
Programing Hierarchical TS Fuzzy Systems
Yuehui Chen, Lizhi Peng

School of Information Science and Engineering
Jinan University

Jinan 250022, Shandong, P.R.China
yhchen@ujn.edu.cn

Ajith Abraham
School of Computer Science and Engineering

Chung-Ang University
Seoul, Republic Korea

ajith.abraham@ieee.org

Abstract— In this paper, we focus on an evolutionary algorithm
to design hierarchical or multilevel fuzzy system (architecture and
parameters) automatically. This research work presents an auto-
matic way of evolving hierarchical Takagi-Sugeno Fuzzy Systems
(TS-FS). The hierarchical structure is evolved using Probabilistic
Incremental Program Evolution (PIPE) with specific instructions.
The fine tuning of the if-then rule’s parameters encoded in the
structure is accomplished using Particle Swarm Optimization
(PSO). The proposed method interleaves both PIPE and PSO
optimizations. Except for the randomly initialized hierarchical
structure and parameters, we further explore the embedding of
a clustering algorithm to speed up the learning algorithm. The
new method results in a smaller rule-base and good learning
ability. The proposed hierarchical TS-FS is evaluated by using
Mackey-Glass chaotic time-series forecasting problem. When
compared to other hierarchical TS-FS the proposed approach
exhibits competing results with high accuracy and smaller size
of hierarchical architecture.

I. INTRODUCTION

Fuzzy systems have been successfully used in most ap-
plications, such as function approximation, nonlinear system
control, time-series prediction, fuzzy classification and fuzzy
clustering. Standard fuzzy systems are general applicable, in
the sense that they are universal approximators which can
approximate arbitrary continuous functions to any accuracy
[1],[2]. However, as fuzzy systems have been applied to
more complicated and high dimensional systems, the ”curse
of dimensionality” has become increasingly apparent as the
bottleneck to wider application [3].

Hierarchical and/or multi-level fuzzy system is an active
research area in recent years due to its nature of rule base
reduction and good approximation abilities. Usually, it is
difficult to arrange appropriate hierarchical layer and input
variables to each sub-fuzzy system for a given problem.

Hierarchical fuzzy systems have attracted considerable at-
tentions in recent years [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16] [22]. Torra [17] has summarized the
related recent research work in this domain. As a way to
overcome the curse-of-dimensionality, it was suggested by
Brown et al. [13] to arrange several low-dimensional rule bases
in a hierarchical structure, i.e., a tree, causing the number of
possible rules to grow in a linear way according to the number
of inputs. A method was proposed to determine automatically
the fuzzy rules in a hierarchical fuzzy model [18]. Rainer
[11] described a new algorithm which derives the rules for
hierarchical fuzzy associative memories that were structured

as a binary tree. Wang and Wei [7], [8], [19] proposed specific
hierarchical fuzzy systems and its universal approximation
property was proved. The approximation capabilities of hierar-
chical fuzzy systems was further analyzed by Zeng and Keane
[20]. But the main problem lies in fact that this is a specific
hierarchical fuzzy system which lacks flexibility in structure
adaptation, and it is difficult to arrange the input variables
for each sub-model. Lin and Lee [21] proposed a genetic
algorithm based approach to optimize the hierarchical structure
and the parameters of 5-inputs hierarchical fuzzy controller
for the low-speed control problem. Based on the analysis of
importance of each input variable and the coupling between
any two input variables, the problem of how to distribute
the input variables to different (levels of) relational modules
for incremental and aggregated hierarchical fuzzy relational
systems was addressed [14].

