
ARTICLE IN PRESS
Journal of Network and

Computer Applications 30 (2007) 81–98
1084-8045/$ -

doi:10.1016/j

�Correspo
E-mail ad

(R. Jain), jpt
www.elsevier.com/locate/jnca
D-SCIDS: Distributed soft computing intrusion
detection system

Ajith Abrahama,�, Ravi Jainb, Johnson Thomasc,
Sang Yong Hana

aSchool of Computer Science and Engineering, Chung-Ang University, Korea
bUniversity of South Australia, Adelaide, Australia

cComputer Science Department, Oklahoma State University, OK 74106, USA

Received 28 June 2005; accepted 28 June 2005
Abstract

An Intrusion Detection System (IDS) is a program that analyzes what happens or has

happened during an execution and tries to find indications that the computer has been

misused. A Distributed IDS (DIDS) consists of several IDS over a large network (s), all of

which communicate with each other, or with a central server that facilitates advanced network

monitoring. In a distributed environment, DIDS are implemented using co-operative

intelligent agents distributed across the network(s). This paper evaluates three fuzzy rule-

based classifiers to detect intrusions in a network. Results are then compared with other

machine learning techniques like decision trees, support vector machines and linear genetic

programming. Further, we modeled Distributed Soft Computing-based IDS (D-SCIDS) as a

combination of different classifiers to model lightweight and more accurate (heavy weight)

IDS. Empirical results clearly show that soft computing approach could play a major role for

intrusion detection.

r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.

.jnca.2005.06.001

nding author.

dresses: ajith.abraham@ieee.org, , hansy@cau.ac.kr (A. Abraham), ravi.jain@unisa.edu.au

@okstate.edu (J. Thomas).

www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2005.06.001
mailto:ravi.jain@unisa.edu.au
mailto:jpt@okstate.edu


ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–9882
1. Introduction

An intrusion is defined as any set of actions that attempt to compromise the
integrity, confidentiality or availability of a resource. Intrusion detection is classified
into two types: misuse intrusion detection and anomaly intrusion detection
(Mukkamala et al., 2005). Misuse intrusion detection uses well-defined patterns of
the attack that exploit weaknesses in system and application software to identify the
intrusions. These patterns are encoded in advance and used to match against the user
behavior to detect intrusion. Anomaly intrusion detection uses the normal usage
behavior patterns to identify the intrusion. The normal usage patterns are
constructed from the statistical measures of the system features. The behavior of
the user is observed and any deviation from the constructed normal behavior is
detected as an intrusion (Denning, 1987; Summers, 1997). In Distributed Intrusion
Detection System (DIDS) conventional intrusion detection system are embedded
inside intelligent agents and are deployed over a large network. In a distributed
environment, IDS agents communicate with each other, or with a central server. By
having these co-operative agents distributed across a network, incident analysts,
network operations, and security personnel are able to get a broader view of what is
occurring on their network as a whole. Distributed monitoring allows early detection
of planned and coordinated attacks, thereby allowing network administrators to
take preventive measures. DIDS also helps to control the spreading of worms,
improves network monitoring and incident analysis, attack tracing and so on. It also
helps to detect new threats from unauthorized users, back-door attackers and
hackers to the network across multiple locations, which are geographically separated
(Abraham and Thomas, 2005). In a DIDS it is important to ensure that the
individual IDS are lightweight and accurate.

Data mining approaches for intrusion detection were first implemented in mining
audit data for automated models for intrusion detection (Barbara et al., 2001;
Cohen, 1996; Lee et al., 1999). Several data mining algorithms are applied to audit
data to compute models that accurately capture the actual behavior of intrusions as
well as normal activities. Audit data analysis and mining combine the association
rules and classification algorithm to discover attacks in audit data. Soft Computing
(SC) is an innovative approach to construct computationally intelligent systems
consisting of artificial neural networks, fuzzy inference systems, approximate
reasoning and derivative free optimization methods such as evolutionary computa-
tion, etc. (Zadeh, 1998). This paper introduces three fuzzy rule-based classifiers
(Abraham et al., 2004) and compares its performance with Linear Genetic
Programming (LGP) (Abraham, 2004), Support Vector Machines (SVM) (Vapnik,
1995) and Decision Trees (DT) (Brieman et al., 1984; Peddabachigari et al., 2004).
Further, we modeled Soft Computing (SC)-based IDS (SCIDS) (Abraham et al.,
2004) as a combination of different classifiers to model lightweight and more
accurate (heavy weight) IDS. The rest of the paper is organized as follows. Section 2
provides a brief overview of the research on distributed intrusion detection systems.
Soft computing for intrusion detection is introduced in Section 3 followed by the
importance of attribute reduction (important feature selection) in Section 4.



ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–98 83
Experimental results are also presented in Section 4 followed by conclusions in
Section 5.
2. Distributed intrusion detection system (DIDS)

