tissue segmentation of adults using
T1-weighted MRI, as part of the medical image computing and
computer-assisted intervention (MICCAI) challenge on multi-
atlas labeling. The methods in [116] and [117] utilize CNNs but
lacks intensity and spatial properties. Moeskops et al. [114] pro-
posed a CNN-based method that employs multiple patch sizes
as well as multiple convolution kernel sizes to retain multiscale
features. This learning scheme allows to approximate both spa-

tial and intensity properties for accurate segmentation of MRI
into various tissue classes.

The advantages and disadvantages of the most commonly
used brain tissue segmentation methods are illustrated
in Table I.

III. VALIDATION MEASURES

In this paper, we have presented some of the state-of-the-art
validation measures used for brain tissue segmentation. Valida-
tion of segmentation method is a necessary measure to quantify
its performance and limitations. Moreover, it is also preferred
before applying a method for clinical usage. However, valida-
tion of a method requires data to evaluate its performance. In
brain tissue segmentation, data is a medical brain image, which
is of two types: synthetic image and real image. Here, we dis-
cuss about synthetic and real clinical images. Later, we have
also presented some of the popular publicly available databases
used in the validation of a segmentation method.

A. Synthetic Image

Synthetic images are developed using a computer without
a real scanner. The advantage is that user can define the pa-
rameters to generate a desired image. For instance, by defining
different MR parameter values like echo time (TE), repetition
time (TR), resolution, sequence, noise, and IIH, three types of
MR images are generated: T1-weighted (T1-w), T2-weighted
(T2-w), and proton density weighted. In addition, ground truth
image is also available to compare the efficiency of the segmen-
tation result. An MRI simulator can generate synthetic image
of various complexity levels from piecewise constant image to
realistic image.

Several researchers have used synthetic brain MR images
generated from simulator to evaluate their segmentation method.
Evaluation using synthetic images is the most common approach
because of its ease. In addition, synthetic images generated by
the MR simulator could be a good choice for comparing different
techniques. However, it is not possible to generate perfect real
images from the MR simulator. Phantoms can be utilized to
generate real images, but it is difficult to have dense ground
truth for phantom images [118].

B. Clinical Image

Validating segmentation methods using real clinical images
are an essential step to measure the effectiveness of the meth-
ods. While using a real clinical database, we must take care
about the heterogeneity of the disease. For this reason, data are
taken from enough patients. Another aspect is the unavailability
of the ground truth image. Although it plays a vital role to
measure the performance of segmentation, it is not essential to
measure the reproducibility of a method. Oftentimes the results
of automatic segmentation methods are compared with manual
segmentation carried out by an expert. Nevertheless, a well-
known error called inter- and intraexpert variability puts limits
to manual segmentation.

C. Databases

Some of the publicly available standard databases used for
quantitative evaluation of brain tissue segmentation methods
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TABLE II
COMMONLY USED DATABASES IN BRAIN TISSUE SEGMENTATION

Name of the database Types of image available Download link

BrainWeb Simulated brain MR images generated by using three sequences (T1-, T2-,
and proton-density(PD)-weighted) along with a variety of slice
thicknesses, noise levels, and intensity inhomogeneity levels

http://brainweb.bic.mni.mcgill.ca/brainweb/

IBSR Provides MRI along with manually segmented images for comparing
automatic segmentation results

https://www.nitrc.org/projects/ibsr

Harvard medical
school website

It is a database which contains various types of images like normal brain
images, images for cerebrovascular diseases, brain tumor images,
degenerative diseases images, inflammatory or infectious diseases images

http://www.med.harvard.edu/aanlib/home.htm

Allen brain atlas Allen human brain atlas, Brainspan atlas of the developing human brain,
Aging, dementia and traumatic brain injury, Allen spinal cord atlas

http://www.brain-map.org/

Medical image
computing and
computer assisted
intervention

Multicontrast MR scans http://martinos.org/qtim/miccai2013/data.html

The Cancer Imaging
Archive (TCIA)

Contains medical images of subjects having cancer and/or anatomical site
like lung, brain, etc.

http://www.cancerimagingarchive.net/

Fig. 4. Example simulated T1-w MR image of a subject from BrainWeb.
(a) Normal MRI. (b) Segmented WM. (c) Segmented GM. (d) Segmented
CSF.