In this paper, we focus on an evolutionary procedure to
design hierarchical or multilevel fuzzy system (architecture
and parameters) automatically. This research work presents
an automatic way of evolving hierarchical Takagi-Sugeno
Fuzzy Systems (TS-FS). The hierarchical structure is evolved
using Probabilistic Incremental Program Evolution (PIPE)
with specific instructions. The fine tuning of the if-then rule’s
parameters encoded in the structure is accomplished using
Particle Swarm Optimization (PSO). The proposed method
interleaves both PIPE and PSO optimizations. Starting with
random structures and rules’ parameters, it first tries to
improve the hierarchical structure and then as soon as an
improved structure is found, it further fine tunes the rules’
parameters. It then goes back to improve the structure again
and, provided it finds a better structure, it again fine tunes
the rules’ parameters. This loop continues until a satisfactory
solution (hierarchical TS-FS model) is found or a time limit
is reached. Except for the randomly initialized hierarchical
structure and parameters, we further explore the embedding of
a clustering algorithm to speed up the learning algorithm. The
new method results in a smaller rule-base and good learning
ability. This is also the difference between this paper and ref.
[23].

The rest of the paper is organized as follows. A simple
introduction of Takagi-Sugeno Fuzzy Inference System (TS-
FS) is given in Section 2. A new encoding method an auto-
matic design method for the hierarchical TS-FS is presented
in Section 3. Some simulation results and discussions related

x3

x1

x2

x4

y

+3

x1 x2
+2

x3 x4

Fig. 1. Left: An example of possible hierarchical TS-FS model with 4
inputs and 3 hierarchical ayers, Right: the tree structural representation of
the corresponding hierarchical TS-FS model, where the used instruction set
is I = {+2, +3, x1, x2, x3, x4}.

to time-series prediction problem are provided in Sections 4.
Finally in Section 5, we present some conclusions and future
works.

II. TAKAGI-SUGENO FUZZY INFERENCE SYSTEM (TS-FS)

Fuzzy inference systems are composed of a set of if-then
rules. A Takagi-Sugeno fuzzy model has the following form
of fuzzy rules [4] :

Rj : if x1 is A1j and x2 is A2j and . . . and xn is Anj

Then y = gj(x1, x2, . . . , xn), (j = 1, 2, . . . , N)

where gj(·) is a crisp function of xi. Usually,
gj(x1, x2, . . . , xn) = ω0 + ω1x1 + ω2x2 + . . . + ωnxn.
The overall output of the fuzzy model can be obtained by:

y =

∑N
j=1 gj(·)Tmj

i=1µij(xi)∑N
j=1 T

mj

i=1µij(xi)
(1)

where 1 ≤ mj ≤ n is the number of input variables that
appear in the rule premise, N is the number of fuzzy rules,
n is the number of inputs, µij is the membership function for
fuzzy set, Aij and T is a T-norm for fuzzy conjunction. In
this paper, the used fuzzy membership function is

µ(a, b;x) =
1

1 + (x−a
b)2

. (2)

The TS-FS is a single-stage fuzzy system. It is important to
partition the input space using some clustering, grid parti-
tioning etc. [24]. The shapes of membership functions in the
antecedent parts, and the free parameters in the consequent
parts are also to be determined using some adaptive techniques
[25], [26].

III. EVOLUTIONARY DESIGN OF HIERARCHICAL TS-FS

In this section, an automatic design method of hierarchical
TS-FS is presented. The hierarchical structure is created and
optimized using PIPE with specific instructions and the fine
turning of the rule’s parameters encoded in the structure is
accomplished using PSO.

A. Encode

A tree-structural based encoding method with specific in-
struction set is selected for representing a hierarchical TS-FS
in this research. The reasons for choosing this representation
are that (1) the trees have a natural and typical hierarchical

layer; (2) with pre-defined instruction sets, the tree can be
created and evolved using the existing tree-structure-based
approaches, i.e., Genetic Programming (GP) and PIPE algo-
rithms.

Assume that the used instruction set is I =
{+2, +3, x1, x2, x3, x4}, where +2 and +3 denote non-
leaf nodes’ instructions and taking 2 and 3 arguments,
respectively. x1,x2,x3,x4 are leaf nodes’ instructions and
taking zero argument each. In addition, the output of each
non-leaf node is calculated as a single T-S fuzzy sub-model.
For this reason the non-leaf node +2 is also called a two-
inputs T-S fuzzy instruction/operator. Fig.1(right) shows tree
structural representation of the hierarchical TS-FS model
shown in Fig.1(left).

