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Abstract: Data mining is an iterative and interactive process concerned 
with discovering patterns, associations and periodicity in real world data. 
This chapter presents two real world applications where evolutionary com- 
putation has been used to solve network management problems. First, we 
investigate the suitability of linear genetic programming (LGP) technique 
to model fast and efficient intrusion detection systems, while comparing its 
performance with artificial neural networks and classification and regression 
trees. Second, we use evolutionary algorithms for a Web usage-mining prob- 
lem. Web usage mining attempts to discover useful knowledge from the sec- 
ondary data obtained from the interactions of the users with the Web. Evo- 
lutionary algorithm is used to optimize the concurrent architecture of a fuzzy 
clustering algorithm (to discover data clusters) and a fuzzy inference system 
to analyze the trends. Empirical results clearly shows that evolutionary al- 
gorithm could play a major rule for the problems considered and hence an 
important data mining tool. 

9.1 Intrusion Detection Systems 

Security of computers and the networks that connect them is increasingly 
becoming of great significance. Computer security is defined as the protec- 
tion of computing systems against threats to confidentiality, integrity, and 
availability. There are two types of intruders: the external intruders who are 
unauthorized users of the machines they attack, and internal intruders, who 
have permission to access the system with some restrictions. The traditional 
prevention techniques such as user authentication, data encryption, avoid- 
ing programming errors and firewalls are used as the first line of defense for 
computer security. If a password is weak and is compromised, user authen- 
tication cannot prevent unauthorized use, firewalls are vulnerable to errors 
in configuration and ambiguous or undefined security policies. They are gen- 
erally unable to protect against malicious mobile code, insider attacks and 
unsecured modems. Programming errors cannot be avoided as the complex- 
ity of the system and application software is changing rapidly leaving behind 
some exploitable weaknesses. Intrusion detection is therefore required as an 
additional wall for protecting systems [9.10, 9.151. Intrusion detection is use- 



190 Abraham 

ful not only in detecting successful intrusions, but also provides important 
information for timely countermeasures [9.18, 9.191. An intrusion is defined 
as any set of actions that attempt to compromise the integrity, confidential- 
ity or availability of a resource. An attacker can gain access because of an 
error in the configuration of a system. In some cases it is possible to fool a 
system into giving access by misrepresenting oneself. An example is sending 
a TCP packet that has a forged source address that makes the packet appear 
to come from a trusted host. Intrusions may be classified into several types 
[9.19] . 
- Attempted break-ins, which are detected by typical behavior profiles or 

violations of security constraints. 
- Masquerade attacks, which are detected by atypical behavior profiles or 

violations of security constraints. 
- Penetration of the security control system, which are detected by monitor- 

ing for specific patterns of activity. 
- Leakage, which is detected by atypical use of system resources. 
- Denial of service, which is detected by atypical use of system resources. 
- Malicious use, which is detected by atypical behavior profiles, violations of 

security constraints, or use of special privileges. 

The process of monitoring the events occurring in a computer system 
or network and analyzing them for sign of intrusions is known as Intrusion 
detection. Intrusion detection is classified into two types: misuse intrusion 
detection and anomaly intrusion detection. 

- Misuse intrusion detection uses well-defined patterns of the attack that 
exploit weaknesses in system and application software to identify the in- 
trusions. These patterns are encoded in advance and used to match against 
the user behavior to detect intrusion. 

- Anomaly intrusion detection uses the normal usage behavior patterns to 
identify the intrusion. The normal usage patterns are constructed from 
the statistical measures of the system features, for example, the CPU and 
I/O activities by a particular user or program. The behavior of the user 
is observed and any deviation from the constructed normal behavior is 
detected as intrusion. 

We have two options to secure the system completely, either prevent the 
threats and vulnerabilities which come from flaws in the operating system as 
well as in the application programs or detect them and take some action to 
prevent them in future and also repair the damage. It is impossible in practice, 
and even if possible, extremely difficult and expensive, to write a completely 
secure system. Transition to such a system for use in the entire world would 
be an equally difficult task. Cryptographic methods can be compromised 
if the passwords and keys are stolen. No matter how secure a system is, 
it is vulnerable to insiders who abuse their privileges. There is an inverse 
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relationship between the level of access control and efficiency. More access 
controls make a system less user-friendly and more likely of not being used. 

