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Abstract. The use of intelligent systems for stock market predictions
has been widely established. In this paper, we investigate how the seem-
ingly chaotic behavior of stock markets could be well represented using
neural network, TS fuzzy system and hierarchical TS fuzzy techniques.
To demonstrate the different techniques, we considered Nasdaq−100 in-
dex of Nasdaq Stock MarketSM and the S&P CNX NIFTY stock index.
We analyzed 7 year’s Nasdaq 100 main index values and 4 year’s NIFTY
index values. This paper investigates the development of novel reliable
and efficient techniques to model the seemingly chaotic behavior of stock
markets. The parameters of the different techniques are optimized by the
particle swarm optimization algorithm. This paper briefly explains how
the different learning paradigms could be formulated using various meth-
ods and then investigates whether they can provide the required level of
performance, which are sufficiently good and robust so as to provide a re-
liable forecast model for stock market indices. Experiment results reveal
that all the models considered could represent the stock indices behavior
very accurately.

1 Introduction

Prediction of stocks is generally believed to be a very difficult task. The pro-
cess behaves more like a random walk process and time varying. The obvious
complexity of the problem paves way for the importance of intelligent prediction
paradigms. During the last decade, stocks and futures traders have come to rely
upon various types of intelligent systems to make trading decisions [1][2]. Sev-
eral intelligent systems have in recent years been developed for modelling exper-
tise, decision support and complicated automation tasks etc[3][4]. In this paper,
we analyzed the seemingly chaotic behavior of two well−known stock indices
namely Nasdaq−100 index of NasdaqSM [5] and the S&P CNX NIFTY stock
index [6]. Nasdaq-100 index reflects Nasdaq’s largest companies across major in-
dustry groups, including computer hardware and software, telecommunications,
retail/wholesale trade and biotechnology [5]. The Nasdaq-100 index is a modi-
fied capitalization-weighted index, which is designed to limit domination of the



Index by a few large stocks while generally retaining the capitalization rank-
ing of companies. Through an investment in Nasdaq-100 index tracking stock,
investors can participate in the collective performance of many of the Nasdaq
stocks that are often in the news or have become household names. Similarly,
S&P CNX NIFTY is a well-diversified 50 stock index accounting for 25 sectors
of the economy [6]. It is used for a variety of purposes such as benchmarking
fund portfolios, index based derivatives and index funds. The CNX Indices are
computed using market capitalization weighted method, wherein the level of the
Index reflects the total market value of all the stocks in the index relative to a
particular base period. The method also takes into account constituent changes
in the index and importantly corporate actions such as stock splits, rights, etc
without affecting the index value.

Our research is to investigate the performance analysis of hybrid soft com-
puting paradigms for modelling the Nasdaq−100 and NIFTY stock market in-
dices. We considered neural network, TS Fuzzy system [7] and hierarchical fuzzy
system [8][9][10][11][12][13][14][15]. The hierarchical structure is evolved using
tree-structure-based evolutionary algorithm with specific instructions. The pa-
rameters of the different techniques are optimized by the particle swarm op-
timization algorithm [16]. We analyzed the Nasdaq−100 index value from 11
January 1995 to 11 January 2002 [5] and the NIFTY index from 01 January
1998 to 03 December 2001 [6]. For both the indices, we divided the entire data
into almost two equal parts. No special rules were used to select the training set
other than ensuring a reasonable representation of the parameter space of the
problem domain [2].

2 Takagi-Sugeno Fuzzy Systems (TS-FS)

Fuzzy inference systems are composed of a set of if-then rules. A Sugeno-Takagi
fuzzy model has the following form of fuzzy rules [7]:

Rj : if x1 is A1j and x2 is A2j and . . . and xn is Anj

Then y = gj(x1, x2, . . . , xn), (j = 1, 2, . . . , N)

where gj(·) is a crisp function of xi. Usually, gj(x1, x2, . . . , xn) = ω0 + ω1x1 +
ω2x2 + . . . + ωnxn. The overall output of the fuzzy model can be obtained by:

y =

∑N
j=1 gj(·)Tmj

i=1µij(xi)∑N
j=1 T

mj

i=1µij(xi)
(1)

where 1 ≤ mj ≤ n is the number of input variables that appear in the rule
premise, N is the number of fuzzy rules, n is the number of inputs, µij is the
membership function for fuzzy set Aij and T is a t-norm for fuzzy conjunction.