B. Evaluation

We describe an illustrative example through the Fig.1(right)
to show how the hierarchical TS-FS tree is calculated.

First, the output of the TS fuzzy sub-model (node +2) is
computed. The rule base and outputs of this fuzzy TS sub-
model can be obtained by k-means cluster directly. Second, the
overall output of the hierarchical TS fuzzy model is computed.
It has three inputs, x1, x2 and y, the output of the TS fuzzy
sub-model (node +2). In this case, the node +3 has two leaf
nodes and one non-leaf node. For the leaf nodes, we still
implement k-means cluster to obtain their fuzzy rule base
according to the data given. Suppose for nodes x1 and x2,
2 cluster centers are obtained. For the non-leaf node, assume
that the number of fuzzy membership functions for variables
y is 2. Then the number of rules is 4 and the general output
of the node +3 can be calculated as an usual TS fuzzy model.

It should be noted that the number of rules is determined
by the number of cluster centers of leaf nodes and the number
of fuzzy sets of non-leaf nodes. The free parameters to be
optimized by PSO are the parameters of the non-leaf node’s
fuzzy membership function parameter and the linear weights
in the consequent parts of the rules.

C. PIPE

PIPE [27], [28], [29] combines probability vector coding of
program instructions, population based incremental learning
[30] and tree-coded programs [31]. PIPE iteratively generates
successive populations of functional programs according to an
adaptive probability distribution, represented as a Probabilistic
Prototype Tree (PPT), over all possible programs. Each itera-
tion uses the best program to refine the distribution. Thus, the
structures of promising individuals are learned and encoded in
PPT.

1) Instructions and Programs: In PIPE, programs are made
of instructions from an instruction set S = {I1, I2, . . . , In}
with n instructions. Instructions are user-defined and problem
dependent. Each instruction is either a function or a terminal.
Instruction set S therefore consists of a function set F =
{f1, f2, . . . , fk} with k functions and a terminal set T =
{t1, t2, . . . , tl} with l terminals, where n = k + l holds.

Programs are encoded in n-ary trees, with n being the
maximal number of function arguments. Each non-leaf node
encodes a function from F and each leaf node a terminal
from T . The number of subtrees each node has corresponds
to the number of arguments of its function. Each argument is
calculated by a subtree. The trees are parsed depth first from
left to right.

2) PPT: The PPT stores the knowledge gained from expe-
riences with programs and guides the evolutionary search. It
holds random constants and the probability distribution over all
possible programs that can be constructed from a predefined
instruction set. The PPT is generally a complete n-ary tree
with infinitely many nodes, where n is the maximal number
of function arguments.

Each node Nj in PPT, with j > 0 contains a random
constant Rj and a variable probability vector −→Pj . Each −→

Pj

has n components, where n is the number of instructions in
instruction set S. Each component Pj(I) of −→Pj denotes the
probability of choosing instruction I ∈ S at node Nj . Each
vector −→Pj is initialized as follows:

Pj(I) =
PT

l
, ∀I : I ∈ T (3)

Pj(I) =
1− PT

k
, ∀I : I ∈ F, (4)

where l is the total number of terminals in T , k is the total
number of functions in F , and PT is initially user-defined
constant probability for selecting an instruction from T .

3) Program Generation, Growing and Pruning: Programs
are generated according to the probability distribution stored
in the PPT. To generate a program PROG from PPT, an
instruction I ∈ S is selected with probability Pj(I) for each
accessed node Nj of PPT. Nodes are accessed in a depth-first
way, starting at the root node and traversing PPT from left to
right.

A complete PPT is infinite, and each PPT node holds a prob-
ability for each instruction, a random constant, and n pointers
to following nodes, where n is PPT’s arity. Therefore, a large
PPT is memory intensive. To reduce memory requirements, it
is thus possible to incrementally grow and prune the PPT.

