
131: Evolutionary Computation

Ajith Abraham
Oklahoma State University, Stillwater, OK, USA

1 Introduction and Biological Motivation 920

2 Genetic Algorithms 921

3 Schema Theorem 922

4 Selection and Reproduction 922

5 GA Demonstrations 924

6 Evolution Strategies 925

7 Evolutionary Programming 928

8 Genetic Programming 928

9 Genetic Programming Basics 929

10 Summary 931

References 931

Further Reading 931

1 INTRODUCTION AND BIOLOGICAL
MOTIVATION

A general introduction to artificial intelligence methods
of measurement signal processing is given in Article 128,
Nature and Scope of AI Techniques, Volume 2.

In nature, evolution is mostly determined by natural
selection or different individuals competing for resources
in the environment. Those individuals that are better
are more likely to survive and propagate their genetic
material. The encoding for genetic information (genome)
is done in a way that admits asexual reproduction,
which results in offspring that are genetically identical
to the parent. Sexual reproduction allows some exchange
and reordering of chromosomes, producing offspring that
contain a combination of information from each parent.

This is the recombination operation, which is often referred
to as crossover because of the way strands of chromosomes
cross over during the exchange. The diversity in the
population is achieved by mutation operation.

Evolutionary algorithms are ubiquitous nowadays, hav-
ing been successfully applied to numerous problems from
different domains, including optimization, automatic pro-
gramming, signal processing, bioinformatics, social sys-
tems, and so on. In many cases, the mathematical function,
which describes the problem, is not known, and the values
at certain parameters are obtained from simulations. In con-
trast to many other optimization techniques, an important
advantage of evolutionary algorithms is they can cope with
multimodal functions.

Usually found grouped under the term evolutionary com-
putation or evolutionary algorithms (Bäck, 1996), are the
domains of genetic algorithms (GA) (Holland, 1975), evo-
lution strategies (Rechenberg, 1973; Schwefel, 1977), evo-
lutionary programming (Fogel, Owens and Walsh, 1966),
and genetic programming (Koza, 1992).

These all share a common conceptual base of simulat-
ing the evolution of individual structures via processes
of selection, recombination, and mutation reproduction,
thereby producing better solutions. The processes depend
on the perceived performance of the individual structures
as defined by the problem.

A population of candidate solutions (for the optimization
task to be solved) is initialized. New solutions are cre-
ated by applying reproduction operators (crossover and/or
mutation). The fitness (how good the solutions are) of the
resulting solutions is evaluated and suitable selection strat-
egy is then applied to determine which solutions will be
maintained into the next generation. The procedure is then
iterated, as illustrated in Figure 1.

Handbook of Measuring System Design, edited by Peter H. Sydenham and Richard Thorn.
 2005 John Wiley & Sons, Ltd. ISBN: 0-470-02143-8.



Evolutionary Computation 921

Selection

Population Reproduction

Replacement
Offspring

Parents

Figure 1. Flow chart of an evolutionary algorithm.

A primary advantage of evolutionary computation is that
it is conceptually simple.

The procedure may be written as the difference equation:

x(t + 1) = s{v[x(t)]} (1)

where x(t) is the population at time t under a representation
x, v is a random variation (reproduction) operator, and s is
the selection operator (Fogel, 1999).

1.1 Advantages of evolutionary algorithms

Following are some of the advantages of using evolutionary
algorithms while compared to other global optimization
techniques (Fogel, 1999).

1. Evolutionary algorithm performance is representation
independent in contrast to other numerical techniques,
which might be applicable for only continuous values
or other constrained sets.

2. Evolutionary algorithms offer a framework such that
it is comparably easy to incorporate prior knowl-
edge about the problem. Incorporating such infor-
mation focuses the evolutionary search, yielding a
more efficient exploration of the state space of pos-
sible solutions.