An Intrusion Detection system is a program (or set of programs) that 
analyzes what happens or has happened during an execution and tries to 
find indications that the computer has been misused. An Intrusion detection 
system does not eliminate the use of preventive mechanism but it works as 
the last defensive mechanism in securing the system. Data mining approaches 
are a relatively new technique for intrusion detection. 

9.1.1 Intrusion Detection - a Data Mining Approach 

Data mining is a relatively new approach for intrusion detection. Data min- 
ing approaches for intrusion detection was first implemented in Mining Audit 
Data for Automated Models for Intrusion Detection [9.14] . The raw data 
is first converted into ASCII network packet information which in turn is 
converted into connection level information. These connection level records 
contain within connection features like service, duration etc. Data mining al- 
gorithms are applied to this data to create models to detect intrusions. Data 
mining algorithms used in this approach are RIPPER (rule based classifica- 
tion algorithm), meta-classifier, frequent episode algorithm and association 
rules. These algorithms are applied to audit data to compute models that 
accurately capture the actual behavior of intrusions as well as normal activ- 
ities. 

The RIPPER algorithm was used to learn the classification model in order 
to identify normal and abnormal behavior [9.8] . Frequent episode algorithm 
and association rules together are used to construct frequent patterns from 
audit data records. These frequent patterns represent the statistical sum- 
maries of network and system activity by measuring the correlations among 
system features and sequential co-occurrence of events. From the constructed 
frequent patterns the consistent patterns of normal activities and the unique 
intrusion patterns are identified and analyzed, and then used to construct ad- 
ditional features. These additional features are useful in learning the detection 
model more efficiently in order to detect intrusions. RIPPER classification 
algorithm is then used to learn the detection model. Meta classifier is used 
to learn the correlation of intrusion evidence from multiple detection models 
and produce combined detection model. The main advantage of this system 
is automation of data analysis through data mining, which enables it to learn 
rules inductively replacing manual encoding of intrusion patterns. However, 
some novel attacks may not be detected. 

Audit Data Analysis and Mining combines association rules and classi- 
fication algorithm to discover attacks in audit data [9.5] . Association rules 
are used to gather necessary knowledge about the nature of the audit data 
as the information about patterns within individual records can improve the 
classification efficiency. This system has two phases, training phase and de- 
tection phase. In the training phase database of frequent item sets is created 
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for the attack-free items from using only attack-free data set. This serves as 
a profile against which frequent item sets found later will be compared. Next 
a sliding-window, on-line algorithm is used to find frequent item sets in the 
last D connections and compares them with those stored in the attack-free 
database, discarding those that are deemed normal. In this phase classifier is 
also trained to learn the model to detect the attack. In the detection phase 
a dynamic algorithm is used to produce item sets that are considered as sus- 
picious and used by the classification algorithm already learned to classify 
the item set as attack, false alarm (normal event) or as unknown. Unknown 
attacks are the ones which are not able to detect either as false alarms or as 
known attacks. This method attempts to detect only anomaly attacks. 

9.1.2 Linear Genetic Programming (LGP) 

Linear genetic programming is a variant of the GP technique that acts on 
linear genomes. Its main characteristics in comparison to tree-based GP lies 
in that the evolvable units are not the expressions of a functional program- 
ming language (like LISP), but the programs of an imperative language (like 
c/c ++) [9.7] . An alternate approach is to evolve a computer program at 
the machine code level, using lower level representations for the individuals. 
This can tremendously hasten up the evolution process as, no matter how 
an individual is initially represented, finally it always has to be represented 
as a piece of machine code, as fitness evaluation requires physical execution 
of the individuals. The basic unit of evolution here is a native machine code 
instruction that runs on the floating-point processor unit (FPU). Since dif- 
ferent instructions may have different sizes, here instructions are clubbed up 
together to form instruction blocks of 32 bits each. The instruction blocks 
hold one or more native machine code instructions, depending on the sizes of 
the instructions. A crossover point can occur only between instructions and 
is prohibited from occurring within an instruction. However the mutation o p  
eration does not have any such restriction. One of the most serious problems 
of standard genetic programming is the convergence of the population. It has 
been often observed that unless convergence is achieved within certain num- 
ber of generations, the system will never converge. Parallel populations or 
demes may possess different parameter settings that can be explored simul- 
taneously, or they may cooperate with the same set of parameters, while each 
working on different individuals. In this research, we used circular movement 
of evolved programs among the demes, i.e., program movement can take place 
only between adjacent demes in the circle. Steady state genetic programming 
approach was used to manage the memory more effectively. 

