
The Largest Compatible Subset Problem for
Phylogenetic Data

Andy Auyeung1 and Ajith Abraham2

1 Department of Computer Science, Oklahoma State University,
Stillwater, OK 74078, USA
wingha@cs.okstate.edu

2 Department of Computer Science, Oklahoma State University,
Tulsa. OK 74106, USA

Ajith.abraham@ieee.org

Abstract. The phylogenetic tree construction is to infer the evolutionary rela-
tionship between species from the experimental data. However, the experi-
mental data are often imperfect and conflicting each others. Therefore, it is im-
portant to extract the motif from the imperfect data. The largest compatible
subset problem is that, given a set of experimental data, we want to discard the
minimum such that the remaining is compatible. The largest compatible subset
problem can be viewed as the vertex cover problem in the graph theory that has
been proven to be NP-hard. In this paper, we propose a hybrid Evolutionary
Computing (EC) method for this problem. The proposed method combines the
EC approach and the algorithmic approach for special structured graphs. As a
result, the complexity of the problem is dramatically reduced. Experiments
were performed on randomly generated graphs with different edge densities.
The vertex covers produced by the proposed method were then compared to the
vertex covers produced by a 2-approximation algorithm. The experimental re-
sults showed that the proposed method consistently outperformed a classical 2-
approximation algorithm. Furthermore, a significant improvement was found
when the graph density was small.

1 Introduction

The study of phylogenetic (phylogeny) is to understand the evolutionary relationships
between species [17]. Different models have been proposed to model the evolutionary
relationships between species from different types of experimental data [11]. The
perfect phylogeny is a tree-based model that uses binary characters to infer phylogeny
[10]. Due to the noisy nature of the experimental data, conflicts are often found be-
tween subsets of the experimental data. Therefore, it is important to extract the motif
from the imperfect data. The largest compatible subset problem is that, given a set of
experimental data, we want to discard the minimum such that the remaining is com-
patible [6].

In the case of the perfect phylogeny, the conflicts between subsets of data come in
pair-wise form [8]. In other words, the compatibility between subset A and subset B
are independent from other subsets. Moreover, if A is incompatible with B, B is also
incompatible with A. From this condition, we model the incompatibility between
subsets of data by a graph, where each vertex represents a disjointed data subset, and
an edge (u, v) indicates that vertex u and v are incompatible.

In the context of a graph G=(V, E), where V is the set of vertices and E is the set of
edges, the largest compatible subset problem is to find a subset U’ ⊆ V, such that (u,
v) ∉ E, ∀ u, v ∈ U’ and |U’ | is maximum. Equivalently, we can find a subset V’ ⊆ V
such that ∀ (u, v) ∈ E, then either u ∈ V’ or v ∈ V’ (or both) and |V’ | is minimum. In
fact, this problem has already been studied in the graph theory and is called the vertex
cover problem [15].

The vertex cover problem has been proven to be NP-hard [5]. There is no efficient
algorithm to solve it in general. Therefore, many heuristic algorithms have been pro-
posed [14]. Although good approximation algorithms have been proposed for graphs
with a bounded edge degree [12], the vertex cover problem does not have a good
approximation solution in general.

On the other hand, for special structured graphs, such as simple cycles and trees,
there are linear-time algorithms to solve them. Therefore, although efficient solution
cannot be found for the whole graph in general, the optimal solution can easily be
obtained for some special structured components in the graph.

The Evolutionary Computing (EC) is a powerful searching technique that is widely
used in computational biology problems [3]. In this paper, we propose an EC ap-
proach for the largest compatible subset problem. The idea of the proposed method is
to make use of the efficient algorithms for special structured graphs in the EC ap-
proach, so that the search space can be dramatically reduced. Therefore, the proposed
method is effective and efficient. Our method does not provide a guaranteed error
bound. However, our experiments show that it consistently found better solutions
than a classical 2-approximation algorithm.

The rest of the paper is organized as follows. In Section 2, some background mate-
rials about phylogenetics and the vertex cover problem are presented. In Section 3,
the proposed method is explained. In Section 4, the experimental setup and results are
shown. In Section 5, observations from the experiments and some design issues are
discussed. Finally in Section 6, some concluding remarks are made.

2 Related Research

2.1 The Perfect Phylogeny

The perfect phylogeny is a phylogenetic model that uses binary characters. An m by n
0-1 matrix M records the exhibitions of the n characters in the m species. That is M[i,
j] = 1 if and only if species i exhibits character j, and it is equal to zero otherwise. The

Figure 1. A 5 x 5 0-1 matrix M and its perfect phylogenetic tree T.