3. Evolutionary algorithms can also be combined with
more traditional optimization techniques. This may be
as simple as the use of a gradient minimization after
primary search with an evolutionary algorithm (e.g. fine
tuning of weights of an evolutionary neural network)
or it may involve simultaneous application of other
algorithms (e.g. hybridizing with simulated annealing
or Tabu search to improve the efficiency of basic
evolutionary search).

4. The evaluation of each solution can be handled in
parallel and only selection (which requires at least
pair-wise competition) requires some serial processing.
Implicit parallelism is not possible in many global
optimization algorithms like simulated annealing and
Tabu search.

5. Traditional methods of optimization are not robust to
the dynamic changes in the problem of the environment
and often require a complete restart in order to provide
a solution (e.g. dynamic programming). In contrast,
evolutionary algorithms can be used to adapt solutions
to changing circumstance.

6. Perhaps, the greatest advantage of evolutionary algo-
rithms comes from the ability to address problems for
which there are no human experts. Although human
expertise should be used when it is available, it often
proves less than adequate for automating problem-
solving routines.

2 GENETIC ALGORITHMS

A typical flowchart of a genetic algorithm is depicted in
Figure 2. One iteration of the algorithm is referred to as
a generation . The basic GA is very generic, and there are
many aspects that can be implemented differently accord-
ing to the problem (e.g. representation of solution (chro-
mosomes), type of encoding, selection strategy, type of
crossover and mutation operators, etc.). In practice, GAs are
implemented by having arrays of bits or characters to rep-
resent the chromosomes. The individuals in the population

Start
(Initialize population)

Evaluate objective
function

Solution
found?

Yes

No

End

Reproduction
(Crossover/mutation) Selection

Generate new population

Figure 2. Flow chart of basic genetic algorithm iteration.



922 Elements: B – Signal Conditioning

then go through a process of simulated evolution. Simple
bit manipulation operations allow the implementation of
crossover, mutation, and other operations. The number of
bits for every gene (parameter) and the decimal range in
which they decode are usually the same, but nothing pre-
cludes the utilization of a different number of bits or range
for every gene.

When compared to other evolutionary algorithms, one of
the most important GA feature is its focus on fixed-length
character strings, although variable-length strings and other
structures have been used.

2.1 Encoding and decoding

In a typical application of GAs, the given problem is
transformed into a set of genetic characteristics (parameters
to be optimized) that will survive in the best possible
manner in the environment. For example, optimizing a
function

min f (x1, x2) = (x1 − 5)2 + (x2 − 2)2for − 3 ≤ x13 ≤;

− 8 ≤ x28 ≤ (2)

The parameters of the search are identified as x1 and x2,
which are called the phenotypes in evolutionary algorithms.
In genetic algorithms, the phenotypes (parameters) are usu-
ally converted to genotypes by using a coding procedure.
Knowing the ranges of x1 and x2, each variable is to
be represented using a suitable binary string. This repre-
sentation using binary coding makes the parametric space
independent of the type of variables used. The genotype
(chromosome) should in some way contain information
about solution, which is also known as encoding. GAs use
a binary string encoding, as shown below.

Chromosome A: 110110111110100110110

Chromosome B: 110111101010100011110

Each bit in the chromosome strings can represent some
characteristic of the solution. There are several types of
encoding (e.g. direct integer or real numbers encoding),
which directly depends on the problem.

Permutation encoding can be used in ordering problems,
such as the traveling salesman problem (TSP) or task-
ordering problem. In permutation encoding, every chromo-
some is a string of numbers, which represents numbers in a
sequence. A chromosome using permutation encoding for
a 9-city TSP problem will appear as follows:

Chromosome A: 4 5 3 2 6 1 7 8 9

Chromosome B: 8 5 6 7 2 3 1 4 9

The chromosome represents the order in which the
salesman will visit the cities. Special care is taken to ensure
that the strings represent real sequences after crossover and
mutation. Floating-point representation is very useful for
numeric optimization (e.g. for encoding the weights of a
neural network).