9.1.3 Decision Trees (DT) as Intrusion Detection Model 

Intrusion detection can be considered as classification problem where each 
connection or user is identified either as one of the attack types or normal 
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based on some existing data. Decision trees work well with large data sets. 
This is important as large amounts of data flow across computer networks. 
The high performance of Decision trees makes them useful in real-time in- 
trusion detection. Decision trees construct easily interpretable models, which 
is useful for a security officer to inspect and edit. These models can also 
be used in the rule-based models with minimum processing [9.13] . Gener- 
alization accuracy of decision trees is another useful property for intrusion 
detection model. There will always be some new attacks on the system, which 
are small variations of known attacks after the intrusion detection models are 
built. The ability to detect these new intrusions is possible due to the gener- 
alization accuracy of decision trees. 

9.1.4 Support Vector Machines (SVM) 

Support Vector Machines have been proposed as a novel technique for intru- 
sion detection. SVM maps input (real-valued) feature vectors into a higher 
dimensional feature space through some nonlinear mapping. SVMs are pow- 
erful tools for providing solutions to classification, regression and density 
estimation problems. These are developed on the principle of structural risk 
minimization. Structural risk minimization seeks to find a hypothesis h for 
which one can find lowest probability of error. The structural risk minimiza- 
tion can be achieved by finding the hyper plane with maximum separable 
margin for the data [9.22] . 

Computing the hyper plane to separate the data points i.e. training a SVM 
leads to quadratic optimization problem. SVM uses a feature called kernel to 
solve this problem. Kernel transforms linear algorithms into nonlinear ones 
via a map into feature spaces. There are many kernel functions; some of them 
are Polynomial, radial basis functions, two layer sigmoid neural nets etc. The 
user may provide one of these functions at the time of training classifier, which 
selects support vectors along the surface of this function. SVMs classify data 
by using these support vectors, which are members of the set of training 
inputs that outline a hyper plane in feature space. The main disadvantage is 
SVM can only handle binary-class classification whereas intrusion detection 
requires multi-class classification. 

9.1.5 Intrusion Detection Data 

In 1998, DARPA intrusion detection evaluation program created an environ- 
ment to acquire raw TCP/IP dump data for a network by simulating a typical 
U.S. Air Force LAN [9.16]. The LAN was operated like a real environment, 
but being blasted with multiple attacks. For each TCP/IP connection, 41 var- 
ious quantitative and qualitative features were extracted. Of this database 
a subset of 494021 data were used for our studies, of which 20% represent 
normal patterns 19.121. Different categories of attacks are summarized in Fig. 
9.1. Attack types fall into four main categories: 
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1. Probing: surveillance and other probing 
Probing is a class of attacks where an attacker scans a network to gather 
information or find known vulnerabilities. An attacker with a map of 
machines and services that are available on a network can use the infor- 
mation to look for exploits. There are different types of probes: some of 
them abuse the computer's legitimate features; some of them use social 
engineering techniques. This class of attacks is the most commonly heard 
and requires very little technical expertise. 

I ng. 

I R@'T~% 

Fig. 9.1. Intrusion detection data distribution 

2. DoS: denial of service 
Denial of Service (DoS) is a class of attacks where an attacker makes 
some computing or memory resource too busy or too full to handle legit- 
imate requests, thus denying legitimate users access to a machine. There 
are different ways to launch DoS attacks: by abusing the computers legit- 
imate features; by targeting the implementations bugs; or by exploiting 
the system's miscodigurations. DoS attacks are classified based on the 
services that an attacker renders unavailable to legitimate users. 

3. U2Su: unauthorized access to local super user (root) privileges 
User to root (U2Su) exploits are a class of attacks where an attacker 
starts out with access to a normal user account on the system and is able 
to exploit vulnerability to gain root access to the system. Most common 
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exploits in this class of attacks are regular buffer overflows, which are 
caused by regular programming mistakes and environment assumptions. 