Fig. 5. Example of MRI from Allen brain atlas. (a) T1-w MRI. (b) T2-w
MRI.

are described in Table II. An instance of simulated T1-w MR
image of a subject from BrainWeb is shown in Fig. 4. The
image [see Fig. 4(a)] is about 362 × 362 pixels. Ground
truth images of the tissues: WM [see Fig. 4(b)], GM [see
Fig. 4(c)], and CSF [see Fig. 4(d)] is also available in the
database.

The Allen brain database also contains MR images (see
Fig. 5). Likewise, the above available databases, researchers
also obtained medical brain images from hospitals or by direct
scanning. Most of the time, real clinical images are used to check
the strength of the proposed segmentation method for clinical
use. Mostly, methods are first checked with simulated data and
then with real data.

D. Performance Indices

Performance indices are used to validate a segmentation
method. Validation of a method is a necessary step before it
is applied for clinical evaluation. In this section, we have pre-
sented various performance indices used to evaluate brain tissue
segmentation methods. No single index is used to judge the

performance of the segmentation methods. In brain tissue seg-
mentation, different measures used for quantitative evaluation
of methods are given as follows:

Dice index (DI): It is a quantitative overlap measure used to
evaluate the segmentation methods. DI is calculated for each
tissue type, dataset, and method. It measures the amount of
overlap between the segmented image and the ground truth
image. It is defined as [4]

DI =
2Vae

Va + Ve
. (2)

Partition coefficient: Partition coefficient (Vpc) is a significant
indicator of fuzzy partition. Its value ranges between 0 and
1, with 1 as its optimal value. Higher value represents better
performance with less fuzziness. It is given as

Vpc =
1
N

C∑

i=1

N∑

j=1

z2
ij (3)

where zij is the weighted membership variable, C is the number
of clusters, and N is the number of data patterns [4].

Partition entropy (Vpe): Partition entropy is another measure
to indicate fuzzy partition. The minimum value of Vpe indicates
a best clustering. The optimal value of Vpe is 0. It is given
as [4]

Vpe =
1
N

C∑

i=1

N∑

j=1

zij log zij . (4)

Jaccard index (JI): JI is also a measure of overlap between
the segmented image and the ground image. If JI is 0, it implies
no overlap with ground truth and a value of 1 implies perfect
segmentation

JI =
|S ∩ G|
|S ∪ G| (5)

where S and G are two segments generated by the method and
ground truth [92].
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Similarity index(ρ): Similarity index is used for comparison
between the segmented image and the ground truth image. It is
defined as

ρ =
1
C

C∑

i=1

2 |Ai ∩ Bi |
|Ai | + |Bi |

(6)

where Ai is the number of pixels belonging to cluster Ci ob-
tained from segmentation and Bi is the number of pixels in Ci

as per ground truth. A range of ρ is [0, 1], and ρ = 1 is its
optimal value [4].

Segmentation accuracy (SA): Segmentation accuracy is the
sum of correctly classified pixels divided by the total number of
pixels in the clustered image. It is given as

SA =
∑M

k=1 card (Ak ∩ Ck )
∑M

k=1 card (Ck )
(7)

where M is the total number of pixels in a cluster, Ak is the
number pixels belonging to the kth cluster obtained from seg-
mentation, and Ck is the number of pixels in the kth cluster in
ground image. The optimal value of SA is 1 [4].