On one hand, it is useful to grow the PPT on demand
in order to create a variety of programs. Initially the PPT
contains only the root node. Additional nodes are created
with each program that accesses non-existing nodes during its
generation. On the other hand, apart from reducing memory
requirements, pruning also helps to discard the elements of
probability distribution that have become irrelevant over time.
PPT subtrees attached to nodes that contain at least one
probability vector component above a threshold TP can be
pruned. If TP is set to a sufficiently high value (e.g., TP =
0.99999) only parts of the PPT will be pruned that have a
very low probability of being accessed. In case of functions,
only those subtrees should be pruned that are not required as
function arguments. Figure 3 illustrates the relation between
the prototype tree and a possible program tree.

4) Fitness Functions: Similar to the other evolutionary
algorithms, PIPE uses a problem-dependent and user-defied fit-
ness function. A fitness function maps programs to scalar, real-
valued fitness values that reflect the programs’ performances
on a given task. Firstly PIPE’s fitness functions should be seen
as error measures, i.e., mean square error (MSE) or root mean
square error (RMSE). A secondary non-user-defined objective
for which PIPE always optimizes programs is the program
size as measured by number of nodes. Among programs with
equal fitness smaller ones are always preferred. This objective
constitutes PIPE’s built-in Occam’s razor.

5) Learning Algorithm: PIPE combines two forms of learn-
ing: Generation-Based Learning (GBL) and Elitist Learning
(EL). GBL is PIPE’s main learning algorithm. EL’s purpose
is to make the best program found so far as an attractor. PIPE
executes:

GBL
REPEAT

with probability Pel DO EL
otherwise DO GBL

UNTIL termination criterion is reached

Here Pel is a user-defined constant in the interval [0,1].
Generation-Based Learning
Step 1. Creation of Program Population. A population

of programs PROGj (0 < j ≤ PS; PS is population size) is
generated using the prototype tree PPT, as described in Section
III.A. The PPT is grown on demand.

Step 2. Population Evaluation. Each program PROGj

of the current population is evaluated on the given task
and assigned a fitness value FIT (PROGj) according to the
predefined fitness function. The best program of the current
population (the one with the smallest fitness value) is denoted
PROGb

. The best program found so far (elitist) is preserved
in PROG

el.
Step 3. Learning from Population. Prototype tree prob-

abilities are modified such that the probability P (PROGb
)

of creating PROGb
increases. This procedure is called adapt

PPT towards(Progb). This is implemented as follows. First
P (PROGb

) is computed by looking at all PPT nodes Nj used
to generate PROGb

:

P (PROGb
) =

∏

j:Nj used to generate PROGb

Pj (Ij(PROGb
)) (5)

where Ij(PROGb
) denotes the instruction of program PROGb

at node position j. Then a target probability PTARGET for
PROGb

is calculated:

PTARGET = P (PROGb
) +

(1− P (PROGb
)) · lr · ε + FIT (PROG

el)
ε + FIT (PROGb

)
(6)

here lr is a constant learning rate and ε a positive user-
defined constant. Given PTARGET , all single node probabili-
ties Pj(Ij(PROGb

)) are increased iteratively:

N
0,0

P

N2,0

N1,0

N 2,1 N2,2
N

2,3

N1,1

N2,4
N2,5

N
2,6

N1,2

N2,7
N2,8

P1,0

P(+)=0.25

P(+)=0.55

P(x)=0.075

P(x)=0.075

P(x)=0.05

3

P

P

P PP P PP

P

P PP

I1,0

I0,0

I1,1

I2,1 I2,2I2,0
I2,3 I2,4

Fig. 2. Example of node N1,0’s instruction probability vector P1,0 (left). Probabilistic prototype tree PPT (middle). Possible extracted program PROG, at
the time of creation of instruction I1,0, the dashed part of PROG did not exist yet (right).

REPEAT:

Pj (Ij(PROGb
)) = Pj (Ij(PROGb

)) +
clr · lr · (1− Pj (Ij(PROGb

))) (7)

UNTIL P (PROGb
) ≥ PTARGET

where clr is a constant influencing the number of iterations.
The smaller clr the higher the approximation precision of
PTARGET and the number of required iterations. Setting clr =
0.1 turned out to be a good compromise between precision and
speed. And then all adapted vectors −→Pj are renormalized.