4. R2L: unauthorized access from a remote machine 
A remote to user (R2L) attack is a class of attacks where an attacker 
sends packets to a machine over a network, then exploits machine's vul- 
nerability to illegally gain local access as a user. There are different types 
of R2U attacks; the most common attack in this class is done using social 
engineering. 

Experimentation setup and results. We performed a 5-class classifica- 
tion. The (training and testing) data set contains 11982 randomly generated 
points from the data set representing the five classes, with the number of 
data from each class proportional to its size, except that the smallest class 
is completely included. The set of 5092 training data and 6890 testing data 
are divided in to five classes: normal, probe, denial of service attacks, user 
to super user and remote to local attacks. Where the attack is a collection 
of 22 different types of instances that belong to the four classes described 
earlier and the other is the normal data. The normal data belongs to class 
1, probe belongs to class 2, denial of service belongs to class 3, user to super 
user belongs to class 4, remote to local belongs to class 5. Two randomly 
generated separate data sets of sizes 5092 and 6890 are used for training and 
testing the LGP, DT and SVM respectively. 
Experiments using linear genetic programming. The settings of vari- 
ous linear genetic programming system parameters are of utmost importance 
for successful performance of the system. The population space has been 
subdivided into multiple subpopulation or demes. Migration of individuals 
among the subpopulations causes evolution of the entire population. It helps 
to maintain diversity in the population, as migration is restricted among the 
demes. Moreover, the tendency towards a bad local minimum in one deme 
can be countered by other demes with better search directions. The various 
LGP search parameters are the mutation and the crossover frequencies. The 
crossover operator acts by exchanging sequences of instructions between two 
tournament winners. After a trial and error approach, the following parame- 
ter settings were used to develop IDS. 

Figs. 9.2, 9.3, 9.4, 9.5 and 9.6 demonstrates the growth in program length 
during 120,000 tournaments and the average fitness values for all the five 
classes. Test data classification accuracy is depicted in Table 9.2. 
Experiments using support vector machines. Our trial experiments 
revealed that the polynomial kernel option often performs well on most of 
the data sets. Classification accuracies for the different types of attacks (test 
data) are depicted in Table 9.2 
Experiments using decision trees. First a classifier is constructed using 
the training data and then testing data is tested with the constructed classifier 
to classify the data into normal or attack. Table 9.2 summarizes the results 
of the test data. 
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Table 9.1. Parameter settings for linear genetic programming 

Parameter Normal Probe DoS U2Su R2L 

Population size 2048 2048 2048 2048 2048 
Maximum no of tournaments 120000 120000 120000 120000 120000 
Tournament size 8 8 8 8 8 
Mutation frequency (%) 85 82 75 86 85 
Crossover frequency (%) 75 70 65 75 70 
Number of demes 10 10 10 10 10 
Maximum program size 256 256 256 256 256 

Fig. 9.2. Detection of normal patterns (a) growth in program length (b) average 
fitness 

Probe 

Fig. 9.3. Detection of probe (a) Growth in program length (b) average training 
fitness 

Table 9.2. Parameter settings for linear genetic programming 

Class type Classification accuracy (%) 
DT SVM LGP 

Normal 99.64 99.64 99.73 
Probe 99.86 98.57 99.89 
DOS 96.83 99.92 99.95 
U2R 68.00 40.00 64.00 
R2L 84.19 33.92 99.47 
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Fig. 9.4. Detection of DoS (a) growth in program length (b) average training 
fitness 

Fig. 9.5. Detection of U2Su (a) growth in program length (b) average training 
fitness 

Fig. 9.6. Detection of R2L (a) growth in program length (b) average training 
fitness 
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9.1.6 Discussions 

A number of observations and conclusions are drawn from the results illus 
trated in Table 9.1. LGP outperformed decision trees and support vector 
machines in terms of detection accuracies (except for one class). Decision 
trees could be considered as the second best, especially for the detection of 
U2R attacks. In some classes the accuracy figures tend to be very small and 
may not be statistically significant, especially in view of the fact that the 5 
classes of patterns differ in their sizes tremendously. More definitive conclu- 
sions can only be made after analyzing more comprehensive sets of network 
traffic data. 