Tissue segmentation accuracy (TSA): It is defined as

TSA =
2NCTK

NCITK + NGTK
(8)

where NCTK is the number of pixels that are correctly (inside
the mask of ground truth) assigned to tissue k by a given method.
NCITK is the total number of pixels (inside and outside the mask
of ground truth) assigned to tissue k. NGTK is the number of
pixels belonging to tissue k in the discrete anatomical model (the
ground truth mask). For ideal segmentation, the optimal value
of TSA is 1 [4].

Uniformity measure (UM): It is a quantitative validation to
measure the efficiency of the segmentation methods. It is defined
as

UM = 1 − 2 × p ×
∑p

j=0
∑

j∈Rj
(fi − µj )2

N × (fmax − fmin)2 (9)

where p is the number of thresholds, Rj is the jth segmented
region, N is the total number of pixels in the image, fi is the
gray level of pixel I, µj is the mean value of pixels in the jth
region, fmax is the maximum gray level of pixels in the image,
and fmin is the minimum gray level of pixels in the image. The
optimal value of UM is 1 [68].

False positive (FP) and false negative (FN): It represents the
amount of misclassification during segmentation. Besides, FPs
and FNs, true positives (TPs), and true negatives (TNs) are also
used. TPs and TNs represent the correct segmentation. In binary
segmentation, sensitivity and specificity measures are used to
evaluate the influence of FPs and FNs on the performance of a
method

sensitivity =
TP
TP

+ FN (10)

specificity =
TN
TN

+ FP. (11)

The optimal value of the above two measures is 1 [112].

IV. DISCUSSION

Segmentation of brain tissues like WM, GM, and CSF is a
challenging task due to IIH, noise, and other artifacts. Several
methods are proposed in the literature for brain tissue segmen-
tation, as discussed in Section II. Comparison of all these meth-
ods is quite a difficult and tedious task, as they use a different
database, image modality, segmentation analysis, and validation
measures. For instance, international symposium on biomedical
imaging and MICCAI conduct competition in medical image
processing as a part of their conference. They allow unbiased
validation of several algorithms using the same database. For in-
stance, MRBrains 2013 from MICCAI is an open challenge with
37 ranked works as of now [119]. In this challenge, researchers
around the world participated to validate their methods for the
segmentation of brain tissues (WM, GM, and CSF) on multise-
quence, such as T1-w, T2-w, inversion recovery, and fluid atten-
uated inversion recovery (FLAIR). All the methods are ranked
using the performance indices DI, modified Hausdorff distance,
and absolute volume difference on 15 test datasets. From MR-
Brains 2013 challenge, it is witnessed that the 3-D deep learn-
ing method (voxnet1) outperformed all other methods in terms
of overall segmentation result and WM segmentation. The 3-D
deep learning method (voxnet2) outperformed all other methods
in terms of GM segmentation. PyraMid-long short-term memory
methods achieved rank 1 in CSF segmentation. ISI-Neonatology
showed better results in case of WM and GM combined segmen-
tation. Multidimensional gated recurrent units demonstrated
promising results on intracranial cavity segmentation.

In this review, we have presented a quantitative comparison
of some of the state-of-the-art techniques in brain tissue seg-
mentation. These comparisons could provide the researchers a
comprehensive idea about the methods to be used in different
applications. It is observed from the study that thresholding-
based approaches are particularly simple and fast, when suit-
able threshold values are available. These approaches are used
as a preprocessing step in brain tissue segmentation. Clustering-
based methods like FCM are the most widely preferred approach
in tissue segmentation. However, severe noise and IIH could
degrade their performance noticeably. Several modified FCM
techniques incorporating spatial information are reported to re-
duce the effect of noise and IIH during tissue segmentation. Nev-
ertheless, clustering-based methods are time consuming during
training and labeling of the data.

The region-based methods are mostly used for refinement
stage in tissue segmentation. They only require an initial single
seed to detect the object of interest. However, its performance
depends on tissue boundary and choice of initial seed.

In brain tissue segmentation methods, use of some prepro-
cessing steps like bias field and IIH correction, etc., can im-
prove their performance. For instance, software package like
SPM includes such preprocessing steps. Thus, using SPM for
bias correction may improve their performance. In this regard,
mixture models could be a better choice. They use statistical
techniques to estimate and model the bias field.