A number of researches have been devoted to identify the TS-FS model.
The parameters to be determined are the division of input space, the shapes
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Fig. 1. Left: An example of possible hierarchical TS-FS model with 4 inputs and 3
hierarchical ayers, Right: the tree structural representation of the corresponding hier-
archical TS-FS model, where the used instruction set is I = {+2, +3, x1, x2, x3, x4}.

of membership functions in the antecedent parts and the linear weights in the
consequent parts. In this research, the parameters of the TS fuzzy model are
optimized by using PSO algorithm.

3 Hierarchical TS-FS : Encoding and Evaluation

A Hierarchical TS Fuzzy Systems (H-TS-FS) not only provide a more complex
and flexible architecture for modelling nonlinear systems, but can also reduce the
size of rule base to some extend. But there is no systematic method for designing
of the hierarchical TS-FS model yet. The problems in designing of hierarchical
fuzzy logic system include:(1) Selecting a proper hierarchical structure; (2) Se-
lecting the inputs for each TS fuzzy submodel; (3) Determining the rule base for
each TS fuzzy submodel; (4) Optimizing the parameters in the antecedent parts
and the linear weights in the consequent parts of the TS fuzzy submodel.

In this sense, finding a proper hierarchical TS-FS model can be posed as
a search problem in the structure and parameter space. Fig.1(left) shows an
example of possible hierarchical TS-FS models with 4 input variables and 3
hierarchical layers. A hybrid automatic approach has been proposed to optimize
the hierarchical TS-FS with a Ant Programming (AP) and PSO algorithms [15].
In this research, a modified tree-structure based GP-like evolutionary algorithm
was employed to find a optimal architecture of the H-TS-FS.

3.1 Encoding and Calculation

A tree-structural based encoding method with specific instruction set is selected
for representing a hierarchical TS-FS in this research. The reasons for choosing
this representation are that (1)the trees have a natural and typical hierarchical
layer; (2)with pre-defined instruction sets, the tree can be created and evolved
using the existing tree-structure-based approaches, i.e., AP, Genetic Program-
ming (GP) and PIPE algorithms.

Assume that the used instruction set is I = {+2,+3, x1, x2, x3, x4}, where
+2 and +3 denote non-leaf nodes’ instructions and taking 2 and 3 arguments,
respectively. x1,x2,x3,x4 are leaf nodes’ instructions and taking zero argument



each. In addition, the output of each non-leaf node is calculated as a single TS
fuzzy sub-model (Section 2). For this reason the non-leaf node +2 is also called a
two-inputs TS fuzzy instruction/operator. Fig.1(right) shows the corresponding
tree structural representation of the hierarchical TS-FS model.

It should be noted that in order to calculate the output of each TS-FS sub-
model (non-leaf node), parameters in the antecedent parts and consequent parts
of the TS-FS submodel should be encoded into the tree. The output of a hier-
archical TS-FS tree can be calculated in a recursive way.

3.2 Objective function

In this work, the fitness function used for GP-like evolutionary algorithm and
PSO is given by Root Mean Square Error (RMSE):

Fit(i) =

√√√√ 1
P

P∑

j=1

(yj
1 − yj

2)2 (2)

where P is the total number of training samples, yj
1 and yj

2 are the actual and
model outputs of j-th sample. Fit(i) denotes the fitness value of i-th individual.

4 An Approach for evolving the Hierarchical TS-FS

4.1 Architecture Optimization of the hierarchical TS-FS

Finding an optimal or near-optimal neural tree is formulated as a product of
evolution. In this study, the crossover and selection operators used are same as
those of standard GP. A number of neural tree mutation operators are developed
as follows:

(1) Changing one terminal node: randomly select one terminal node in the neural
tree and replace it with another terminal node;

(2) Changing all the terminal nodes: select each and every terminal node in the
neural tree and replace it with another terminal node;

(3) Growing: select a random leaf in hidden layer of the neural tree and replace
it with a newly generated subtree.