It should be noted that in many recent applications, more
sophisticated genotypes are appearing (e.g. chromosome
can be a tree of symbols or a combination of a string and
a tree, some parts of the chromosome are not allowed to
evolve, etc.).

3 SCHEMA THEOREM

Theoretical foundations of evolutionary algorithms can be
partially explained by the schema theorem (Holland, 1975),
which relies on the concept of schemata. Schemata are
templates that partially specify a solution (more strictly, a
solution in the genotype space). If genotypes are strings
built using symbols from an alphabet A, schemata are
strings whose symbols belong to A ∪ (∗). This extra-symbol
(∗) must be interpreted as a wildcard, being loci occupied
by it, called undefined. A chromosome is said to match a
schema if they agree in the defined positions.

For example, the string 10011010 matches the schemata
1∗∗∗∗∗∗∗ and ∗∗011∗∗∗ among others but does not match
∗1∗11∗∗∗ because they differ in the second gene (the first
defined gene in the schema).

A schema can be viewed as a hyperplane in a k-
dimensional space, representing a set of solutions with
common properties. Obviously, the numbers of solutions
that match a schema H depend on the number of defined
positions in it. Another related concept is the defining-
length of a schema, defined as the distance between the
first and the last defined positions in it.

The GA works by allocating strings to best schemata
exponentially through successive generations, this being the
selection mechanism mainly responsible for this behavior.
On the other hand, the crossover operator is responsible
for exploring new combinations of the present schemata
in order to get the fittest individuals. Finally, the purpose
of the mutation operator is to introduce fresh genotypic
material in the population.

4 SELECTION AND REPRODUCTION

Individuals for producing offspring are chosen using a
selection strategy after evaluating the fitness value of
each individual in the selection pool. Each individual
in the selection pool receives a reproduction probability



Evolutionary Computation 923

depending on its own fitness value and the fitness value of
all other individuals in the selection pool. This fitness is
used for the actual selection step afterwards. Some of the
popular selection schemes are discussed below.

4.1 Roulette-wheel selection

The simplest selection scheme is the roulette-wheel selec-
tion, also called stochastic sampling with replacement. This
technique is analogous to a roulette wheel with each slice
proportional in size to the fitness. The individuals are
mapped to contiguous segments of a line such that each
individual’s segment is equal in size to its fitness. A ran-
dom number is generated and the individual whose seg-
ment spans the random number is selected. The process is
repeated until the desired number of individuals is obtained.
As illustrated in Figure 3, chromosome 1 has the highest
probability for being selected since it has the highest fitness.

4.2 Rank-based fitness assignment

In rank-based fitness assignment, the population is sorted
according to the objective values. The fitness assigned to
each individual depends only on the position of the objec-
tive values in the individual’s rank. Ranking introduces a
uniform scaling across the population.

4.3 Tournament selection

In tournament selection, a number of individuals are chosen
randomly from the population and the best individual
from this group is selected as the parent. This process is
repeated as often until there are sufficient individuals to
choose. These selected parents produce uniformly random
offspring. The tournament size will often depend on the
problem, population size, and so on. The parameter for
tournament selection is the tournament size. Tournament

size takes values ranging from two to the total number of
individuals in the population.

4.4 Elitism

When creating a new population by crossover and mutation,
there is a big chance that we will lose the best chromosome.
Elitism is the name of the method that first copies the
best chromosome (or a few best chromosomes) to the new
population. The rest is done in the classical way. Elitism
can very rapidly increase performance of GA because it
prevents losing the best-found solution.

4.5 Genetic operators

Crossover and mutation are two basic operators of GA.
Performance of GA depends very much on the genetic
operators. Type and implementation of operators depends
on encoding and also on the problem. There are many
ways of doing crossover and mutation. In this section, we
will demonstrate some of the popular methods, with some
examples and suggestions as to how to do it for different
encoding schemes.