A. Quantitative Comparison

The similarity evaluation based on dice similarity coefficient
(DSC) and JI using different region-based methods on T1-w MR
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TABLE III
COMPARISON OF DSC AND JI WITH REGION-BASED METHODS USING T1-W

MR IMAGES FROM NMR DATABASE [24]

Name of the method Validation measure DSC Validation measure JI

Mean Median Std. dev. Mean Median Std. dev.

HLS 0.758 0.780 0.048 0.612 0.639 0.062
DM 0.752 0.783 0.056 0.606 0.643 0.071
GAC 0.124 0.139 0.035 0.066 0.074 0.020
DM + GAC 0.585 0.613 0.087 0.418 0.442 0.084

Bold values indicate best results.

TABLE IV
COMPARISON OF MEAN DSC AND STD. DEV DSC WITH REGION-BASED

METHODS USING T2-W MR IMAGES FROM TCIA DATABASE [23]

Name of the method Validation measure DSC

Mean Std. dev.

CSG 0.901 0.033
RW 0.814 0.085
CV 0.502 0.156

Bold values indicate best results.

images is illustrated in Table III. From the table, it is revealed that
the HLS method outperforms all other region-based methods in
terms of high mean DSC and JI. This improvement in result
may be due to the use of EA like GA to produce the shape
prior. In addition, GA is used to estimate the optimum learning
parameters. Furthermore, it does not require any training set of
images to obtain the shape of the object of interest. Hence, HLS
can be a good choice for automatic segmentation.

A comparison of mean and std. dev. DSC using different
region-based methods on T2-w MR images is illustrated in
Table IV. From the table, it is observed that the CSG method
achieved a preferably high mean DSC value and a low std.
dev. DSC as compared to the other region-based methods. The
reason may be that the CSG model is able to optimize the sta-
tistical intensity function using a prior probability map. Hence,
it can be used for segmentation of medical images with multi-
modal intensity distribution, noise, and unclear boundaries.

The accuracy of FCM-based segmentation methods to extract
brain tissue like WM, GM, and CSF from simulated and real
T1-w MR images using DI measure is shown in Table V. From
the table, we can observe that IKPCM is capable of segmenting
brain tissues with a high DI for simulated MR images. Note that
a high DI value is obtained from real MR images as well. The
reason may be the incorporation of spatial information resulting
in better extraction of tissues.

A comparison of mixture models to extract brain tissue like
WM, GM, and CSF from simulated and real T1-w MR images
using DI measure is presented in Table VI. It is observed that
the variational method achieves a higher DI, in the presence
of noise and IIH. It achieves a high DI for real MR images
also. The variational method incorporates a bias field correction
and spatial information. In addition, they have the capability to
suppress the effect of IIH.

The accuracy of brain tissue segmentation methods using
mean JI and std. dev. JI on T1-w MR images is presented in

TABLE V
COMPARISON OF FCM-BASED METHODS USING DI ON SIMULATED AND
REAL T1-W MR IMAGES FROM BRAINWEB AND IBSR DATABASES [92]

Method Tissue DI

IKPCM WM (simulated) 0.9771
GM (simulated) 0.9761

WM (real) 0.9791
GM (real) 0.9783

FCM + Spatial constraint WM (simulated) 0.9035
GM (simulated) 0.8857

WM (real) 0.9147
GM (real) 0.8728

FCM WM (simulated) 0.8671
GM (simulated) 0.8588

WM (real) 0.8562
GM (real) 0.8591

Bold values indicate best results.