Step 4. Mutation of Prototype Tree. All probabilities Pj(I)
stored in nodes Nj that were accessed to generate program
PROGb

are mutated with a probability PMp :

PMp =
PM

n ·
√
|PROGb

| (8)

where the user-defined parameter PM defines the overall
mutation probability, n is the number of instructions in in-
struction set S and |PROGb

| denotes the number of nodes in
program PROGb

. Selected probability vector components are
then mutated as follows:

Pj (I) = Pj (I) + mr · (1− Pj (I)) (9)

where mr is the mutation rate, another user-defined parameter.
Also all mutated vectors −→Pj are renormalized.

Step 5. Prototype Tree Pruning. At the end of each
generation the prototype tree is pruned, as described in Section
III.B.

Step 6. Termination Criteria. Repeat above procedure
until a fixed number of program evaluations is reached or a
satisfactory solution is found.

Elitist Learning
Elitist learning focuses search on previously discovered

promising parts of the search space. The PPT is adapted to-
wards the elitist program PROG

el. This is realized by replacing
the PROGb

with PROG
el in learning from population in Step 3.

It is particularly useful with small population sizes and works
efficiently in the case of noise-free problems.

D. Parameter optimization by PSO

The Particle Swarm Optimization (PSO) conducts searches
using a population of particles which correspond to individuals
in evolutionary algorithm (EA). A population of particles
is randomly generated initially. Each particle represents a
potential solution and has a position represented by a position
vector xi. A swarm of particles moves through the problem
space, with the moving velocity of each particle represented
by a velocity vector vi. At each time step, a function fi

representing a quality measure is calculated by using xi as
input. Each particle keeps track of its own best position, which
is associated with the best fitness it has achieved so far in
a vector pi. Furthermore, the best position among all the
particles obtained so far in the population is kept track of
as pg. In addition to this global version, another version of
PSO keeps track of the best position among all the topological
neighbors of a particle. At each time step t, by using the
individual best position, pi, and the global best position,
pg(t), a new velocity for particle i is updated by

vi(t + 1) =
vi(t) + c1φ1(pi(t)− xi(t)) + c2φ2(pg(t)− xi(t)) (10)

where c1 and c2 are positive constant and φ1 and φ2 are
uniformly distributed random number in [0,1]. The term vi

is limited to the range of ±vmax. If the velocity violates
this limit, it is set to its proper limit. Changing velocity this
way enables the particle i to search around its individual
best position, pi, and global best position, pg. Based on the
updated velocities, each particle changes its position according
to the following equation:

xi(t + 1) = xi(t) + vi(t + 1). (11)

E. The proposed algorithm for designing of hierarchical TS-
FS model

Combining the self-organizing and structure learning char-
acteristics of PIPE and the parameter optimization ability of
PSO, we propose the following hybrid algorithm for designing
the hierarchical TS-FS model.

1) Set the initial values of parameters used in the PIPE
and PSO algorithms. Set the elitist program as NULL

and its fitness value as a biggest positive real number of
the computer at hand. Create the initial population (tree)
and corresponding parameters used in hierarchical TS-FS
model.

2) Do structure optimization using PIPE algorithm as de-
scribed in subsection III.C, in which the fitness function
is calculated by Root Mean Square Error (RMSE).

3) Determine the fuzzy membership function parameters of
the non-leaf nodes for each sub-model by using k-means
cluster technique;

4) Parameter optimization using PSO as described in sub-
section III.D. In this step, the tree structure or architecture
of hierarchical TS-FS model is fixed, and it is the best
tree taken from the end of run of PIPE search. The non-
leaf node’s fuzzy membership function parameters and
the linear weights in the consequent parts of the rules
will be optimized by PSO in order to decrease the fitness
value of best program;

5) If the maximum number of PSO search is reached, or no
better parameter vector is found for a significantly long
time (100 steps) then go to step 6); otherwise go to step
4).