A number of IDSs have been proposed for a networked or distributed
environment. Early systems included ASAX (Mouinji et al., 1995), DIDS (Snapp
et al., 1999) and NSTAT (Kemmerer, 1997). These systems require the audit data
collected from different places to be sent to a central location for analysis. NetSTAT
(Vigna and Kemmerer, 1999) is another example of such a system. In NetSTAT
attack scenarios are modeled as hypergraphs and places are probed for network
activities. Although NetSTAT also collects information in a distributed manner, it
analyses them in a central place. The scalability of such systems is limited due to their
centralized nature. To improve scalability later systems such as EMERALD (Porras
and Neumann, 1997), GriDS (Staniford–Chen et al., 1996) and AAFID (Spafford
and Zamboni, 2000), deployed instruction detection systems at different locations
and organized them into a hierarchy such that low-level IDSs send designated
information to higher level IDSs. EMERALD uses both misuse detection and
statistical anomaly detection techniques by having a recursive framework, which
allows generic components to be deployed in a distributed manner. To detect
intruders, GriDS aggregates computer and network information into activity graphs
which reveal the causal structure of network activity. AAFID consists of agents,
filters transceivers and monitors organized in a tree structure. The hierarchical
approaches employed by theses schemes scale better than the previous centralized
approach. However, the main problem with such an approach is that if two or more
IDSs that are far apart in the hierarchy detect a common intruder, the two detection
cannot be correlated until the messages from the different IDSs reach a common
high-level IDS. This will require the messages to traverse multiple IDSs resulting in
communication overheads. The Common Intrusion Detection Framework (CIDF)
(Staniford-Chen et al., 1998) goes one step further as it aims to enable different
intrusion detection and response components to interoperate and share information
and resources in a distributed environment. The intrusion detection inter-component
adaptive negotiation protocol helps cooperating CIDF components to reach an
agreement on each other’s needs and capabilities (Feiertag et al., 2000). MADAM
ID uses CIDF to automatically get audit data, build models, and distribute
signatures for novel attacks so that the gap between the discovery and detection of
new attacks can be reduced (Lee et al., 2000). The coordinated and response system
(CARDS) (Ning et al., 2002) aims at detecting distributed attacks that cannot be
detected using data collected from any single location. CARDS decomposes global
representations of distributed attacks into smaller units that correspond to the
distributed events indicating the attacks. It then executes and coordinates the
decomposed smaller units in the places where the corresponding units are observed.
The message transmission between component IDSs is not determined by a
centralized or hierarchical scheme, Instead, in CARDS, one component IDS sends a



ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–9884
message to another only when the message is required by the later IDS to detect
certain attacks. The communication cost is therefore reduced. Although JiNao (Jou
et al., 2000) has been proposed as a distributed IDS for detecting intrusions network
routing protocols, no specific mechanisms have been provided for doing so. JiNao
focuses on the Open Shortest Path First (OSPF) protocol.

Software agents have been proposed as a technology for intrusion detection
applications. Rationale for considering agents in an IDS ranges from increased
adaptability for new threats to reduced communication costs. Since agents are
independently executing entities, there is the potential that new detection capabilities
can be added without completely halting, rebuilding, and restarting the IDS. Other
potential advantages are described in Jansen et al. (1999) and Kruegel and Toth
(2001). Kruegel and Toth (2001) also identify downside tradeoffs including increased
design and operational complexity. The Autonomous Agents for Intrusion Detection
(AAFID) framework (Spafford and Zamboni, 2000) employs autonomous agents
for data collection and analysis. AAFID utilizes agents hosted on network nodes,
filters to extract pertinent data, transceivers to oversee agent operation, and
monitors to receive reports from transceivers. These entities are organized into a
hierarchical architecture with centralized control. Cooperating Security Managers
(CSMs) (White et al., 1996) enable individual distributed intrusion detection
packages to cooperate in performing network intrusion detection without relying on
centralized control. Each individual CSM detects malicious activity on the local host.
When suspicious activity is detected, each CSM will report any noteworthy activity
to the CSM on the host from which the connection originated. The local CSM will
not notify all networked systems, but rather only the system immediately before it in
the connection chain. Other agent-based hierarchical architectures include the
Intelligent Agents for Intrusion Detection project (Helmer et al., 1998) with a
centralized data warehouse at the root, data cleaners at the leaves, and classifier
agents in between. Bernardes and dos Santos Moreira (2000) have proposed a hybrid
framework with partially distributed decision making under the control of a
centralized agent manager. Agents are deployed to observe behavior of the system
and users. Agents communicate via messages to advise peers when an action is
considered suspect. When an agent considers an activity to be suspect, an agent with
a higher level of specialization for the suspected intrusion is activated. Agents then
report their findings to a centralized manager. The main drawbacks with these
systems, is that the use of one or more centralized repositories leave at least some
portion of the network exposed to malicious attacks including tampering and denial
of service attacks. Even if an autonomous mobile decision-making agent was to
detect a problem, interlocking mechanisms would be necessary to preclude any
accidental or malicious removal, delay, or spoofing the agent. The Tethered Agent
and Collective Hive (TACH) architecture includes a centralized Hive to keep track of
agents and collected data and an Agent Registry (AR) to track fingerprints of agents
(Lu, 2000). An Aglet-based framework for TACH incorporates mobile agents for
virus detection and misuse detection (Kapoor, 2000). Limitations of TACH include
the use of a centralized entity for agent control and a period communication
protocol between agents with time-out detection used to detect status changes in the



ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–98 85
agents. If the centralized entity is disabled then the entire TACH system has been
compromised. The DIDS (Mukherjee et al., 1994) used a combination of host and
LAN monitors to observe system and network activity. A centralized director
obtained information from the monitors to detect intrusions. The CIDF
nomenclature mentioned above includes reconnaissance agents for data gathering,
analysis agents, and decision-response agents (Staniford-Chen et al., 1998). The
Computer Immunology Project at the University of New Mexico (Forrest et al.,
1997) explored designs of IDSs based on ideas gleaned by examining animal immune
systems. Small, individual agents would roam a distributed system, identify
intrusions, and resolve the intrusions. One portion of the project developed a sense
of self for security-related computer programs by observing the normal sets of
system calls executed by the programs. This sense of self can be used to detect
intrusions by discovering when a program executes an unusual set of system calls.
The JAM Project at Columbia University (Stolfo et al., 1997) uses intelligent,
distributed Java agents and data mining to learn models of fraud and intrusive
behavior that can be shared between organizations. Helmar et al. propose
lightweight agents for intrusion detection (Helmer et al., 2003). Their multi-agent
system includes agents that travel between monitored systems in a network of
distributed systems, obtain information from data cleaning agents, classify and
correlate information, and report the information to a user interface and database
via mediators. Agent systems with lightweight agent support allow runtime addition
of new capabilities to agents. DeMara and Rocke (2004) propose an IDS based on
mobile agents for detecting malicious activity by people with legitimate access to
resources and services. These include attacks such as spoofing, termination,
sidetracking, alteration of internal data, and selective deception. Their system
employs techniques such as encapsulation, redundancy, scrambling, and mandatory
obsolescence.

DIDS are simply a superset of the conventional IDS implemented in a distributed
environment. Due to the distributed nature the implementation poses several
challenges. IDS could be embedded inside agents and placed in the network to be
monitored. The individual IDS may be configured to detect a single attack, or they
may detect several types of attacks. Each network component may host one or many
IDS. Since there will be a large number of flag generators (detection of an attack,
event, etc.), these must be abstracted, analyzed, and condensed by a suitable
architecture before arriving at a final conclusion. Typically there would be a
centralized analyzing and control facility. The most popular architecture is of the
master–slave type which may be suitable for small networks. In a hierarchical
architecture analysis and control are done at different layers because of the
geographical distribution or due to the size of the network. Attacks/event detection
information is passed to analyzer/controller nodes that aggregate information from
multiple IDS agents. It is to be noted that the event information, which is detected by
the IDS agents will follow a bottom-up approach for analysis and the various
command and control flow will follow a top-down approach. The physical location
of IDS agents will be fixed since they monitor fixed network segments. In the case of
hierarchical architecture, the analyzer/controller nodes may exist at many locations



ARTICLE IN PRESS

IDS IDS IDSIDS IDS

Analyzer / Controller Analyzer / Controller

Analyzer / Controller

IDS IDS IDS IDSIDS

Analyzer / Controller Analyzer / Controller

Analyzer / Controller

Analyzer / Controller

Fig. 1. Hierarchical architecture with free communication between layers.

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–9886
in the network since they receive their input and give their output via network
connections. Depending on the network environment the communication between
the different layers could be implemented as depicted in Fig. 1 (Abraham and
Thomas, 2005).

In the hierarchical architecture, the Central Analyzer and Controller (CAC) is the
heart and soul of the DIDS. The CAC usually consists of a database and Web server,
which allows interactive querying by the network administrators for attack
information/analysis and initiate precautionary measures. CAC also performs
attack aggregation, building statistics, identify attack patterns and perform
rudimentary incident analysis. The co-operative intelligent agent network is one of
the most important components of the DIDS. Ideally these agents will be located on
separate network segments, and very often geographically separated. Communica-
tion among the agents is done utilizing TCP/IP sockets.

Agent modules running on the host machines are capable of data analysis and to
formulate adequate response actions and are very often implemented as read only
and fragile. In the event of tampering or modification the agent reports to the server
agent and automatically ends its life. Agents residing in the individual analyzer/
controllers consist of modules responsible for agent regeneration, dispatch, updating
and maintaining intrusion signatures and so on. These agents control the individual
IDS agents for monitoring the network, manage all the communication and life cycle
of the IDS agents and also updates the IDS agents with detection algorithms,
response and trace mechanisms.
3. Soft computing

Soft computing was first proposed by Zadeh (1998), to construct new generation
computationally intelligent hybrid systems consisting of neural networks, fuzzy
inference system, approximate reasoning and derivative free optimization



ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–98 87
techniques. It is well known that intelligent systems, which can provide human like
expertise such as domain knowledge, uncertain reasoning, and adaptation to a noisy
and time-varying environment, are important in tackling practical computing
problems. In contrast with conventional Artificial Intelligence (AI) techniques which
only deal with precision, certainty and rigor the guiding principle of hybrid systems
is to exploit the tolerance for imprecision, uncertainty, low solution cost, robustness,
partial truth to achieve tractability, and better rapport with reality.

3.1. Fuzzy rule-based systems

Fuzzy logic has proved to be a powerful tool for decision making to handle and
manipulate imprecise and noisy data. The notion central to fuzzy systems is that
truth values (in fuzzy logic) or membership values (in fuzzy sets) are indicated by a
value in the range [0.0, 1.0], with 0.0 representing absolute falseness and 1.0
representing absolute truth. A fuzzy system is characterized by a set of linguistic
statements based on expert knowledge. The expert knowledge is usually in the form
of if-then rules.

Definition 1. Let X be some set of objects, with elements noted as x. Thus, X ¼ fxg.

Definition 2. A fuzzy set A in X is characterized by a membership function which are
easily implemented by fuzzy conditional statements. In the case of fuzzy statement if
the antecedent is true to some degree of membership then the consequent is also true
to that same degree.