TABLE VI
COMPARISON OF MIXTURE MODEL-BASED METHODS USING DI ON

SIMULATED AND REAL T1-W MR IMAGES FROM IBSR DATABASE [96]

Method Tissue DI

Variational method CSF (simulated) 3% noise + 20% IIH 0.9621
WM (simulated) 3% noise + 20% IIH 0.9782
GM (simulated) 3% noise + 20% IIH 0.9389

WM (real) 0.8879
GM (real) 0.8298

Local GMM CSF (simulated) 3% noise + 20% IIH 0.959
WM (simulated) 3% noise + 20% IIH 0.9687
GM (simulated) 3% noise + 20% IIH 0.9234

WM (real) 0.8609
GM (real) 0.8244

NLRFCM CSF (simulated) 3% noise + 20% IIH 0.9618
WM (simulated) 3% noise + 20% IIH 0.9762
GM (simulated) 3% noise + 20% IIH 0.9346

WM (real) 0.8851
GM (real) 0.7847

Bold values indicate best results.

TABLE VII
COMPARISON OF SOFT CLUSTERING-BASED METHODS USING MEAN JI AND

STD. DEV. JI ON T1-W MR IMAGES FROM IBSR DATABASE [97]

Name of the method Tissue Validation measure JI

Mean Std. dev.

RSFCM GM (real) 0.8478 0.0180
WM (real) 0.7834 0.0141

FCM + GMM GM (real) 0.5930 0.0543
WM (real) 0.6433 0.0785

CLIC GM (real) 0.5343 0.0143
WM (real) 0.6960 0.0702

AM-EM GM (real) 0.7222 0.0800
WM (real) 0.6213 0.0500

AS-EM GM (real) 0.6239 0.0804
WM (real) 0.6770 0.1095

Bold values indicate best results.

Table VII. Among the soft clustering-based methods, robust
sFCM (RSFCM) method outperforms other methods with a high
JI and a low std. dev JI on real MR images. It includes spatial
and bias field information, which makes it robust for brain tissue
segmentation.

A comparison is made considering four types of clustering
methods: csFCM, sFCM, FCM, and k-means, based on average
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Fig. 6. (a) Comparison of average SA for segmented CSF, WM, and
GM using csFCM, sFCM, FCM, and k-means methods on simulated
T1-w MR images from Brainweb [4]. (b) Comparison of average TSA
for segmented CSF, WM, and GM using of csFCM, sFCM, FCM, and
k-means methods on simulated T1-w MR images from Brainweb [4].

TABLE VIII
COMPARISON OF SOFT CLUSTERING-BASED TISSUE SEGMENTATION

METHODS USING PARTITION COEFFICIENT (Vp c ), PARTITION ENTROPY
(Vp e ), AND SIMILARITY INDEX (ρ) USING T1-W MR IMAGES FROM

BRAINWEB [4], [92]

Method Modality Vp c Vp e ρ

csFCM MRI (simulated) 0.943 0.096 76.67
sFCM MRI (simulated) 0.897 0.180 74.351
FCM MRI (simulated) 0.803 0.378 71.176
csFCM MRI (real) 0.960 0.064 –
sFCM MRI (real) 0.892 0.186 –
FCM MRI (real) 0.803 0.373 –
FCM + spatial constraint MRI (simulated) 0.8859 0.2831 –
IKPCM MRI (simulated) 0.9645 0.0876 –

Bold values indicate best results.

SA [see Fig. 6(a)]. All the methods are evaluated on simulated
T1-w MR images. The figure reveals that k-means method gives
low average SA values for all types of tissues as compared to
other three methods.

Similarly, the k-means method gives low average TSA values
for CSF, WM, and GM [see Fig. 6(b)]. Thus, hard clustering
method is less preferred to segment tissues of MR images with
noise and heterogeneous intensity levels. Among the soft clus-
tering methods, csFCM outperforms other two methods with
high average SA values for CSF, WM, and GM [see Fig. 6(a)].
Similarly, csFCM also achieves a high average TSA value for
CSF, WM, and GM [see Fig. 6(b)].

Therefore, the performance of the classical FCM method is
improved by incorporating conditioning effect and spatial infor-
mation into the membership function of FCM. These modifica-
tions in classical FCM make it robust against moderate noise and
IIH level. However, it is sensitive to high levels of noise and IIH.