4.6 Crossover

Crossover selects genes from parent chromosomes and
creates a new offspring. The simplest way to do this is
to choose randomly some crossover point and everything
before this point is copied from the first parent and then,
everything after a crossover point is copied from the second
parent. A single point crossover is illustrated as follows (|
is the crossover point):

Chromosome A: 11011|00100110110

Chromosome B: 11011|11000011110

Offspring A: 11011|11000011110

Offspring B: 11011|00100110110

Chromosome 2

Chromosome 1

Chromosome 3

Chromosome 4
Chromosome 5

Figure 3. Roulette-wheel selection.



924 Elements: B – Signal Conditioning

Parent 1

Parent 1

Parent 1

Parent 2

Parent 2

Offspring 1

Offspring 1

Offspring 1

Offspring 2

Offspring 2

Single point crossover

Two point crossover

Uniform crossover

Offspring 2

Parent 2

Figure 4. Types of crossover operators.

As illustrated in Figure 4, there are several crossover
techniques. In a uniform crossover, bits are randomly
copied from the first or the second parent. Specific
crossover made for a specific problem can improve the
GA performance.

4.7 Mutation

After crossover operation, mutation takes place. Mutation
randomly changes the new offspring. For binary encoding,
mutation is performed by changing a few randomly chosen
bits from 1 to 0 or from 0 to 1. Mutation depends on the
encoding as well as the crossover. For example, when we
are encoding permutations, mutation could be exchanging
two genes. A simple mutation operation is illustrated as
follows:

Chromosome A: 1101111000011110

Chromosome B: 1101100100110110

Offspring A: 1100111000011110

Offspring B: 1101101100110110

For many optimization problems, there may be multiple,
equal, or unequal optimal solutions. Sometimes, a simple
GA cannot maintain stable populations at different optima
of such functions. In the case of unequal optimal solutions,
the population invariably converges to the global optimum.
Niching helps to maintain subpopulations near global and
local optima. A niche is viewed as an organism’s envi-
ronment and a species as a collection of organisms with
similar features. Niching helps to maintain subpopulations
near global and local optima by introducing a controlled
competition among different solutions near every local opti-
mal region. Niching is achieved by a sharing function,
which creates subdivisions of the environment by degrading
an organism’s fitness proportional to the number of other
members in its neighborhood. The amount of sharing con-
tributed by individuals to their neighbor is determined by
their proximity in the decoded parameter space (phenotypic
sharing) based on a distance measure (Goldberg, 1989).

5 GA DEMONSTRATIONS

5.1 Rastrigin function

The Rastrigin function is a typical example of nonlinear
multimodal function. It was first proposed by Rastrigin
(Törn and Zilinskas, 1989) as a two-dimensional function
and has later been generalized. This function is a fairly
difficult problem due to its large search space and its large
number of local minima. Rastrigin’s function is defined as

F(x) = 10n +
n∑

i=1

x2
i − 10 cos(2πxi), −5.12 ≤ xi ≤ 5.12

(3)

The function has just one global minimum, which occurs
at the origin where the value of the function is 0. At any
local minimum other than [0, 0], the value of Rastrigin’s
function is greater than 0. The farther the local minimum
is from the origin, the larger the value of the function is
at that point. Figure 5 illustrates the surface of the function
for two input variables.

A real-value representation was used to encode the two
input variables. The following parameters were used for the
GA experiments.

• Mutation: 0.05, crossover: 0.90
• Population size: 20, number of iterations: 50, selection

method: Roulette-wheel selection.

Figure 6 illustrates how the best fitness values were
evolved during the 50 generations. As evident after 30
generations, the GA algorithm has succeeded in finding the
best optimal solution.



Evolutionary Computation 925

600

590

580

570

560

550

540

530

520
5

0

−5 −5 −4 −3 −2 −1 0 1 2 3 4 5

Variable 2

Variable 1

O
bj

ec
tiv

e 
va

lu
e

Figure 5. Rastrigin’s function for two variables.