9.2 Web usage Mining using Intelligent Miner (i-Miner) 

The WWW continues to grow at an amazing rate as an information gateway 
and as a medium for conducting business. From the business and applica- 
tions point of view, knowledge obtained from the Web usage patterns could 
be directly applied to efficiently manage activities related to e-business, e- 
services, e-education and so on. Web usage could be used to discover the 
actual contents of the web pages (text, images etc.), organization of the hy- 
perlink architecture (HTML/XML links etc.) of different pages and the data 
that describes the access patterns (Web server logs etc.) [9.1, 9.201 . A t y p  
ical Web log format is depicted in Fig. 9.7. When ever a visitor access the 
server it leaves the IP, authenticated user ID, timeldate, request mode, sta- 
tus, bytes, referrer, agent and so on. The available data fields are specified 
by the HTTP protocol. In the case of Web mining, data could be collected 
at the server level, client level, proxy level or some consolidated data. These 
data could differ in terms of content and the way it is collected etc. The 
usage data collected at different sources represent the navigation patterns of 
different segments of the overall Web traffic, ranging from single user, single 
site browsing behavior to multi-user, multi-site access patterns. Web server 
log does not accurately contain sufficient information for inferring the behav- 
ior at the client side as they relate to the pages served by the Web server. 
Pre-processed and cleaned data could be used for pattern discovery, pattern 
analysis, Web usage statistics and generating association/ sequential rules. 

We present a hybrid Web usage mining framework (i-miner) as depicted 
in Fig. 9.8 [9.4, 9.21. by clustering the visitors and analyzing the trends using 
some function approximation algorithms. The hybrid framework optimizes 
a fuzzy clustering algorithm using an evolutionary algorithm and a Takagi- 
Sugeno fuzzy inference system using a combination of evolutionary algorithm 
and neural network learning. The raw data from the log files are cleaned and 
pre-processed and a fuzzy C means algorithm is used to identify the number 
of clusters. The developed clusters of data are fed to a Takagi-Sugeno fuzzy 
inference system to analyze the trend patterns. The if-then rule structures are 
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64.68.82.66 - - [17/l(ay/2003:03:41:23 -05001 "GET /marcin ElTP11.0" 404 318 
192.114.47.54 - - [17/11ay/LU03:03:41:33 -05001 "GET /-oa/isda2002/isdaZ002.html BTIP/1.1" 404 350 
216.239.37.5 - - [17/Iay/2003:03:41:43 -05001 "GET /-ijcr/Vols/vollO~l.html EITP/l.Ow 200 4565 
218.244.111.106 - - [17/11ay/2003:03:41:51 -05001 "GET /-adhis/ B11P/1.lW 404 332 
64.68.82.18 - - [17/My/2003:03:42:15 -05001 "GET /-p&p/Cfp/CfpBoOkRcviC~s.h~l BTTP/1.OW 304 - 
212.98.136.62 - - [1?/l(ay/2003:03;43:Ll -05001 "GET /cs3373/proqranrr/pLp103.&t ETTP/l.l" 200 498 
212.9s. 136.62 - - [17/My/?003:03:43:26 -05001 "GET / c s 3 3 7 3 / p r o g r ~ / p ( p . 0 4 . h t m l  BTTP/1.1* 200 55722 
212.98.136.62 - - [17/Eay/2003:03:43:38 -0500] "GET /cs3373/imager/UaTor.gif ElTP/1.1" 200 39021 
212.29.232.2 - - 117/Eny/2003:03:43:40 -05001 "GET /uelcome.htrnl ElTP/1.OW ZOO 5253 

Fig. 9.7. Sample entries from a Web server access log 

learned using an iterative learning procedure by an evolutionary algorithm 
and the rule parameters are fine-tuned using a backpropagation algorithm. 

Knowledge discovery and trend patterns - - 

Fig. 9.8. i-Miner framework 

The hierarchical distribution of the i-Miner is depicted in Fig. 9.9. The 
arrow direction depicts the speed of the evolutionary search. The optimization 
of clustering algorithm progresses at a faster time scale in an environment 
decided by the inference method and the problem environment. 