A simple rule structure: If antecedent then consequent.
A simple rule: If variable1 is low and variable2 is high then output is benign else

output is malignant.
In a fuzzy classification system, a case or an object can be classified by applying a

set of fuzzy rules based on the linguistic values of its attributes. Every rule has a
weight, which is a number between 0 and 1 and this is applied to the number given by
the antecedent. It involves 2 distinct parts. First the antecedent is evaluated, which
involves fuzzifying the input and applying any necessary fuzzy operators and second
applying that result to the consequent known as inference. To build a fuzzy
classification system, the most difficult task is to find a set of fuzzy rules pertaining to
the specific classification problem. We explored three fuzzy rule generation methods
for intrusion detection systems. Let us assume that we have a n-dimensional c-class
pattern classification problem whose pattern space is an n-dimensional unit cube [0,
1]n. We also assume that m patterns xp ¼ ðxpl ; . . . ; xpnÞ, p ¼ 1; 2; . . . ;m, are given for
generating fuzzy if-then rules where xp 2 ½0; 1� for p ¼ 1; 2; . . . ;m.

3.1.1. Rule generation based on the histogram of attribute values (FR1)

In this method, use of the histogram itself is an antecedent membership function.
Each attribute is partitioned into 20 membership functions f hð�Þ, h ¼ 1; 2; . . . ; 20. The
smoothed histogram mk

i ðxiÞof class k patterns for the ith attribute is calculated using



ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–9888
the 20 membership functions f hð�Þ as follows:

mk
i ðxiÞ ¼

1

mk

X
xp2class k

f hðxpiÞ

forbh�1pxipbh; h ¼ 1; 2; :::; 20, ð1Þ

where mk is the number of class k patterns, bh�1;bh

� �
is the hth crisp interval

corresponding to the 0.5-level set of the membership function f hð�Þ:

b1 ¼ 0; b20 ¼ 1, (2)

bh ¼
1

20� 1
h�

1

2

� �
for h ¼ 1; 2; :::; 19. (3)

The smoothed histogram in (1) is normalized so that its maximum value is 1. A
single fuzzy if-then rule is generated for each class. The fuzzy if-then rule for the kth
class can be written as

If x1 is Ak
1and . . . and xn then class k, (4)

where Ak
i is an antecedent fuzzy set for the ith attribute. The membership function of

Ak
i is specified as

Ak
i ðxiÞ ¼ exp �

ðxi � mk
i Þ

2

2ðsk
i Þ

2

 !
, (5)

where mk
i is the mean of the ith attribute values xpi of class k patterns, and sk

i is the
standard deviation. Fuzzy if-then rules for the two-dimensional two-class pattern
classification problem are written as follows:

If x3 is A1
3 and x4 is A1

4 then class 2, (6)

If x3 is A2
3 and x4 is A2

4 then class 3. (7)

Membership function of each antecedent fuzzy set is specified by the mean and the
standard deviation of attribute values. For a new pattern xp ¼ ðxp3;xp4Þ, the winner
rule is determined as follows:

A�3ðxp3Þ:A
�
2ðxp4Þ ¼ max Ak

1ðxp3Þ:A
k
2ðxp4Þ k ¼ 1; 2j

� �
. (8)

3.1.2. Rule generation based on partition of overlapping areas (FR2)

Fig. 2 demonstrates a simple fuzzy partition, where the two-dimensional pattern space
is partitioned into 25 fuzzy subspaces by five fuzzy sets for each attribute (S: small, MS:
medium small, M: medium, ML: medium large, L: large). A single fuzzy if-then rule is
generated for each fuzzy subspace. One disadvantage of this approach is that the
number of possible fuzzy if-then rules exponentially increases with the dimensionality of
the pattern space. Because the specification of each membership function does not
depend on any information about training patterns, this approach uses fuzzy if-then
rules with certainty grades. The local information about training patterns in the



ARTICLE IN PRESS

Fig. 2. An example of fuzzy partition.

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–98 89
corresponding fuzzy subspace is used for determining the consequent class and the grade
of certainty. In this approach, fuzzy if-then rules of the following type are used:

If x1 is Aj1 and . . . and xn then class Cj

with CF ¼ CFj ; j ¼ 1; 2; . . . ;N, ð9Þ

where j indexes the number of rules, N is the total number of rules, Aji the antecedent
fuzzy set of the ith rule for the ith attribute, Cj; is the consequent class, and CFj is the
grade of certainty. The consequent class and the grade of certainty of each rule are
determined by the following simple heuristic procedure:

Step 1: Calculate the compatibility of each training pattern xp ¼ ðxp1; xp2; . . . ;xpnÞ

with the jth fuzzy if-then rule by the following product operation:

pjðxpÞ ¼ Aj1ðxp1Þ � � � � � AjnðxpnÞ; p ¼ 1; 2; . . . ;m. (10)

Step 2: For each class, calculate the sum of the compatibility grades of the training
patterns with the jth fuzzy if-then rule Rj:

bclass kðRjÞ ¼
Xn

xp2class k

p xp

� �
; k ¼ 1; 2; :::; c, (11)

where bclass kðRjÞ the sum of the compatibility grades of the training patterns in class
k with the jth fuzzy if-then rule Rj.

Step 3: Find class A�j that has the maximum valuebclass kðRjÞ:

bclass k�j
¼Maxfbclass 1ðRjÞ; . . . ; bclass cðRjÞg. (12)

If two or more classes take the maximum value or no training pattern compatible
with the jth fuzzy if-then rule (i.e., if bclass k(Rj) ¼ 0 for k ¼ 1; 2; . . . ; c), the
consequent class Ci can not be determined uniquely. In this case, let Ci be f.

Step 4: If the consequent class Ci is 0, let the grade of certainty CFj be CF j ¼ 0.
Otherwise the grade of certainty CFj is determined as follows:

CF j ¼
ðbclass k�j

ðRjÞ � b̄ÞPc
k¼1

bclass k Rj

� � , (13)



ARTICLE IN PRESS

small large small large

(a) (b)

Fig. 3. Fuzzy partition of each attribute: (a) simple fuzzy grid approach; (b) modified fuzzy grid approach.