Figure 2. A matrix M that is not a perfect phylogeny and its conflict graph.

definition of a perfect phylogenetic tree for matrix M is as follows. A rooted tree T is
a perfect phylogenetic tree of M if it satisfies: 1, T has exactly m leaves; 2, each of the
m species labels exactly one leaf of T; 3, each of the n characters labels exactly one
edge of T; and 4, for any leaf l, the unique path from the root node to l contains labels
specify all the characters that l (its corresponding species) has. Figure 1 shows an
example of a matrix M and its perfect phylogenetic tree T.

Not all matrices are perfect phylogenys. For any two characters ic and jc , let io

and jo be the sets of species who exhibits ic and jc respectively. The matrix M is a

perfect phylogeny if and only if io and jo are either disjoint or one contains the

other, for every i, j. In other words, the character ic and jc are incompatible when

io and jo are overlapped. The incompatibility between the characters in M can be

visualized by a conflict graph, where each vertex represents a character and each edge

Algorithm A. A 2-approximation algorithm that finds a vertex cover.

Algorithm B. A linear-time algorithm that finds the optimal vertex cover on tree.

represents a conflict. Figure 2 shows an example of a matrix M that is not a perfect
phylogeny and its conflict graph.

In practice, most experimental data are not perfect phylogenys. Therefore, we want
to extract a matrix M’ from M, such that M’ is a perfect phylogeny. The largest com-
patible subset problem for the perfect phylogeny is that, given an m by n matrix M,
we want to find an m by n’ matrix M’ by removing columns from M, such that n’ is
maximized and M’ is a perfect phylogeny. In the context of the conflict graph, we
want to find the largest subset of vertices U’ to keep, such that the resulted graph is
edge free.

Algorithm A [G = (V, E)]
{ V’ = 0
 while (E is not empty)
 { Pick an arbitrary edge (u, v) ∈ E
 V’ = V’ ∪ {u, v}
 Remove (u, v) and all edges incident
 on u or v from E
 }
 return V’
}

Algorithm B [G=(V, E)]
{ V’ = 0
 while (E is not empty)
 {
 Pick an arbitrary leaf node u in G
 Let v be the parent node of u
 V’ = V’ ∪ {v}
 Removing v and all edges incident on
 v from G
 }
 return V’
}

Algorithm C. An algorithm that finds a vertex cover from a chromosome.

2.2 The Vertex Cover

The largest compatible subset problem actually has already been studied in the graph
theory. A vertex cover of a graph G=(V, E) is a set V’ ⊆ V such that if (u, v) is an
edge of G, then either u ∈ V’ or v ∈ V’ (or both). The vertex cover problem is to find
a vertex cover that minimize |V’ |.

The largest compatible subset problem and the vertex cover problem are actually
dual. The largest compatible subset problem is to find the largest subset U’ to keep,
such that the remaining graph is edge free, while the vertex cover problem is to find
the smallest subset V’ that covers all edges. That is U’ = V – V’ .

The vertex cover problem has been proven to be NP-hard. Therefore, there is no
efficient algorithm to solve it (and the largest compatible subset problem too). Differ-
ent heuristic algorithms have been proposed to find near-optimal solution for the
vertex cover problem. Algorithm A will produce a vertex cover that is at most twice
the size of the optimal vertex cover. Although there is no efficient algorithm to solve
the vertex cover problem in general, the optimal solution can easily be found if the
graph is composed of disjointed simple cycles and trees. The optimal vertex cover for
graph that is a simple cycle can be obtained by taking alternating vertices on the cycle
starting from an arbitrary vertex. The optimal vertex cover for a graph that is a tree
can be found by using Algorithm B.

Algorithm C [G=(V, E)]
{ V’ = V
 for each critical vertex u
 { if u has 1-bit
 remove u and all edges incident on u
 from G
 else // u has 0-bit
 remove all edges and vertices
 incident on u from G
 }
 Use Algorithm B to find vertex cover on
 tree components and remove them from G
 Remove alternating vertices on simple
 cycles from G, starting from an arbitrary
 vertex
 V’ = V’ - V
 return V’
 }

3 The Proposed Method

The idea of the proposed method is to encode the vertex cover by a binary string,
where each bit corresponds to a vertex in the graph. When a vertex u has a 1-bit, it
represents including u in V’ , and (conceptually) excluding u from V’ otherwise.
However, the optimal presence can be found for the rest of the vertices, once the
presence of some “critical vertices” is determined. Therefore, our representation of
the chromosome only composes of the set of critical vertices. We define the set of
critical vertices to be the set C ⊆ V, where { u ∈ V | u has an edge degree larger than
two and u belongs to a cycle in G} . The following lemma shows the definition of
critical vertices is suff icient to decompose the graph into a graph that composes of
only simple cycles or/and trees.