1 6 11 16 21 26 31 36 41 46

No. of generations

0

2

1

3

4

5

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Figure 6. GA learning during the 50 generations.

5.2 Peaks function

Peaks function is a function of two variables, obtained by
translating and scaling Gaussian distributions (Jang, Sun
and Mizutani, 1997).

F(x, y) = 3(1 − x)2

exp(−(x2) − (y + 1)2) − 10

(
x

5 − x3 − y5

)

exp(−x2 − y2) − 1
3 exp(−(x + 1)2 − y2)

for − 3 ≤ x ≤ 3 and − 3 ≤ y ≤ 3 (4)

The Peak function surface is plotted in Figure 7, and
the task is to find the optimum value (maximum) for

the given range of x and y values. Using a population
size of 30, the genetic algorithm was run for 25 itera-
tions. Each input variable was represented using 8 bit.
Crossover and mutation rates were set as 0.9 and 0.1 respec-
tively.

Figure 8(a), (b), and (c), illustrate the convergence of
the solutions on a contour plot of the surface. After 10
iterations, almost all the solutions were near the optimal
point.

6 EVOLUTION STRATEGIES

Evolution strategy (ES) was developed by Rechenberg
(1973) and Schwefel (1977). ES tends to be used for



926 Elements: B – Signal Conditioning

8

6

4

2

3
2

1
0

−1
−2

−3

3
2

1
0

−1
−2

−3

0

−2

−4

−6

y

x

Figure 7. Surface of Peaks function.

empirical experiments that are difficult to model mathe-
matically. The system to be optimized is actually con-
structed and ES is used to find the optimal parameter
settings.

Evolution strategies merely concentrate on translating
the fundamental mechanisms of biological evolution for
technical optimization problems. The parameters to be
optimized are often represented by a vector of real numbers
(object parameters – op). Another vector of real numbers
defines the strategy parameters (sp), which controls the
mutation of the objective parameters. Both object and
strategic parameters form the data structure for a single
individual.

A population P of n individuals could be described as
follows:

P = (c1, c2, . . . , cn−1, cn) (5)

where the ith chromosome ci is defined as: ci =
(op, sp)

op = (o1, o2, . . . , on−1, on) and

sp = (s1, s2, . . . , sn−1, sn) (6)

6.1 Mutation in evolution strategies

The mutation operator is defined as component-wise addi-
tion of normal distributed random numbers. Both the objec-
tive parameters and the strategy parameters of the chromo-
some are mutated. Objective parameter vector is calculated
as follows:

op(mut) = op + N0(sp) (7)

where N0(si) is the Gaussian distribution of mean value 0
and standard deviation si .

Usually, the strategy parameters mutation step size is
done by adapting the standard deviation si . This may be
done (for example) as follows:

sp(mut) = (s1
∗A1, s2

∗A2, . . . , sn−1
∗An−1, sn

∗An) (8)

where Ai is randomly chosen from α or 1/α, depending
on the value of equally distributed random variable E of
[0,1]

Ai = α if E < 0.5

Ai = 1

α
if E ≥ 0.5 (9)



Evolutionary Computation 927

3

2

1

0

−1

−2

−3
−3 −2 −1 1 2 30

x

y

3

2

1

0

−1

−2

−3
−3 −2 −1 1 2 30

x

y

3

2

1

0

−1

−2

−3
−3 −2 −1 1 2 30

x

y

(a)

(c)

(b)

Figure 8. Convergence of solutions (a) generation 0; (b) after 5 generations; (c) after 20 generations (solution points are marked with *).

α is usually referred to as strategy parameters adaptation
value.