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–9890
where

b̄ ¼
X

k¼1
kak�

j

bclass kðRjÞ

ðc� 1Þ
,

The above approach could be modified by partitioning only the overlapping areas
as illustrated in Fig. 3.

This approach generates fuzzy if-then rules in the same manner as the simple fuzzy
grid approach except for the specification of each membership function. Because this
approach utilizes the information about training patterns for specifying each
membership function as mentioned in Section 3.1, the performance of generated
fuzzy if-then rules is good even when we do not use the certainty grade of each rule in
the classification phase. In this approach, the effect of introducing the certainty
grade to each rule is not so important when compared to conventional grid
partitioning.

3.2. Neural learning of fuzzy rules (FR3)

In a fused neuro-fuzzy architecture, neural network learning algorithms are used
to determine the parameters of fuzzy inference system (membership functions and
number of rules). An Evolving Fuzzy Neural Network implements a Mamdani-type
FIS and all nodes are created during learning. Each input variable is represented here
by a group of spatially arranged neurons to represent a fuzzy quantization of this
variable. New neurons can evolve in this layer if, for a given input vector, the
corresponding variable value does not belong to any of the existing MF to a degree
greater than a membership threshold. Technical details of the learning algorithm are
given in Kasabov (1998).
4. Experimental setup and results

Complex relationships exist between features, which are difficult for humans to
discover. The IDS must therefore reduce the amount of data to be processed. This is
very important if real-time detection is desired. The easiest way to do this is by doing
an intelligent input feature selection. Certain features may contain false correlations,



ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–98 91
which hinder the process of detecting intrusions. Further, some features may be
redundant since the information they add is contained in other features. Extra
features can increase computation time, and can impact the accuracy of IDS.
Feature selection improves classification by searching for the subset of features,
which best classifies the training data (Chebrolu et al., 2005).

Feature selection is done based on the contribution the input variables made to the
construction of the decision tree. Feature importance is determined by the role of
each input variable either as a main splitter or as a surrogate. Surrogate splitters are
defined as back-up rules that closely mimic the action of primary splitting rules.
Suppose that, in a given model, the algorithm splits data according to variable
‘protocol_type’ and if a value for ‘protocol_type’ is not available, the algorithm
might substitute ‘flag’ as a good surrogate. Variable importance, for a particular
variable is the sum across all nodes in the tree of the improvement scores that the
predictor has when it acts as a primary or surrogate (but not competitor) splitter.
Example, for node i, if the predictor appears as the primary splitter then its
contribution towards importance could be given as iimportance. But if the variable
appears as the nth surrogate instead of the primary variable, then the importance
becomes iimportance ¼ (pn)*iimprovement in which p is the ‘surrogate improvement
weight’ which is a user controlled parameter set between (0–1) (Shah et al., 2004).

The data for our experiments was prepared by the 1998 DARPA intrusion
detection evaluation program by MIT Lincoln Labs MIT. The LAN was operated in
a real environment, but was subjected to multiple attacks. For each TCP/IP
connection, 41 various quantitative and qualitative features were extracted. The data
set has 41 attributes for each connection record plus one class label as given in Table
1. The data set contains 24 attack types that could be classified into four main
categories.

DoS: Denial of service

Denial of service (DoS) is a class of attack where an attacker makes a computing
or memory resource too busy or too full to handle legitimate requests, thus denying
legitimate users access to a machine.

R2L: unauthorized access from a remote machine

A remote to user (R2L) attack is a class of attack where an attacker sends packets
to a machine over a network, then exploits the machine’s vulnerability to illegally
gain local access as a user.

U2Su: unauthorized access to local super user (root)

User to root (U2Su) exploits are a class of attacks where an attacker starts out
with access to a normal user account on the system and is able to exploit
vulnerability to gain root access to the system.

Probing: surveillance and other probing

Probing is a class of attack where an attacker scans a network to gather
information or find known vulnerabilities. An attacker with a map of machines and
services that are available on a network can use the information to look for exploits.

Our experiments have three phases namely input feature reduction, training phase
and testing phase. In the data reduction phase, important variables for real-time
intrusion detection are selected by feature selection.



ARTICLE IN PRESS

Table 1

Variables for intrusion detection data set

Variable no. Variable name Variable type Variable label

1 duration Continuous A

2 protocol_type Discrete B

3 service Discrete C

4 flag Discrete D

5 src_bytes Continuous E

6 dst_bytes Continuous F

7 land Discrete G

8 wrong_fragment Continuous H

9 urgent Continuous I

10 hot Continuous J

11 num_failed_logins Continuous K

12 logged_in Discrete L

13 num_compromised Continuous M

14 root_shell Continuous N

15 su_attempted Continuous O

16 num_root Continuous P

17 num_file_creations Continuous Q

18 num_shells Continuous R

19 num_access_files Continuous S

20 num_outbound_cmds Continuous T

21 is_host_login Discrete U

22 is_guest_login Discrete V

23 count Continuous W

24 srv_count Continuous X

25 serror_rate Continuous Y

26 srv_serror_rate Continuous X

27 rerror_rate Continuous AA

28 srv_rerror_rate Continuous AB

29 same_srv_rate Continuous AC

30 diff_srv_rate Continuous AD

31 srv_diff_host_rate Continuous AE

32 dst_host_count Continuous AF

33 dst_host_srv_count Continuous AG

34 dst_host_same_srv_rate Continuous AH

35 dst_host_diff_srv_rate Continuous AI

36 dst_host_same_src_port_rate Continuous AJ

37 dst_host_srv_diff_host_rate Continuous AK

38 dst_host_serror_rate Continuous AL

39 dst_host_srv_serror_rate Continuous AM

40 dst_host_rerror_rate Continuous AN

41 dst_host_srv_rerror_rate Continuous AO

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–9892
In the training phase, the different soft computing models were constructed using
the training data to give maximum generalization accuracy on the unseen data. The
test data is then passed through the saved trained model to detect intrusions in the
testing phase. The 41 features are labeled as shown in Table 1 and the class label is
named as AP.



ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–98 93
This data set has five different classes namely Normal, DoS, R2L, U2R and Probes.

The training and test comprises of 5092 and 6890 records, respectively (KDD Cup,
1999). Using all 41 variables could result in a big IDS model, which would result in
substantial overhead for online detection. All the training data were scaled to (0–1).
The decision tree approach described before resulted in to reducing the number of
variables to 12 significant variables or features. The list of reduced variables is shown
in Table 2.

Using the original and reduced data sets, we performed a 5-class classification. The
normal data belongs to class 1, probe belongs to class 2, denial of service belongs to
class 3, user to super user belongs to class 4, remote to local belongs to class 5. All
the IDS models are trained and tested with the same set of data.

We examined the performance of all three fuzzy rule-based approaches (FR1, FR2

and FR3) mentioned in Section 3. When an attack is correctly classified the grade of
certainty is increased and when an attack is misclassified the grade of certainty is
decreased. A learning procedure is used to determine the grade of certainty.
Triangular membership functions were used for all the fuzzy rule based classifiers.
For FR1 and FR2 two triangular membership functions were assigned and 2 and 212

rules were learned respectively for the reduced data set. For FR3, 4 triangular
membership functions were used for each input variable. A sensitivity threshold
Sthr ¼ 0.95 and error threshold Errthr ¼ 0.05 was used for all the classes and 89 rule
nodes were developed during the one pass learning. For comparison purposes
various other empirical results were adapted from Mukkamala et al. (2005),
Peddabachigari et al. (2004), Shah et al. (2004), Chebrolu et al. (2005) and Abraham
(2004).

The settings of various linear genetic programming system parameters are of
utmost importance for successful performance of the system. The population size
was set at 120,000 and a tournament size of 8 is used for all the 5 classes. Crossover
and mutation probability is set at 65–75% and 75–86%, respectively for the different
classes (Abraham, 2004). Our trial experiments with SVM revealed that the
polynomial kernel option often performs well on most of the datasets. We also
constructed decision trees using the training data and then testing data was passed
through the constructed classifier to classify the attacks (Mukkamala et al., 2005).

A number of observations and conclusions are drawn from the results illustrated
in Tables 3 and 4. Using 41 attributes, the FR2 method gave 100% accuracy for all
the 5 classes, showing the importance of fuzzy inference systems. For the full data
set, LGP outperformed decision trees and support vector machines in terms of
detection accuracies (except for U2R class).

Using 12 attributes most of the classifiers performed very well except the fuzzy
classifiers (FR1, FR2). For detecting U2R attacks FR2 gave the best accuracy.
However, due to the tremendous reduction in the number of attributes (about 70%
Table 2

Reduced variable set

C, E, F, L, W, X, Y, AB, AE, AF, AG, AI



ARTICLE IN PRESS

Table 3

Performance comparison using full data set

Attack type Classification accuracy on test data set (%)

FR1 FR2 FR3 DT SVM LGP

Normal 40.44 100.00 98.26 99.64 99.64 99.73

Probe 53.06 100.00 99.21 99.86 98.57 99.89

DOS 60.99 100.00 98.18 96.83 99.92 99.95

U2R 66.75 100.00 61.58 68.00 40.00 64.00

R2L 61.10 100.00 95.46 84.19 33.92 99.47

Table 4

Performance comparison using reduced data set

Attack type Classification accuracy on test data set (%)

FR1 FR2 FR3 DT SVM LGP

Normal 74.82 79.68 99.56 100.00 99.75 99.97

Probe 45.36 89.84 99.88 97.71 98.20 99.93

DOS 60.99 60.99 98.99 85.34 98.89 99.96

U2R 94.11 99.64 65.00 64.00 59.00 68.26

R2L 91.83 91.83 97.26 95.56 56.00 99.98

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–9894
less), we are able to design a computational efficient (lightweight) IDS. Since a
particular classifier could not provide accurate results for all the classes, we propose
to use a combination of different classifiers to detect different attacks. The D-SCIDS
architecture using 41 attributes (heavy weight) and 12 attributes (lightweight) are
depicted in Fig. 4. The proposed heavy weight model could detect with 100%
accuracy while the lightweight model could detect all the attacks with high accuracy
(lowest accuracy being 94.11% for U2R class using FR1). It is to be noted that FR1

classifier is preferred for the lightweight D-SCIDS (due to fewer number of rules)
even though it has slightly lower accuracy when compared to FR2 (Table 5).