6) If satisfactory solution is found, then stop; otherwise go
to step 2).

IV. SIMULATION STUDIES

The proposed approach has been evaluated for Mackey-
Glass chaotic time-series prediction problem. The used para-
meters in PIPE are shown in Table 1. For all the simulations,
the minimum and maximum number of hierarchical layers
are predefined as 2 and 4, and each middle variable of the
non-leaf node is partitioned into 2 fuzzy sets. The used
fuzzy membership function is shown in Eqn. (2). All the
free parameters including fuzzy sets membership function
parameters and the free parameters in the consequent parts of
fuzzy rules are randomly generated at [0,1] initially. It should
be noted that the pre-selection of the non-leaf’s instruction
is experimental. Selecting more instructions will increase the
structure/parameter search space and results in a bigger hierar-
chical TS fuzzy system. For an identification or classification
problem, if the input number is n, selecting the maximum
instruction +N as N = n/3 is enough according to our
experiments. This experimental rule should reduce the search
space significantly. The Mackey-Glass chaotic differential
delay equation is recognized as a benchmark problem that
has been used and reported by a number of researchers for
comparing the learning and generalization ability of different
models. The Mackey-Glass chaotic time series is generated
using the following differential equation:

dx(t)
dt

=
ax(t− τ)

1 + x10(t− τ)
− bx(t) (12)

where a = 0.2 and b = 0.1, τ > 17 the equation shows
chaotic behavior. In our simulations, τ = 30 has been adopted.

TABLE I
PARAMETERS USED IN THE PIPE ALGORITHM

Parameters Values

population size PS 100
elitist learning probability Pel 0.01
learning rate lr 0.01
fitness constant ε 0.000001
overall mutation probability PM 0.4
mutation rate mr 0.4

TABLE II
COMPARISON OF THE INCREMENTAL TYPE MULTILEVEL FRS (IFRS)

[14], THE AGGREGATED TYPE MUTILEVEL FRS (AFRS) [14], AND THE

HIERARCHICAL TS-FS WITH RANDOMLY INITIALIZED FREE PARAMETERS

AND FUZZY RULES [23] FOR MACKEY-GLASS TIME-SERIES PREDICTION

Model Stage Rules Parameters RMSE RMSE
training testing

IFRS [14] 4 25 58 0.0240 0.0253

AFRS [14] 5 36 78 0.0267 0.0256

H-TS-FS1 [23] 3 28 148 0.0120 0.0129

H-TS-FS2 [23] 2 12 46 0.0145 0.0151

This paper 2 10 36 0.0105 0.0112

To compare with previous works [14], we predicted the value
of x(t + 6) using the input variables x(t − 30), x(t − 24),
x(t − 18), x(t − 12), x(t − 6) and x(t), where t = 130 to
t = 1129. It corresponds to a 6-input to 1-output mapping.

1000 sample points were used in our study. The first 500
data pairs were used as training data, while the remaining
500 were used to validate the model identified. The used
instruction set is I = {+2, +3, x0, x1, x2, x3, x4, x5}, where
x0, x1, x2, x3, x4, x5 denote x(t − 30), x(t − 24), x(t − 18),
x(t− 12), x(t− 6) and x(t), respectively.

The results are obtained from training the hierarchical TS-
FS models using 10 different experiments. The best RMSE
value for training and test data sets are 0.0105 and 0.0112,
respectively. A comparison has been made to show the actual
time-series, the hierarchical TS-FS model output and the
prediction error (Fig.3 (top)). Fig.3 (bottom) shows the con-
vergence performance of the best hierarchical TS-FS model.
Performance comparison of the different methods for predict-
ing the Mackey-Glass time-series is shown in Table 2.