(4) Pruning: randomly select a function node in the neural tree and replace it
with a terminal node.

4.2 Parameter optimization with PSO

For the parameters optimization of the hierarchical TS-FS, a number of global
and local search algorithms, i.e., GA, EP, gradient based learning method can
be employed. The basic PSO algorithm is selected for parameter optimization
due to its fast convergence and ease to implementation.



The PSO [16] conducts searches using a population of particles which corre-
spond to individuals in evolutionary algorithm (EA). A population of particles
is randomly generated initially. Each particle represents a potential solution and
has a position represented by a position vector xi. A swarm of particles moves
through the problem space, with the moving velocity of each particle represented
by a velocity vector vi. At each time step, a function fi (Eqn.(5) in this study)
representing a quality measure is calculated by using xi as input. Each particle
keeps track of its own best position, which is associated with the best fitness it
has achieved so far in a vector pi. Furthermore, the best position among all the
particles obtained so far in the population is kept track of as pg. In addition
to this global version, another version of PSO keeps track of the best position
among all the topological neighbors of a particle.

At each time step t, by using the individual best position, pi(t), and the
global best position, pg(t), a new velocity for particle i is updated by

vi(t + 1) = vi(t) + c1φ1(pi(t)− xi(t)) + c2φ2(pg(t)− xi(t)) (3)

where c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed
random number in [0,1]. The term vi is limited to the range of ±vmax. If the
velocity violates this limit, it is set to its proper limit. Changing velocity this
way enables the particle i to search around its individual best position, pi, and
global best position, pg. Based on the updated velocities, each particle changes
its position according to the following equation:

xi(t + 1) = xi(t) + vi(t + 1). (4)

4.3 The proposed learning algorithm

The general learning procedure for the optimal design of the hierarchical TS-FS
model can be described as follows.

1) Create the initial population randomly (hierarchical TS-FS and their corre-
sponding parameters);

2) Structure optimization by GP-like algorithm.
3) If the better structure is found, then go to step 4), otherwise go to step 2);
4) Parameter optimization by PSO algorithm. In this stage, the tree structure

is fixed, and it is the best tree taken from the end of run of the structure
search. All of the parameters encoded in the best tree formulated a parameter
vector to be optimized by PSO;

5) If the maximum number of PSO search is reached, or no better parameter
vector is found for a significantly long time (say 100 steps for maximum 2000
steps) then go to step 6); otherwise go to step 4);

6) If satisfied solution is found, then stop; otherwise go to step 2).

5 Experiments

We considered 7 year’s stock data for Nasdaq-100 Index and 4 year’s for NIFTY
index. Our target is to develop efficient forecast models that could predict the



index value of the following trade day based on the opening, closing and maxi-
mum values of the same on a given day. We used the same training and test data
sets to evaluate the fuzzy TS and hierarchical TS fuzzy models. For comparison
purpose a neural network model trained by PSO algorithm is also implemented.
Experiments were carried out on a Pentium IV, 2.8 GHz Machine with 512 MB
RAM and the codes were executed using C/C++. Test data was presented to the
trained soft computing models and the output from the network was compared
with the actual index values in the time series. The assessment of the prediction
performance of the different soft computing paradigms were done by quantifying
the prediction obtained on an independent data set. The Root Mean Squared
Error (RMSE), Maximum Absolute Percentage Error (MAP) and Mean Abso-
lute Percentage Error (MAPE) and Correlation Coefficient (CC) were used to
study the performance of the trained forecasting model for the test data. MAP
is defined as follows:

MAP = max(
|Pactual,i − Ppredicted,i|

Ppredicted,i
× 100) (5)

where Pactual,i is the actual index value on day i and Ppredicted,iis the forecast
value of the index on that day. Similarly MAPE is given as

MAPE =
1
N

N∑

i=1

(
|Pactual,i − Ppredicted,i|

Pactual,i
)× 100 (6)

where N represents the total number of days.
We used instruction set I = {+2,+3, +4, x0, x1,x2} for modeling Nasdaq-100

index and instruction set I = {+2,+3, . . . , +6, x0, x1,x2, x3, x4} for modeling
NIFTY index. We used a NN model with network architecture {3-12-1} for
modeling Nasdaq-100 index and another NN model with network structure {5-
12-1} for modeling NIFTY index.