In some classes the accuracy figures tend to be very small and may not be
statistically significant, especially in view of the fact that the 5 classes of patterns
differ in their sizes tremendously. For example only 27 data sets were available for
training the U2R class. More definitive conclusions can only be made after analyzing
more comprehensive sets of network traffic.
5. Conclusions

Effective intrusion detection and management systems are critical components of
cyber infrastructure as they are in the forefront of the battle against cyber-terrorism.
In this paper, we presented a framework for Distributed Intrusion Detection Systems
(DIDS) using several soft computing paradigms. We also demonstrated the



ARTICLE IN PRESS

Decision tree
based input

feature selection

Normal

R2L

DoS

Pr

U2R

41
 v

ar
ia

bl
es

12 variables

Decision Trees

Linear Genetic Program

Linear Genetic Program

Fuzzy Classifier (FR1)

Linear Genetic Program

Light weight SCIDS

Fuzzy Classifier
(FR2)

41
 v

ar
ia

bl
es

Heavy weight SCIDS

R2L

DoS

Probe

U2R

Normal

obe

Fig. 4. Light/heavy-weight SCIDS architecture.

Table 5

Performance of the light weight DSCIDS

Attack type Classification accuracy on test data (%)

Normal 100.00

Probe 99.93

DOS 99.96

U2R 94.11

R2L 99.98

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–98 95
importance of feature reduction to model lightweight intrusion detection systems.
Finally, we propose a hybrid architecture involving ensemble and base classifiers for
intrusion detection.

For real time intrusion detection systems, LGP would be the ideal candidate as it
can be manipulated at the machine code level. Overall, the fuzzy classifier (FR2) gave



ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–9896
100% accuracy for all attack types using all the 41 attributes. The proposed hybrid
combination of classifiers requires only 12 input variables. While the lightweight
SCIDS would be useful for MANET/distributed systems, the heavy weight SCIDS
would be ideal for conventional static networks, wireless base stations etc. More data
mining techniques are to be investigated for attribute reduction and enhance the
performance of other soft computing paradigms.

With the increasing incidents of cyber attacks, building an effective intrusion
detection models with good accuracy and real-time performance are essential. This
field is developing continuously. More data mining techniques should be investigated
and their efficiency should be evaluated as intrusion detection models.
Acknowledgments

This research was supported by the International Joint Research Grant of the
Institute of Information Technology Assessment (IITA) foreign professor invitation
program of the Ministry of Information and Communication (MIC), Korea.
References

Abraham A. Evolutionary computation in intelligent web management, evolutionary computing in data

mining. In: Ghosh A, Lakhmi J, editors. Studies in fuzziness and soft computing. Germany: Springer;

2004. p. 189–210 [Chapter 8].

Abraham A, Thomas J. Distributed intrusion detection systems: a computational intelligence approach.

In: Abbass HA, Essam D, editors. Applications of information systems to homeland security and

defense. USA: Idea Group Inc. Publishers; 2005. p. 105–35 [Chapter 5].

Abraham A, Jain R, Sanyal S, Han SY. SCIDS: a soft computing intrusion detection system. Sixth

international workshop on distributed computing (IWDC 2004). Lecture Notes in Computer Science,

vol. 3326. Germany: Springer; 2004. p. 252–7. ISBN: 3-540-24076-4.

Barbara D, Couto J, Jajodia S, Wu N. ADAM: a testbed for exploring the use of data mining in intrusion

detection. SIGMOD Rec 2001;30(4):15–24.

Bernardes MC, dos Santos Moreira E. Implementation of an intrusion detection system based on mobile

agents. In: Proceedings of the international symposium on software engineering for parallel and

distributed systems, 2000. p. 158–64.

Brieman L, Friedman J, Olshen R, Stone C. Classification of regression trees. Wadsworth Inc.; 1984.

Chebrolu S, Abraham A, Thomas J. Feature deduction and ensemble design of intrusion detection

systems, computers and security, vol. 24/4. Amsterdam: Elsevier; 2005. p. 295–307.

Cohen W. Learning trees and rules with set-valued features. American Association for Artificial

Intelligence (AAAI); 1996.

DeMara RF, Rocke AJ. Mitigation of network tampering using dynamic dispatch of mobile agents.

Comput Security 2004;23:31–42.

Denning D. An intrusion-detection model. IEEE Trans Software Eng 1987;SE-13(2):222–32.

Feiertag R, Rho S, Benzingher L, Wu S, Redmond T, Zhang C, Levitt K, Peticolas D, Heckman M,

Staniford S, McAlerney J. Intrusion detection inter-component adaptive negotiation. Comput

Networks 2000;34:605–21.

Forrest S, Hofmeyr SA, Somayaji A. Computer immunology. CACM 1997;40(10):88–96.

Helmer G, Wong J, Honavar V, Miller L. Intelligent agents for intrusion detection. Available from http://

citeseer.nj.nec.com/helmer98intelligent.html, 1998.

http://citeseer.nj.nec.com/helmer98intelligent.html
http://citeseer.nj.nec.com/helmer98intelligent.html


ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–98 97
Helmer G, Wong JSK, Honavar V, Miller L, Wang Y. Lightweight agents for intrusion detection. J

Systems Software 2003;67:109–22.

Jansen W, Mell P, Karygiannis T, Marks D. Applying mobile agents to intrusion detection and response.

National Institute of Standards and Technology, Computer Security Division, 1999. Available from:

http://csrc.nist.gov/publications/nistir/ir6416.pdf.

Jou YF, Gong F, Sargor C, Wu X, Wu SF, Chang HC, Wang F. Design and implementation of a scalable

intrusion detection system for the protection of network infrastructure. DARPA information

survivability conference and exposition, 2000.

Kapoor B. Remote misuse detection system using mobile agents and relational database query techniques.

Master’s thesis, University of Central Florida, 2000.