6.2 Crossover (recombination) in evolution
strategies

For two chromosomes c1 = (op(c1), sp(c1)) and c2 =
(op(c2), sp(c2)), the crossover operator x is defined as
follows:

R(c1, c2) = c = (op, sp)

with op(i) = (op(c1),i |op(c2),i )

and sp(i) = (sp(c1),i |sp(c2),i ) (10)

By defining op(i) and sp(i) = (x|y), a value is randomly
assigned for either x or y (50% selection probability for x

and y).

6.3 Controlling the evolution

Let P be the number of parents in generation 1 and let C be
the number of children in generation i. There are basically
four different types of evolution strategies: P ,C; P + C;
P/R, C; and P/R + C, as discussed below. They mainly
differ in how the parents for the next generation are selected
and in the usage of crossover operators.

6.3.1 P,C strategy

The P parents produce C children, using mutation. Fitness
values are calculated for each of the C children and the
best P children become next-generation parents. The best
individuals of C children are sorted by their fitness value
and the first P individuals are selected to be next-generation
parents (C ≥ P ).



928 Elements: B – Signal Conditioning

6.3.2 P + C strategy

The P parents produce C children, using mutation. Fitness
values are calculated for each of the C children and the
best P individuals of both parents and children become
next-generation parents. Children and parents are sorted by
their fitness value and the first P individuals are selected
to be next-generation parents.

6.3.3 P/R, C strategy

The P parents produce C children, using mutation and
crossover. Fitness values are calculated for each of the C

children and the best P children become next-generation
parents. The best individuals of C children are sorted by
their fitness value and the first P individuals are selected to
be next-generation parents (C ≥ P ). Except for the usage of
crossover operator, this is exactly the same as P ,C strategy.

6.3.4 P/R + C strategy

The P parents produce C children, using mutation and
recombination. Fitness values are calculated for each of
the C children and the best P individuals of both parents
and children become next-generation parents. Children and
parents are sorted by their fitness value and the first
P individuals are selected to be next-generation parents.
Except for the usage of crossover operator, this is exactly
the same as P + C strategy.

7 EVOLUTIONARY PROGRAMMING

The book Artificial Intelligence Through Simulated Evolu-
tion by Fogel, Owens and Walsh (1966) is the landmark
publication for evolutionary programming (EP). In this
book, finite state automata are evolved to predict symbol
strings generated from Markov processes and nonstation-
ary time series (AI–FAQ-Genetic). The basic evolutionary
programming method involves the following steps:

1. Choose an initial population (possible solutions at
random). The number of solutions in a population is
highly relevant to the speed of optimization, but no
definite answers are available as to how many solutions
are appropriate (other than > 1).

2. New offspring are created by mutation. Each offspring
solution is assessed by computing its fitness. Typically,
a stochastic tournament is held to determine the N solu-
tions to be retained for the population of solutions. It
should be noted that, typically, evolutionary program-
ming method does not use any crossover as a genetic
operator.

7.1 Evolutionary programming versus genetic
algorithms

1. GA is implemented by having arrays of bits or charac-
ters to represent the chromosomes. In EP, there are no
such restrictions for the representation. In most cases,
the representation follows from the problem.

2. EP typically uses an adaptive mutation operator in
which the severity of mutations is often reduced as the
global optimum is approached, while GAs use a pre-
fixed mutation operator. Among the schemes to adapt
the mutation step size, the most widely studied is the
‘meta-evolutionary’ technique in which the variance
of the mutation distribution is subject to mutation by
a fixed variance mutation operator that evolves along
with the solution.

7.2 Evolutionary programming versus evolution
strategies

1. When implemented to solve real-valued function opti-
mization problems, both typically operate on the real
values themselves and use adaptive reproduction oper-
ators.

2. EP typically uses stochastic tournament selection,
while ES typically uses deterministic selection.

3. EP does not use crossover operators, while ES (P/R, C

and P/R + C strategies) crossover. However, the
effectiveness of the crossover operators depends on the
problem at hand.

8 GENETIC PROGRAMMING

The genetic programming (GP) technique provides a frame-
work for automatically creating a working computer pro-
gram from a high-level statement of the problem (Koza,
1992).