9.2.1 Optimization of Fuzzy Clustering Algorithm 

One of the widely used clustering methods is the fuzzy c-means (FCM) al- 
gorithm developed by Bezdek [9.6] . FCM partitions a collection of n vectors 
xi = 1,2, ..., n into c fuzzy groups and finds a cluster center in each group 
such that a cost function of dissimilarity measure is minimized. To accom- 
modate the introduction of fuzzy partitioning, the membership matrix U is 
allowed to have elements with values between 0 and 1.The FCM objective 
function takes the form 
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Pattern discovery and trend analysis 

I f Optimization of fuzzy inference system 

Optimization of clustering algorithm 

(no of clusters, optimal centers etc.) 

(usage patterns, association rules and forecasts etc.) 

Fig. 9.9. Hierarchical architecture of i-Miner 

where uij, is a numerical value between [0,1]; c, is the cluster center of fuzzy 
group i ;  dij = 1I~i-x~ 1 1  is the Euclidian distance between ith cluster center and 
jth data point; and m is called the exponential weight which influences the 
degree of fuzziness of the membership (partition) matrix. Usually a number 
of cluster centers are randomly initialized and the FCM algorithm provides 
an iterative approach to approximate the minimum of the objective function 
starting from a given position and leads to any of its local minima [9.6] . 
No guarantee ensures that FCM converges to an optimum solution (can be 
trapped by local extrema in the process of optimizing the clustering criterion). 
The performance is very sensitive to initialization of the cluster centers. An 
evolutionary algorithm is used to decide the optimal number of clusters and 
their cluster centers. The algorithm is initialized by constraining the initial 
values to be within the space defined by the vectors to be clustered. A very 
similar approach is given in [9.11] . 

9.2.2 Optimization of the Fuzzy Inference System 

We used the EvoNF framework [9.3], which is an integrated computational 
framework to optimize fuzzy inference system using neural network learning 
and evolutionary computation. Solving multi-objective scientific and engi- 
neering problems is, generally, a very difficult goal. In these particular o p  
timization problems, the objectives often conflict across a high-dimension 
problem space and may also require extensive computational resources. The 
hierarchical evolutionary search framework could adapt the membership func- 
tions (shape and quantity), rule base (architecture), fuzzy inference mecha- 
nism (T-norm and T-conorm operators) and the learning parameters of neural 
network learning algorithm. In addition to the evolutionary learning (global 
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search) neural network learning could be considered as a local search tech- 
nique to optimize the parameters of the rule antecedent/consequent parame- 
ters and the parameterized fuzzy operators. The hierarchical search could be 
formulated as follows: For every fuzzy inference system, there exist a global 
search of neural network learning algorithm parameters, parameters of the 
fuzzy operators, if-then rules and membership functions in an environment 
decided by the problem. The evolution of the fuzzy inference system will 
evolve at the slowest time scale while the evolution of the quantity and type 
of membership functions will evolve at the fastest rate. The function of the 
other layers could be derived similarly. Hierarchy of the different adaptation 
layers (procedures) will rely on the prior knowledge (this will also help to 
reduce the search space). For example, if we know certain fuzzy operators 
will work well for a problem then it is better to implement the search of 
fuzzy operators at a higher level. For fine-tuning the fuzzy inference system 
all the node functions are to be parameterized. For example, the Schweizer 
and Sklar's T-norm operator can be expressed as: 

It is observed that 

which correspond to two of the most frequently used T-norms in combin- 
ing the membership values on the premise part of a fuzzy if-then rule. 

fuzzy cluster parame 

Fig. 9.10. Chromosome structure of the i-Miner 
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Chromosome modelling and  representation. Hierarchical evolutionary 
search process has to be represented in a chromosome for successful modelling 
of the i-Miner framework. A typical chromosome of the i-Miner would appear 
as shown in Fig. 9.10 and the detailed modelling process is as follows. 

Layer 1: The optimal number of clusters and initial cluster centers is repre- 
sented this layer. 