Once the presence of the critical vertices is determined, the presence of the rest of
the vertices can easily be determined by the methods discussed in Section 3. How-
ever, some critical vertices can be adjacent to each other. Thus, the effect of a vertex
u has a 0-bit does not immediately exclude u from V’ , but it does immediately include
all adjacent vertices of u from V’ . Algorithm C shows how the vertex cover is inter-
preted from a chromosome.

4 Results

We compared the proposed method with Algorithm A on randomly generated graphs
with different edge densities. The edge density is used to determine the number of

Lemma: The set of non-critical vertices spans a graph G’ that
is composed of only simple cycles or/and trees.

Proof:
If there exist a component in G’ that is not a simple cycle nor
a tree, then there must exist a vertex u that belongs to a cycle
and has degree larger than two. But the set of non-critical
vertices (V-C) is the set of vertices that have degree less than
three or does not belong to any cycle in G, thus it contradicts
the assumption.

Figure 3. Performance of the proposed method versus
the 2-approximation algorithm with 0.3 edge density.

Figure 4. Performance of the proposed method versus
the 2-approximation algorithm with 0.6 edge density.

Figure 5. Performance of the proposed method versus
the 2-approximation algorithm with 0.9 edge density.

Figure 6. Number of critical vertices for various edge densities.

Figure 7. Computational time of the proposed method for various edge densities.

edges in the graph. All implementations and testing were done on a 450MHz Intel
Celeron desktop with 128MB RAM running Windows 98. We tested the performance
on three different edge densities 0.3, 0.6 and 0.9 with the graph size from 50 to 250
vertices. The population size was chosen to be the number of critical vertices, and we
defined the fitness to be |V’ | / |V| (the ratio of the vertex cover size over the graph
size). The algorithm terminated when the best solution did not improve in ten genera-
tions. Furthermore, single point crossovers and mutations were used. The results were
an average of ten runs. We also ran the proposed method with three different cross-
over rates and mutation rates, (0.3,0.8), (0.5,0.5), (0.5,0.8).

Figure 3-5 shows the ratio of the vertex cover size over the graph size (in percent-
age) of the proposed method (with different parameters) and of the 2-approximation
algorithm for various edge densities. Due to the simple bit-wise encoding and the
concept of critical vertices, the proposed method is efficient. Figure 6 shows the aver-
age number of critical vertices versus different graph size. Table 1 depicts the average

Table 1. Number of critical vertices for different edge densities 0.3, 0.6 and 0.9.

Edge density
Size

0.3 0.6 0.9

50 17 29 38

100 45.6 60.2 70

150 62 89.6 108.3

200 85.3 115.9 143.4

250 104.8 148.2 177.1

Table 2. Computational time of the GA method for various edge densities.

Edge density
Size 0.3 0.6 0.9

50 0.26 0.33 0.35

100 2.90 2.54 2.29

150 9.98 7.96 8.61

200 22.85 20.44 23.02

250 58.27 59.38 48.36

Table 3. Average improvement in different edge densities for various genetic parameters
(crossover rate, mutation rate).

Genetic Parameters
Edge

density
(0.3,0.5) (0.5,0.5) (0.5,0.8)

0.3 17.8 17.6 17.6

0.6 12.8 12.3 12.7

0.9 7.8 7.7 7.3

number of critical vertices for graph sizes 50, 100, 150, 200 and 250 for various edge
densities. The average computational time in different edge densities for various
graph sizes when (0.5,0.5) is shown in Figure 7 and is illustrated in Table 2.

5 Discussion

We can see that the proposed method consistently outperformed the 2-
approximation algorithm. When the edge density is 0.3, the average improvement
from the proposed method over the 2-approximation algorithm is 17.7%, 12.6% when
the edge density is 0.6, and 7.6% when 0.9. Thus, the improvement of the proposed
method is inversely proportional to the edge density. We believe that is because when
the graph is highly connected, most of the vertices must be discarded. On the other
hand, when the edge density is small , many vertices can in fact be kept if the vertex
cover is carefully chosen, and therefore a better improvement can be made.

We set the population size to be the number of critical vertices. But from the ex-
perimental results, we can see that it is in fact very small i n term of the population
size. Although it does demonstrate the idea where the population size is linearly pro-
portional to the problem size, we believe that if a larger population size, such as p
times the number of critical vertices is used, where p is between 200 and 500, a better
improvement can be obtained. On the other hand, the computational time might also
proportionally be increased.