V. CONCLUSION

In this paper, an automatic design and optimization method
for hierarchical TS-FS is proposed. In the proposed frame-
work, PIPE, PSO and k-means clustering algorithms are com-
bined to design an optimal hierarchical TS-FS model. The
effectiveness of the proposed methods has been demonstrated
through Mackey-Glass time-series forecasting problem. The
new method results in a smaller rule-base with good learning
ability. Our future research targets on more simulations and
real applications for evaluating the proposed method.

0 100 200 300 400 500 600 700 800 900 1000

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

O
u

tp
u

ts
 a

n
d

 e
rr

o
r

r

Actual time−series

Model output
Error

Data for training Data for testing

0 200 400 600 800 1000 1200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration number

R
M

S
E

1

2

1: without cluster

2: with cluster

Fig. 3. Actual time-series, model output and prediction error (Top), and the
fitness curve for training (bottom).

ACKNOWLEDGMENT

This research was partially supported by the Natural Science
Foundation of China under grant number 60573065, and The
Provincial Science and Technology Development Program of
Shandong under grant number SDSP2004-0720-03.

REFERENCES

[1] X. J. Zeng and M. G. Singh, ”Approximation theory of fuzzy system -
MIMO case”, IEEE Trans. on Fuzzy Systems, Vol.3, No.2, pp.219-235,
1995.

[2] X. J. Zeng and M. G. Singh, ”Approximation theory of fuzzy systems
- SISO case”, IEEE Trans. on Fuzzy Systems, Vol.2, No.2, pp.162-176,
1994.

[3] A. Abraham, ”Adaptation of Fuzzy Inference System Using Neural
Learning, Fuzzy System Engineering: Theory and Practice,” Nadia Nedjah
et al. (Eds.), Studies in Fuzziness and Soft Computing, Springer Verlag
Germany, ISBN 3-540-25322-X, Chapter 3, pp. 53-83, 2005.

[4] T. Takagi and M. Sugeno, ”Fuzzy identification of systems and its
application to modeling and control,” IEEE Trans. Syst. Man, Cybern.,
vol. 15, pp. 116-132, 1985.

[5] M. Denna, G. Mauri, A.M. Zanaboni, ”Learning fuzzy rules with tabu
search-an application to control,” IEEE Trans. on Fuzzy Systems, vol. 7,
no. 2, pp. 295-318, 1999.

[6] G.V. Raju and J. Zhou, ”Adaptive hierarchical fuzzy controller,” IEEE
Trans. on System, Man and Cybernetics vol. 23, no. 4, pp. 973-980,
1993.

[7] L.X. Wang, ”Analysis and design of hierarchical fuzzy systems,” IEEE
Trans. on Fuzzy Systems, vol. 7, no. 5, pp. 617-624, 1999.

[8] L.X. Wang, ”Universal approximation by hierarchical fuzzy systems,”
Fuzzy Sets and Systems, vol. 93, pp. 223-230, 1998.

[9] O. Huwendiek, W. Brockmann, ”Function approximation with decom-
posed fuzzy systems,” Fuzzy Sets and Systems, vol. 101, pp. 273-286,
1999.

[10] K. Hiroaki et al., ”Functional completeness of hierarchical fuzzy mod-
eling,” Information Science, vol. 110, no. 1-2, pp. 51-60, 1998.

[11] H. Rainer, ”Rule generation for hierarchical fuzzy systems,” Proc. of
the annual conf. of the North America Fuzzy Information Processing, pp.
444-449, 1997.

[12] K. Sun-Yuan et al., ”Synergistic modeling and applications of hierar-
chical fuzzy neural networks,” Proceedings of IEEE, vol. 87, no. 9, pp.
1550-1574, 1999.

[13] M. Brown, K.M., Bossley, D.J. Mills and C.J. Harris, ”High dimensional
neurofuzzy systems: overcoming the curse of dimensionality,” Proc. 4th
Int. Conf. on Fuzzy Systems, pp. 2139-2146, 1995.

[14] J.-C. Duan, F.-L. Chung, ”Multilevel fuzzy relational systems: structure
and identification,” Soft Computing, vol. 6, pp. 71-86, 2002.