A comparison among different types of soft clustering meth-
ods: csFCM, IKPCM, sFCM, FCM plus spatial constraint,
and FCM from simulated and real T1-w MRI is illustrated in
Table VIII. All these methods are compared based on the par-
tition coefficient (Vpc), partition entropy (Vpe), and similarity
index (ρ). From the table, it is observed that IKPCM and cs-
FCM achieved a better tissue segmentation having a high Vpc
for simulated and real T1-w MR images. Furthermore, IKPCM
and csFCM have a low Vpe value, which reveals better seg-
mentation. As compared to sFCM and FCM, csFCM achieved
a better tissue segmentation with a high similarity index.

TABLE IX
COMPARISON OF MIXTURE MODEL-BASED METHODS WITH AVERAGE VOXEL

CLASSIFICATION ACCURACY USING REAL T1-W MR IMAGES FROM IBSR
DATABASE [108]

Modality/Tissue FSL SPM GA-EM HMRF-CSA

MRI 0.7506 0.8120 0.7497 0.8295
GM 0.7735 0.8442 0.7790 0.8492
WM 0.8708 0.8738 0.8723 0.8388
CSF 0.1619 0.2031 0.1490 0.5545

Bold values indicate best results.

TABLE X
COMPARISON OF FEATURE EXTRACTION AND CLASSIFICATION-BASED

METHODS ON T2-W PATHOLOGICAL BRAIN MR IMAGES FROM HARVARD
MEDICAL SCHOOL [120]

Method Sensitivity Specificity

DWT + PCA + BPNN 100% 100%
DWT + PCA + KNN 96% 97%
DWT + PCA + ANN 95.9% 96%
CAD system (FPCNN + DWT + PCA + BPNN) 100% 92.8%
Statistical features + SVM 96.2% 95.7%
Gabor filter + SVM 95.4% 93.9%

Bold values indicate best results.

A comparison of average voxel classification accuracy, using
mixture models like HMRF-CSA, GA-EM algorithm, the MR
image segmentation evaluation in the SPM, and the FMRIB
software library (FSL) packages is presented in Table IX. From
the table, it is observed that HMRF-CSA achieves a high clas-
sification accuracy as compared to other methods. The method
achieves an improved accuracy, especially for GM and CSF
delineation. This improvement in the result may be due to the
incorporation of CSA and MCMC method for parameter estima-
tion into the HMRF model. Hence, mixture model with global
optimization technique to estimate its statistical parameters can
be used for robust segmentation.

A quantitative analysis of different feature extraction and
classification-based methods on pathological brain for tissue
segmentation is presented in Table X. In the table, sensitivity
and specificity measures are used to compare the methods and
an attempt is made to compare some of the feature extraction
methods, such as DWT, Gabor filter, and statistical feature ex-
traction method. A detailed analysis of feature extraction and
classification methods on pathological brain images can be
found in [120].

In practice, DWT uses PCA to resolve dimensionality issue.
In addition, DWT uses popular techniques such as back propaga-
tion neural network (BPNN), KNN, and ANN for classification.
The other two methods use SVM for classification purpose. In
addition, a computer-aided diagnosis (CAD) system is also con-
sidered for comparison. The CAD system integrates feedback
pulse-coupled neural network (FPCNN) for segmentation, DWT
for feature extraction, PCA for dimension reduction, and BPNN
for classification of pathological T2-w MR images. From the ta-
ble, it is observed that DWT + PCA + BPNN and CAD system
achieved a high sensitivity. Furthermore, DWT + PCA + BPNN
achieved a high specificity. A 100% sensitivity indicates FN =
0. Similarly, 100% specificity indicates FP = 0. Hence, DWT +
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TABLE XI
COMPARISON OF THRESHOLDING-BASED TISSUE SEGMENTATION METHODS USING T2-W MR IMAGES FROM HARVARD MEDICAL SCHOOL [13]