Genetic programming achieves this goal of automatic
programming by genetically breeding a population of
computer programs, using the principles of Darwinian
natural selection and biologically inspired operations. The
operations include most of the techniques discussed in the
previous sections. The main difference between GP and GA
is the representation of the solution. GP creates computer
programs in the LISP or scheme computer languages as the
solution. LISP is an acronym for LISt Processor and was
developed in the late 1950s (History of LISP, 2004). Unlike
most languages, LISP is usually used as an interpreted
language. This means that, unlike compiled languages, an
interpreter can process and respond directly to programs
written in LISP.



Evolutionary Computation 929

The main reason for choosing LISP to implement GP is
because of the advantage that the programs and data have
the same structure, which could provide easy means for
manipulation and evaluation.

In GP, the individual population members are not fixed-
length character strings that encode possible solutions to the
problem at hand, they are programs that, when executed,
are the candidate solutions to the problem. These programs
are expressed in genetic programming as parse trees rather
than as lines of code. For example, the simple program
‘a + b ∗ c’ would be represented as shown in Figure 9. The
terminal and function sets are also important components
of genetic programming. The terminal and function sets are
the alphabets of the programs to be made. The terminal set
consists of the variables and constants of the programs (e.g.
A, B, and C in Figure 9).

The most common way of writing down a function
with two arguments is the infix notation. That is, the two
arguments are connected with the operator symbol between
them as follows.

A + B

A different method is the prefix notation. Here, the
operator symbol is written down first, followed by its
required arguments.

+AB

While this may be a bit more difficult or just unusual for
human eyes, it opens some advantages for computational
uses. The computer language LISP uses symbolic expres-
sions (or S-expressions) composed in prefix notation. Then,
a simple S-expression could be

(operator, argument),

where operator is the name of a function and argument
can be either a constant or a variable or another symbolic
expression, as shown below.

(operator, argument(operator, argument)

(operator, argument))

A

B C

+

∗

Figure 9. A simple tree structure of GP.

9 GENETIC PROGRAMMING BASICS

A parse tree is a structure that develops the interpretation of
a computer program. Functions are written down as nodes
and their arguments as leaves. A subtree is the part of a
tree that is under an inner node of this tree, as illustrated in
Figure 10. If this tree is cut out from its parent, the inner
node becomes a root node and the subtree is a valid tree of
its own.

There is a close relationship between these parse trees
and S-expression; in fact, these trees are just another way
of writing down expressions. While functions will be the
nodes of the trees (or the operators in the S-expressions)
and can have other functions as their arguments, the leaves
will be formed by terminals, that is, symbols that may not
be further expanded. Terminals can be variables, constants,
or specific actions that are to be performed. The process
of selecting the functions and terminals that are needed
or are useful for finding a solution to a given problem is
one of the key steps in GP. Evaluation of these structures is
straightforward. Beginning at the root node, the values of all
subexpressions (or subtrees) are computed, descending the
tree down to the leaves. GP procedure could be summarized
as follows:

• generate an initial population of random compositions
of the functions and terminals of the problem;

• compute the fitness values of each individual in the
population;

• using some selection strategy and suitable reproduction
operators, produce offsprings;

• iterate the procedure until the required solution is
found or the termination conditions have been reached
(specified number of generations).

The creation of an offspring from the crossover operation
is accomplished by deleting the crossover fragment of
the first parent and then inserting the crossover fragment
of the second parent. The second offspring is produced
in a symmetric manner. A simple crossover operation is
illustrated in Figure 11. In GP, the crossover operation is

(+5(−31))

Subtree

5

3 1

−

+

Figure 10. Illustration of a parse tree and a subtree.