Another possible improvement of our method is the interpretation of critical verti-
ces. Other special structures can possibly be solved optimally. When considering
other special structures, the trade off is on the time to detect these special structures
and the time to find their optimal solutions versus the improvement of the quality of
the solution. Besides, in our representation, when a vertex u has a 0-bit, it does not
immediately exclude u from V’ , it is simply because the critical vertices can be adja-
cent to each other. If possible, it will be more effective to prevent such “colli sion” .

The perfect phylogeny is one the many phylogenetic models. Similar problems oc-
cur in other phylogenetic models. We demonstrated the effectiveness of the EC ap-
proach for the perfect phylogeny. However, we believe the EC approach is also suit-
able in other conflict models. For example, if the conflicts occur within a group of
vertices, the problem can be seen as the vertex cover problem in a hyper-graph, where
an edge can have more than two end points.

6 Conclusion

When inferring the phylogeny of the species, due to the noisy nature, conflicts are
often found between subsets of the experimental data. The largest compatible subset
problem is to filter out such noise from the experimental data by discarding the
minimum amount of incompatible data. This problem is in fact equivalent to the ver-
tex cover problem. Due to the complexity of the problem, there is no eff icient algo-
rithm to find the optimal solution, although optimal solution can be obtained for spe-
cial structured graphs, such as simple cycles and trees. This paper introduced a hybrid
EC approach that takes advantage of the known algorithms that produce the optimal
solution on special structures. Experimental results showed that the proposed method
consistently outperformed the classical 2-approximation algorithm, although it does

not mathematically guarantee the quality of the solution. Due to the simple and effec-
tive encoding, the search space for the problem is dramatically reduced and therefore
results in short computational time.

References

1. Agarwala, R. and Fernandez-Baca, D.: A polynomial-Time Algorithm for Perfect Phylog-
eny Problem when the Number of Character States is Fixed. SIAM Journal of Computing
(1994) 23(6): 1216-1224

2. Agarwala, R. and Fernandez-Baca, D.: Simple Algorithms for Perfect Phylogeny and
Triangulating Colored Graphs. International Journal of Foundation of Computer Science
(1996) 7(1): 11-22

3. Auyeung, A. and Abraham, A.: Estimating Genome Reversal Distance by Genetic Algo-
rithm. The IEEE Congress on Evolutionary Computation (2003) 1157-1161

4. Bonet, M., Philli ps, C., Warnow, T. J. and Yooseph, S.: Constructing Evolutionary Trees
in the Presence of Polymorphic Characters. SIAM Journal of Computing (1999) 29(1):
103-131

5. Cormen, T. H., Leiserson, C. E. and Rivest, R. L.: Introduction to Algorithms. McGraw-
Hill Book Company (2000)

6. Day, W. and Sankoff , D.: Computational Complexity of Inferring phylogenies by Com-
patibilit y. Systematic Zoology (1986) 35(2): 224-229

7. Estabrook, G. F., Johnson, C. and McMorris, F. R.: A Mathematical foundation for analy-
sis of cladistic character compatibilit y. Math Bioscience (1976) 29: 181-187

8. Estabrook, G. F. and McMorris, F. R.: When Are Two Qualitative Taxonomic Characters
Compatible. Journal of Mathematical Biology (1977) 4: 195-200

9. Goldberg, L. A., Goldberg, P. W., Philli ps, C. A., Sweedyk, E. and Warnow, T.: Mini-
mizing Phylogenetic Number to Find Good Evolutionary Tree. Discrete Applied Mathe-
matics (1996) 71: 111-136

10. Gusfield, D.: Eff icient Algorithm for Inferring Evolutionary History. Networks (1991)
21:19-28

11. Gusfield, D.: Algorithm on Strings Trees, and Sequences – Computer Science and Com-
putational Biology. Cambridge University Press (1997)

12. Halperin, E.: Improved Approximation Algorithm for the Vertex Cover Problem in
Graphs and Hypergraphs. SIAM Journal of Computing (2002) 31(5): 1608-1623

13. Kannan, S. and Warnow, T.: A Fast Algorithm for the Computation and Enumeration of
Perfect Phylogenies when the Number of Character States is Fixed. Proceeding of the
Sixth Annual ACM of Symposium on Discrete Algorithms (1995) 595-603

14. Paschos, V. T.: A Survery of Approximately Optimal Solution to Some Covering and
Packing Problems. ACM Computing Surveys (1997) 29(2) 171-209

15. West, D. B.: Introduction to Graph Theory (2000) Prentice Hall
16. Wheeler, Q. D. and Meier, R.: Species Concepts and Phylogenetic Theory. Columbia

University Press (2000)