Method Slice No. Number of threshold Std. dev. UM

2 5 2 5 2 5

PSO 22 97, 184 76, 119, 154, 184, 214 5.9887e–04 0.6701 0.9552 0.9435
32 107,185 80,112,139, 186,213 0.0016 0.9830 0.9368 0.9422

BFO 22 96, 184 44, 90, 127, 170, 208 2.5901e–04 0.0236 0.9569 0.9786
32 107,185 80,112,139, 186,213 3.3569e–04 0.0749 0.9342 0.9668

ABF 22 95, 184 43, 88, 130, 176, 208 1.1721e–04 0.0197 0.9569 0.9785
32 110,185 52,87,128, 167,198 1.0022e–04 0.0341 0.9342 0.9767

RGA + SBX 22 96, 184 44, 86, 127, 174, 208 1.9638e–14 8.1236e–04 0.9569 0.9788
32 109,185 34,78,123,174,207 1.2497e–14 0.0096 0.9342 0.9843

Bold values indicate best results.

PCA + BPNN outperforms all other methods. Therefore, we can
conclude that feature extraction and classification-based meth-
ods are well suited for tissue segmentation of pathological brain
images. However, in pathological brain MR image, the compli-
cated structure of various tissues makes it a challenging task.

Different EAs used to optimize the parameters of Kapur’s
entropy-based thresholding methods and Otsu method are com-
pared in Table XI. The table shows optimum threshold values,
standard deviation, and UM. From the table, it is revealed that
RGA with SBX is capable of producing the global optimum
solutions giving better segmentation results.

B. Clinical Usage

From the review of the state-of-the-art brain tissue segmen-
tation methods, it appears that researchers are advancing to
develop fully automatic methods, which are clinically more fea-
sible. This can be achieved by incorporating human intelligence,
prior knowledge, and tissue information within the algorithm for
robust segmentation results. Furthermore, automatic segmenta-
tion methods are desirable which are independent of patient-
specific training. As far as research direction is concerned, a
specific tissue segmentation method can be chosen for a par-
ticular type of diagnosis. For instance, in tissue segmentation,
feature extraction and classification-based approaches are pre-
ferred when manual segmentation results are available. When
multiple lesions are to be segmented, then graph-based and
region-based approaches are preferred because they are more
automatic, converge rapidly, and gives accurate results. When
lesions are spherical or near spherical, thresholding-based meth-
ods are capable enough to produce satisfactory results with less
statistical discrimination.

As far as MRI modalities are concerned, T1-w scans are
capable of clearly separating GM and WM. Thus, it is preferred
for intertissue classification during clinical usage. In this aspect,
T2-w images are used for intratissue classification of abnormal
fluid from normal tissue. Thus, for clinical usage they are well
suited for brain tissue segmentation. Nowadays, many more
advanced imaging techniques are being used in clinical usage,
such as FLAIR, diffusion weighted imaging, etc., for efficient
brain tissue segmentation. Detailed analysis of these techniques
is out of the scope of this paper.

Research in brain tissue segmentation will continue to find a
unified optimal solution for clinical use based on accuracy and

efficiency. Indeed, the boundless solution space of segmenta-
tion encourages researchers to develop domain specific methods
starting from a common solution. Improvement in segmentation
methods relevant to a specific domain in brain imaging will be
a new direction to handle large amount of data with less com-
putation time.

C. Hardware Implementation

Brain tissue segmentation using MRI is a key method for
disease diagnosis, treatment planning, and guidance. Special
attention is required for hardware implementation for real-time
use because most of the methods suffer from high computational
complexity. At the same time, medical imaging data are growing
at a fast rate. In the level set method, a 2-D function implicitly
defines the boundary of the object of interest. The function
depends on different characteristics of the MRI. Thus, hardware
implementation of the level set method using parallel processing
in the spatial domain requires many interpolation operations in
a single iteration. A way is to process elements in a narrow
band. However, the changing nature of the narrow band demands
uneven memory accesses.