Layer 2: This layer is responsible for the optimization of the rule base. This 
includes deciding the total number of rules, representation of the an- 
tecedent and consequent parts. The number of rules grows rapidly with 
an increasing number of variables and fuzzy sets. We used the grid- 
partitioning algorithm to generate the initial set of rules [9.3]. An it- 
erative learning method is then adopted to optimize the rules [9.9] . The 
existing rules are mutated and new rules are introduced. The fitness of 
a rule is given by its contribution (strength) to the actual output. To 
represent a single rule a position dependent code with as many elements 
as the number of variables of the system is used. Each element is a bi- 
nary string with a bit per fuzzy set in the fuzzy partition of the variable, 
meaning the absence or presence of the corresponding linguistic label in 
the rule. For a three input and one output variable, with fuzzy partitions 
composed of 3,2,2 fuzzy sets for input variables and 3 fuzzy sets for out- 
put variable, the fuzzy rule will have a representation as shown in Fig. 
9.5. 

Layer 3: This layer is responsible for the selection of optimal learning param- 
eters. Performance of the gradient descent algorithm directly depends on 
the learning rate according to the error surface. The optimal learning 
parameters decided by this layer will be used to tune the parameter- 
ized rule antecedents/consequents and the fuzzy operators. The rule an- 
tecedent/consequent parameters and the fuzzy operators are fine tuned 
using a gradient descent algorithm to minimize the output error 

N 

E = C ( d k  - 2k)2 
k=l 

where dk is the kth component of the rth desired output vector and xk is 
the kth component of the actual output vector by presenting the rth input 
vector to the network. All the gradients of the parameters to be optimized, 
namely the consequent parameters for all rules Rn and the premise 
parameters and for all fuzzy sets Fi ( a and c represents the MF 
width and center of a Gaussian MF). 

Once the three layers are represented in a chromosome C, and then the 
learning procedure could be initiated as follows: 

1. Generate an initial population of N numbers of C chromosomes. Evaluate 
the fitness of each chromosome depending on the output error. 
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Depending on the fitness and using suitable selection methods reproduce 
a number of children for each individual in the current generation. 
Apply genetic operators to each child individual generated above and 
obtain the next generation. 

4. Check whether the current model has achieved the required error rate or 
the specified number of generations has been reached. Go to Step b. 

5. End 

Experimentation setup, training and performance evaluation. To 
demonstrate the efficiency of the proposed frameworks, Web access log data 
at the Monash University's Web site [9.17] were used for experimentations. 
We used the statistical/ text data generated by the log file analyzer from 01 
January 2002 to 07 July 2002. Selecting useful data is an important task in the 
data pre-processing block. After some preliminary analysis, we selected the 
statistical data comprising of domain byte requests, hourly page requests and 
daily page requests as focus of the cluster models for finding Web users' usage 
patterns. It is also important to remove irrelevant and noisy data in order to 
build a precise model. We also included an additional input 'index number' 
to distinguish the time sequence of the data. The most recently accessed 
data were indexed higher while the least recently accessed data were placed 
at the bottom. Besides the inputs 'volume of requests' and 'volume of pages 
(bytes)' and 'index number', we also used the 'cluster information' provided 
by the clustering algorithm as an additional input variable. The data was 
re-indexed based on the cluster information. Our task is to predict (few time 
steps ahead) the Web traffic volume on a hourly and daily basis. We used the 
data from 17 February 2002 to 30 June 2002 for training and the data from 
01 July 2002 to 06 July 2002 for testing and validation purposes. 

Table 9.3. Parameter settings of i-Miner 

Population size 
Maximum no of generations 
Fuzzy inference system 
Rule antecedent membership functions 
Rule consequent parameters 

Gradient descent learning 
Ranked based selection 
Elitism 
Starting mutation rate 

30 
35 
Takagi Sugeno 
3 membership functions per input vari- 
able (parameterized Gaussian) linear pa- 
rameters 
10 epochs 
0.50 
5 % 
0.50 