[15] M.G. Joo, J.S. Lee, ”A class of hierarchical fuzzy systems with con-
straints on the fuzzy rules,” IEEE Trans. on Fuzzy Systems, vol. 13, no.
2, pp. 194-203, 2005.

[16] S. Paulo, ”Clustering and hierarchization of fuzzy systems”, Soft Com-
puting Journal, vol. 9, no. 10, pp. 715-731, 2005.

[17] V. Torra, ”A review of the construction of hierarchical fuzzy systems,”
International Journal of Intelligent Systems, Vol. 17, pp. 531-543, 2002.

[18] Shimojima, K., Fukuda T., Hasegawa Y., ”Self-turning fuzzy modeling
with adaptive membership function, rules, and hierarchical structure based
on genetic algorithm,” Fuzzy Sets and Systems, vol. 71, pp. 295-309, 1995.

[19] C. Wei and Li-Xin Wang, ”A note on universal approximation by
hierarchical fuzzy systems,” Information Science, vol. 123, pp. 241-248,
2000.

[20] X.-J. Zeng, J.A. Keane, ”Approximation Capabilities of Hierarchical
Fuzzy Systems,” IEEE Trans. on Fuzzy Systems, vol. 13, no. 5, pp. 659-
672, 2005.

[21] L. C. Lin and G.-Y. Lee, ”Hierarchical fuzzy control for C-axis of
CNC tuning centers using genetic algorithms,” Journal of Intelligent and
Robotic Systems, vol. 25, no. 3, pp. 255-275, 1999.

[22] Y. Chen, B. Yang and J. Dong, ”Automatic design of hierarchical TS-
FS models using ant programming and PSO algorithm,” The Eleventh
International Conference on Artificial Intelligence: Methodology, Systems,
Applications, LNCS 3192, pp. 285-294, 2004.

[23] Y. Chen, B. Yang, A. Abraham and L. Peng, ”Evolutionary Design of
Hierarchical TS Fuzzy Models using Evolutionary Algorithms,” IEEE
Trans. on Fuzzy Systems, 2006. (In press)

[24] R. Babuska, Fuzzy modeling and identification, Ph.D. Thesis, University
of Delft, the Netherlands, 1996.

[25] Angelov P., D. Filev, ”An approach to on-line identification of Takagi-
Sugeno fuzzy models,” IEEE Transactions on System, Man, and Cyber-
netics, part B - Cybernetics, vol.34, no. 1, pp.484-498, 2004.

[26] Kasabov, N., Song, Q., ”DENFIS: Dynamic, evolving neural-fuzzy
inference system and its application for time-series prediction,” IEEE
Trans. on Fuzzy Systems, vol. 10, pp. 144-154, 2002.

[27] R. P. Salustowicz and J. Schmidhuber, ”Probabilistic incremental pro-
gram evolution,” Evolutionary Computation, vol. 2, no. 5, pp. 123-141,
1997.

[28] R. P. Salustowicz and J. Schmidhuber, ”Evolving structured programs
with hierarchical instructions and skip nodes,” In Shavlik, J., editor,
Machine Learning: Proceedings of the Fifteenth International Conference
(ICML98), pp. 488-496. Morgan Kaufmann Publishers, San Francisco,
CA, USA, 1998.

[29] J. Schmidhuber, ”On learning how to learn learning strategies,” Technical
Report FKI-198-94, Fakultaet fuer Informatik, Technische Universitaet,
Muenchen. Revised January 1995.

[30] M. A. Wiering and J. Schmidhuber, ”Solving POMDPs with Levin
search and EIRA,” In Saitta, L., editor, Machine Learning: Proceedings of
the Thirteenth International Conference, Morgan Kaufmann Publishers,
San Francisco, CA, pp. 534-542, 1996b.

[31] N. L. Cramer, ”A representation for the adaptive generation of simple
sequential programs,” In Grefenstette, J., editor, Proceedings of an In-
ternational Conference on Genetic Algorithms and Their Applications,
Hillsdale NJ. Lawrence Erlbaum Associates, pp. 183-187, 1985.