Kasabov N. Evolving fuzzy neural networks—algorithms, applications and biological motivation. In:

Yamakawa T, Matsumoto G, editors. Methodologies for the conception, design and application of

soft computing. Singapore: World Scientific; 1998. p. 271–4.

KDD Cup, 1999. Intrusion detection data set: /http://kdd.ics.uci.edu/databases/kddcup99/kddcup.da-

ta_10_percent.gzS
Kemmerer RA. NSTAT: a model-based real-time network intrusion detection system. Technical Report

TRCS97-18, Reliable Software Group, Department of Computer Science, University of California at

Santa Barbara, 1997.

Kruegel C, Toth T. Applying mobile agent technology to intrusion detection. Proceedings of the ICSE

workshop on software engineering and mobility, 2001. Available from: http://citeseer.nj.nec.com/

kr01applying.html.

Lee W, Stolfo S, Mok K. A Data Mining Framework for Building Intrusion Detection Models. In:

Proceedings of the IEEE symposium on security and privacy, 1999.

Lee W, Nimbalker RA, Yee KK, Patil SB, Desai PH, Tran PP, Stolfo SJ. A data mining and CIDF based

approach for detecting novel and distributed intrusions, Proceeings of the third international

workshop on recent advances in intrusion detection, 2000.

Lu J. Mobile agent protocols for distributed detection of network intrusions. Master’s thesis, University of

Central Florida, 2000.

MIT Lincoln Laboratory. /http://www.ll.mit.edu/IST/ideval/S
Mouinji A, Charlier BL, Zampunieris D, Habra N. Distributed audit trail analysis. Proceedings of the

ISOC 95 symposium on network and distributed system security, 1995. p. 102–12.

Mukherjee B, Todd Heberlein L, Levitt KN. Network intrusion detection. IEEE Network

1994;8(3):26–41.

Mukkamala S, Sung A, Abraham A. Intrusion detection using ensemble of soft computing and hard

computing paradigms. J Network Comput Appl 2005;28(2):167–82.

Ning P, Jajodia S, Wang XS. Design and implementation of a decentralized prototype system for detecting

distributed attacks. Comput Commun 2002;25:1374–91.

Peddabachigari S, Abraham A, Thomas J. Intrusion detection systems using decision trees and support

vector machines. Int J Appl Sci Comput USA 2004;11(3):118–34.

Porras PA, Neumann PG. EMERALD: event monitoring enabling response to anomalous live

disturbances. Proceedings of the 20th national information security conference, NIST, 1997.

Shah K, Dave N, Chavan S, Mukherjee S, Abraham A, Sanyal S. Adaptive neuro-fuzzy intrusion

detection system. IEEE international conference on information technology: coding and computing

(ITCC’04), vol. 1, USA. Silver Spring, MD: IEEE Computer Society; 2004. p. 70–4.

Snapp SR, Bretano J, Diaz GV, Goan TL, Heberlain LT, Ho C, Levitt KN, Mukherjee B, Smaha SE,

Grance T, Teal DM, Mansur D. DIDS (Distributed Intrusion Detection System)—motivation

architecture and an early prototype. In: Proceedings of the 14th national computer security conference,

Washington, DC, October, 1999. p. 167–76.

Spafford EH, Zamboni D. Intrusion detection using autonomous agents. Comput Networks

2000;34:547–70.

Staniford-Chen S, Cheung S, Crawford R, Dilger M, Frank J, Hoagland J, Levitt K, Wee C, Yipi R, Erkle

DZ. GriDS—a large scale intrusion detection system for large networks. Proceedings of the 19th

national information security conference 1996;1:361–70.

http://csrc.nist.gov/publications/nistir/ir6416.pdf
http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data_10_percent.gz
http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data_10_percent.gz
http://citeseer.nj.nec.com/kr01applying.html
http://citeseer.nj.nec.com/kr01applying.html
http://www.ll.mit.edu/IST/ideval/


ARTICLE IN PRESS

A. Abraham et al. / Journal of Network and Computer Applications 30 (2007) 81–9898
Staniford-Chen S, Tung SB, Schnackenberg D. The common intrusion detection framework (CIDF).

Proceedings of the information survivability workshop, Orlando FL, October 1998.

Stolfo SJ, Prodromidis AL, Tselepis S, Lee W, Fan D, Chan PK. JAM: Java agents for meta-learning over

distributed databases. In: Proceedings of the third international conference on knowledge discovery

and data mining, Newport Beach, CA, USA, 1997. p. 74–81.

Summers RC. Secure computing: threats and safeguards. New York: McGraw Hill; 1997.

Vapnik VN. The nature of statistical learning theory. Berlin: Springer; 1995.

Vigna G, Kemmerer RA. NetSTAT: a network-based intrusion detection system. J Comput Security

1999;7(1):37–71.

White GB, Fisch EA, Wpooch U. Cooperating security managers: a peer-based intrusion detection system.

IEEE Networks 1996.

Zadeh LA. Roles of soft computing and fuzzy logic in the conception, design and deployment of

Information/Intelligent Systems. In: Kaynak O, Zadeh LA, Turksen B, Rudas IJ, editors.

Computational intelligence: soft computing and fuzzy-neuro integration with applications, 1998.

p. 1–9.


	D-SCIDS: Distributed soft computing intrusion detection system
	Introduction
	Distributed intrusion detection system (DIDS)
	Soft computing
	Fuzzy rule-based systems
	Rule generation based on the histogram of attribute values (FR1)
	Rule generation based on partition of overlapping areas (FR2)

	Neural learning of fuzzy rules (FR3)

	Experimental setup and results
	Conclusions
	Acknowledgments
	References