The key difference between active contours and level set is
that nodes instead of a function explicitly represent contours.
The nodes move within the MR images to detect the tissue
boundary. Normally, this process is time consuming. However,
hardware implementation with parallel processing can signifi-
cantly decrease the segmentation time.

Brain tissue segmentation for real-time application using re-
gion growing can be accelerated by parallel processing of many
seeds with shared memory. The shared memory scheme avoids
reading of same seed multiple times from global memory. How-
ever, the approach requires regular supervision, such that differ-
ent regions do not access a neighbor pixel at the same time. In
soft clustering-based methods like FCM, the use of Euclidean
distance during membership function evaluation introduces a
huge amount of complexity in hardware implementation. In ad-
dition, for a large dataset, the method requires notable time,
limiting its applicability. Thus, real-time application of clas-
sical FCM is a tedious task. For hardware implementation, a
way is to modify FCM keeping in view the hardware resource
minimization.

In thresholding-based methods, each pixel is classified irre-
spective of all other pixels. In this regard, the method completely
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agrees with parallel processing. In addition, the method does not
require any synchronization. Furthermore, memory usage is also
low. However, if we want to store the segmentation results, then
the memory usage is equal to the size of the input image. Mixture
models like GMM, HMRF, etc., suffer from high computational
complexity because they execute a series of complex tasks in a
sequential manner. Thus, the hardware implementation of such
methods requires special attention.

Feature extraction and classification-based methods, at first,
transform the image into a feature space and then classification
is performed based on the set of features. For hardware
realization, interpolation is often required during image trans-
formation. In such a case, the hardware supporting interpolation
operation could be a better choice. For classification methods
like KNN, which are based on linear computation, parallel
processing for hardware implementation is an uncomplicated
task. As most of these methods involve iterations, global syn-
chronization is required. As far as classification is concerned,
ANN could be a better choice, because once the weights
are learned, feedforward network can be used for hardware
implementation to run in real time. Nowadays, CNNs are
gaining more attention for brain tissue segmentation with
efficient hardware implementation [121], [122].

In this paper, many evolutionary-based tissue segmentation
methods are reported. These methods use global optimization
techniques like EAs, which are very much responsive to
parallelization. However, EAs are computationally expensive
methods, which could decelerate real-time parallel processing
[121], [122].

V. CONCLUSION

Brain tissue segmentation is a topic of research in recent years.
The accurate segmentation of brain tissue helps for disease di-
agnosis and treatment planning. However, it is not expected that
the segmentation methods will replace experts in the diagnosis.
They can be used to reduce the workload of the experts or can be
used to provide a second opinion. The paper provides a frame-
work for the recent algorithms used in brain tissue segmentation.
The readers may gain an insight into state-of-the-art technol-
ogy. The contributions of the paper are manifold. A quantitative
analysis is carried out using various validation measures. This
may help researchers for a comparison of segmentation meth-
ods. This survey also discusses the clinical usage and hardware
implementation of different segmentation methods. This could
particularly provide an idea to the researchers and clinicians
about the method best suited for a desired application. We have
presented a large set of performance indices and some public
databases in order to compare and evaluate the performance of
the existing brain tissue segmentation methods. Furthermore,
these comparisons also consider each modality separately to se-
lect the best method. The paper focuses on recent challenges
faced in handling brain tissue segmentation methods due to in-
herent problems in the imaging modalities. It is witnessed that
incorporation of preprocessing steps like bias-field correction
or IIH correction helps to improve the performance of the exist-
ing methods. The development of research software packages
like SPM integrates such preprocessing steps. In addition, many
modified methods are discussed. They perform well against

bias-field or IIH. The merits and demerits of all existing segmen-
tation algorithms are discussed. Some of the open problems are
also addressed. This could provide researchers a future direction
to improve brain tissue segmentation for accurate diagnosis.
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