Table 1 summarizes the training and test results achieved for the two stock
indices using the three different approaches. Figures 2 and 3 depict the test
results for the one day ahead prediction of Nasdaq−100 index and NIFTY index
respectively.

Table 1. Empirical comparison of RMSE results for three learning methods

NN-PSO Fuzzy-TS H-TS-FS

Training results (RMSE)

Nasdaq−100 0.02573 0.02634 0.02498
NIFTY 0.01729 0.01895 0.01702

Testing results (RMSE)

Nasdaq−100 0.01864 0.01924 0.01782
NIFTY 0.01326 0.01468 0.01328



Table 2. Statistical analysis of four learning methods (test data)

NN-PSO Fuzzy-TS H-TS-FS

Nasdaq-100

Correlation coefficient 0.997704 0.997538 0.997698
MAP 141.363 156.464 138.736

MAPE 6.528 6.543 6.205

NIFTY

Correlation coefficient 0.997079 0.997581 0.0997685
MAP 27.257 30.432 27.087

MAPE 3.092 3.328 3.046

6 Conclusions

In this paper, we have demonstrated how the chaotic behavior of stock indices
could be well represented by different hybrid learning paradigms. Empirical re-
sults on the two data sets using three different learning models clearly reveal the
efficiency of the proposed techniques. In terms of RMSE values, for Nasdaq-100
index, H-TS-FS performed marginally better than other models and for NIFTY
index, NN approach gave the lowest generalization RMSE values. For both data
sets, H-TS-FS has the lowest training error. For Nasdaq-100 index (test data),
Fuzzy TS has the highest correlation coefficient but the lowest value of MAPE
and MAP value was achieved by using the H-TS-FS model. Highest correlation
coefficient, and the best MAPE/MAP values for NIFTY index were achieved
using the H-TS-FS trained using GP-like evolutionary algorithm and the PSO
model. The number of fuzzy rules obtained by direct fuzzy method are 27 for
Nasdaq-100 data and 243 for NIFTY data. The number of fuzzy rules for ob-
tained by H-TS-FS are 18 for Nasqad-100 data and 99 for NIFTY data. A low
MAP value is a crucial indicator for evaluating the stability of a market under
unforeseen fluctuations. In the present example, the predictability assures the
fact that the decrease in trade is only a temporary cyclic variation that is per-
fectly under control. Our research was to predict the share price for the following
trade day based on the opening, closing and maximum values of the same on a
given day. Our experiment results indicate that the most prominent parameters
that affect share prices are their immediate opening and closing values. The fluc-
tuations in the share market are chaotic in the sense that they heavily depend on
the values of their immediate forerunning fluctuations. Long-term trends exist,
but are slow variations and this information is useful for long-term investment
strategies. Our study focus on short term, on floor trades, in which the risk is
higher. However, the results of our study show that even in the seemingly ran-
dom fluctuations, there is an underlying deterministic feature that is directly
enciphered in the opening, closing and maximum values of the index of any day
making predictability possible. Empirical results also show that there are various
advantages and disadvantages for the different techniques considered. There is
little reason to expect that one can find a uniformly best learning algorithm for
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Fig. 2. Test results showing the performance of the different methods for modeling
Nasdaq-100 index
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Fig. 3. Test results showing the performance of the different methods for modeling
NIFTY index

optimization of the performance for different stock indices. This is in accordance
with the no free lunch theorem, which explains that for any algorithm, any ele-
vated performance over one class of problems is exactly paid for in performance
over another class [17]. Our future research will be oriented towards determining
the optimal way to combine the different learning paradigms using an ensem-
ble approach [18] so as to compliment the advantages and disadvantages of the
different methods considered.
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