The initial populations were randomly created based on the parameters 
shown in Table 9.1. We used a special mutation operator, which decreases 
the mutation rate as the algorithm greedily proceeds in the search space [9.9] 
. If the allelic value xi of the i-th gene ranges over the domain ai and bi the 
mutated gene is drawn randomly uniformly from the interval [ai'bi]. 
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where w represents an unbiased coin flip p(w =0) = p(w =1) = 0.5, and 

defines the mutation step, where y is the random number from the inter- 
val [OJ] and t is the current generation and t,,, is the maximum number 
of generations. The function computes a value in the range [O,x] such that 
the probability of returning a number close to zero increases as the algorithm 
proceeds with the search. The parameter b determines the impact of time on 
the probability distribution A over [O,x]. Large values of b decrease the like- 
lihood of large mutations in a small number of generations. The parameters 
mentioned in Table 9.1 were decided after a few trial and error approaches. 
Experiments were repeated 3 times and the average performance measures 
are reported. Figs. 9.11 and 9.12 illustrates the meta-learning approach com- 
bining evolutionary learning and gradient descent technique during the 35 
generations. 

Table 9.4 summarizes the performance of the developed i-Miner for train- 
ing and test data. Performance is compared with the previous results [23] 
wherein the trends were analyzed using a Takagi-Sugeno Fuzzy Inference 
System (ANFIS) learned using neural network learning techniques and Lin- 
ear Genetic Programming (LGP). The Correlation Coefficient (CC) for the 
test data set is also given in Table 9.4. 

Figs. 9.13 and 9.14 illustrate the actual and predicted trends for the test 
data set. FCM approach created 9 data clusters for daily traffic according 
to the input features compared to 7 data clusters (Fig. 9.15) for the hourly 
requests. 

Table 9.4. Performance of the different paradigms 

Method Period 

Daily (1 day ahead) Hourly (1 hour ahead) 
RMSE CC RMSE CC 

Train Test Train Test 
i-Miner 0.0044 0.0053 0.9967 0.0012 0.0041 0.9981 
TKFIS 0.0176 0.0402 0.9953 0.0433 0.0433 0.9841 
LGP 0.0543 0.0749 0.9315 0.0654 0.0516 0.9446 

The 35 generations of meta-learning approach created 62 if-then Takagi- 
Sugeno type fuzzy rules (daily traffic trends) and 64 rules (hourly traffic 
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Fig. 9.11. Meta-learning performance (training) of i-Miner 

r i -  Miner test performance 

1 8 11 18 21 26 31 
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Fig. 9.12. Meta-learning performance (testing) of i-Miner 
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trends). Fig. 9.16 depicts the hourly visitor information according to domain 
names from an FCM cluster. Fig. 9.17 illustrates the volume of visitors in 
each FCM cluster according to the day of access. 

,- 

Dalyrequests 

1200 

Q 
3 e 4 900 

'i z 
600 

300 

1 2 3 4 5 6 
~ o f m r m k  

RI iMiner Actual wl. ofrequeds CLOP 

Fig. 9.13. Test results of the daily trends for 6 days 

9.2.3 Discussions 

Recently Web usage mining has been gaining a lot of attention because of 
its potential commercial benefits. Empirical results show that the proposed 
i-Miner framework seems to work very well for the problem considered. i- 
Miner framework gave the overall best results with the lowest RMSE on 
test error and the highest correlation coefficient. An important disadvantage 
of i-Miner is the computational complexity of the algorithm. When optimal 
performance is required (in terms of accuracy and smaller structure) such 
algorithms might prove to be useful as evident from the empirical results. In 
i-Miner evolutionary algorithm was used to optimize the various clustering 
and fuzzy inference system parameters. It is interesting to note that even 
LGP as a function approximator could pick up the trends accurately. 

9.3 Conclusions 

In this chapter, we have illustrated the importance of evolutionary algorithms 
for the two network management related problems. For real time intrusion 
detection systems LGP would be the ideal candidate as it could be manip- 
ulated at machine code level. Experiments using the Web data has revealed 
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Fig. 9.14. Test results of the average hourly trends for 6 days 

Fig. 9.15. Evolutionary FCM clustering: hour of the day and volume of requests. 
The dark dots indicate the cluster centers 
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Fig. 9.16. Hourly visitor information according to the domain names from an FCM 
cluster 

Cluster 6 
82% 

Fig. 9.17. Clustering of visitors based on the day of access from an FCM cluster 
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the importance of the optimization of fuzzy clustering algorithm and fuzzy 
inference system. Among the various trend analysis algorithms considered, 
LGP has again shown the capability as a robust function approximator. 
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