930 Elements: B – Signal Conditioning

4

6

a

a
a

×

×

c a

a

b

b

×

4
a

/

aa4

+

6c

a

a

a

a4 a c

/

c

b

b

×

×

×

c a

×

×

×

√

√

√

√

/

/

/

c

/

×+

+

−

−

−

+

−

+

+

Parent 2Parent 1

Offspring 1 Offspring 2

Figure 11. Illustration of crossover operator.

9a

c

c

×

6

4 a

×

c 6 b−

a

/

+

+

×

√

4 a

ac 6

×

/

×

√

+

Parent

Mutation of subtree

Mutation of terminals

/

+ ×

Figure 12. Illustration of mutation operator in GP.

implemented by taking randomly selected subtrees in the
individuals and exchanging them.

Mutation is another important feature of genetic pro-
gramming. Two types of mutations are commonly used.
The simplest type is to replace a function or a termi-
nal by another function or a terminal respectively. In the

second kind, an entire subtree can replace another subtree.
Figure 12 explains the concepts of mutation.

GP requires data structures that are easy to handle and
evaluate and are robust to structural manipulations. These
are among the reasons why the class of S-expressions was
chosen to implement GP. The set of functions and terminals



Evolutionary Computation 931

that will be used in a specific problem has to be chosen
carefully. If the set of functions is not powerful enough,
a solution may be very complex or may not be found at
all. Like in any evolutionary computation technique, the
generation of the first population of individuals is important
for successful implementation of GP. Some of the other
factors that influence the performance of the algorithm are
the size of the population, percentage of individuals that
participate in the crossover/mutation, maximum depth for
the initial individuals and the maximum allowed depth
for the generated offspring, and so on. Some specific
advantages of genetic programming are that no analytical
knowledge is needed and still accurate results could be
obtained. GP approach does scale with the problem size. GP
does impose restrictions on how the structure of solutions
should be formulated.

10 SUMMARY

This article presents the biological motivation and fun-
damental aspects of evolutionary algorithms and its con-
stituents, namely, genetic algorithm, evolution strategies,
evolutionary programming, and genetic programming. Per-
formance of genetic algorithms is demonstrated using two
function optimization problems. Important advantages of
evolutionary computation as compared to classical opti-
mization techniques are also discussed.

REFERENCES

AI – FAQ-Genetic. http://www.faqs.org/faqs/ai-faq/genetic/, ac-
cessed on September 10, 2004.

Bäck, T. (1996) Evolutionary Algorithms in Theory and Practice:
Evolution Strategies, Evolutionary Programming, Genetic algo-
rithms, Oxford University Press, New York.

Fogel, D.B. (1999) Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence, 2nd edn, IEEE Press,
Piscataway, NJ.

Fogel, L.J., Owens, A.J. and Walsh, M.J. (1966) Artificial Intelli-
gence Through Simulated Evolution, John Wiley & Sons, New
York.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning, Addison-Wesley Publishing Cor-
poration, Inc, Reading, MA.

History of LISP. (2004) http://www-formal.stanford.edu/jmc/
history/lisp/lisp.html.

Holland, J. (1975) Adaptation in Natural and Artificial Systems,
University of Michican Press, Ann Harbor, MI.

Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997) Neuro-Fuzzy and
Soft Computing: A Computational Approach to Learning and
Machine Intelligence, Prentice Hall, USA.

Koza, J.R. (1992) Genetic Programming, MIT Press, Cambridge,
MA.

Rechenberg, I. (1973) Evolutionsstrategie: Optimierung Tech-
nischer Systeme nach Prinzipien der biologischen Evolution,
Fromman-Holzboog, Stuttgart.

Schwefel, H.P. (1977) Numerische Optimierung von Computer-
modellen Mittels der Evolutionsstrategie, Birkhaeuser, Basel.

Törn, A. and Zilinskas, A. (1989) Global Optimization, Lec-
ture Notes in Computer Science, Vol. 350, Springer-Verlag,
Berlin.

FURTHER READING

Michalewicz, Z. (1992) Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, Berlin.




