
Ensemble of Genetic Programming Models for Designing Reactive Power

Controllers

Crina Grosan and Ajith Abraham
*

Department of Computer Science, Babes-Bolyai University,

 Cluj-Napoca, Romania, cgrosan@cs.ubbcluj.ro
*
School of Computer Science and Engineering,

Chung-Ang University, South Korea, ajith.abraham@ieee.org

Abstract

In this paper, we present an ensemble combination of two

genetic programming models namely Linear Genetic

Programming (LGP) and Multi Expression Programming

(MEP). The proposed model is designed to assist the

conventional power control systems with added

intelligence. For on-line control, voltage and current are

fed into the network after preprocessing and

standardization. The model was trained with a 24-hour

load demand pattern and performance of the proposed

method is evaluated by comparing the test results with the

actual expected values. For performance comparison

purposes, we also used an artificial neural network

trained by a backpropagation algorithm. Test results

reveal that the proposed ensemble method performed

better than the individual GP approaches and artificial

neural network in terms of accuracy and computational

requirements.

1 Introduction

A wide variety of real time power monitoring /control

systems are helping the electrical power consumers [1][6].

For the monitoring system to be more intelligent, we

propose the use of an ensemble combination of two

genetic programming models namely Linear Genetic

Programming (LGP) and Multi Expression Programming

(MEP) for predicting the trend of reactive power demand.

By predicting the reactive power demand it is possible to

automate the control of reactive power load and better

utilization of volt-amperes (VA) inflow. Efficient usage

of the VA loading will not only improve the overall grid

condition but also reduce the consumer’s industrial tariffs.

Depending on the predicted reactive power demand,

power factor corrective measures could be turned on or

off to control the VA inflow into the plant. This prediction

system will be extremely useful for automated control of

power inflow, especially in the countries where there are

limitations on the usage of consumer’s peak VA

maximum demand.

2 Importance of Reactive Power Control

The ratio of active power (P) measured in watts to the

apparent power (S) in volt-amperes is termed the power

factor. It has become a normal practice to say that the

power factor is lagging when the current lags the supply

voltage and leading when the current leads the supply

voltage. This means that the supply voltage is regarded as

the reference quantity. A majority of loads served by a

power utility draw current at a lagging power factor.

When the power factor of the load is unity, active power

equals apparent power (P = S). But, when the power

factor of the load is less than unity, say 0.6, the power

utilized is only 60%. This means that 40% of the apparent

power is being utilized to supply the reactive power,

VAR, demand of the system. It is therefore clear that the

higher the power factor of the load, the greater the

utilization of the apparent power [4]. For the generating

and transmission stations, lower the power factor the

larger must be the size of the source to generate that

power, and greater must be the cross-sectional area of the

conductor to transmit it. In other words, the greater is the

cost of generation and transmission of the power.

Moreover, lower power factor will also increase the I
2
R (I

denotes current) losses in lines/equipment as well as result

in poor voltage regulation [3][5][8].

 We considered a heavy automobile industry for

studying the load demand patterns. The plant works on 3

shifts of 8 hours duration each. The difference between

the apparent and active power contributes for the reactive

power. Observed data for a 24 hour period shows that the

maximum and minimum VAR requirements are 2.96

MVAR and 0.014 MVAR, respectively. If suitable power

factor compensation was made when the reactive power

demand was increasing, the plant might not have drawn

much apparent power from the grid. The task is to predict

the upward and downward trend of the reactive power

demand and provide required power factor compensation.

Load flow analysis of the captioned plant reveals that the

demand patterns are very similar every day (as long as the

production of automobiles remains fixed). This paper

presents an ensemble combination of two Genetic

Programming (GP) models and the performance is

compared with an artificial neural network trained by a

backpropagation algorithm. The proposed models were

trained on the data taken at every minute for a 24-hour

period to predict the reactive power demand parameters,

and tested to evaluate the prediction accuracy.

3 Hybrid Modeling of Intelligent Paradigms

3.1 Linear Genetic Programming (LGP)

Linear genetic programming is a variant of the GP

technique that acts on linear genomes [11]. Its main

characteristics in comparison to tree-based GP lies in that

the evolvable units are not the expressions of a functional

programming language (like LISP), but the programs of

an imperative language (like c/c ++). An alternate

approach is to evolve a computer program at the machine

code level, using lower level representations for the

individuals. This can tremendously hasten the evolution

process as, no matter how an individual is initially

represented, finally it always has to be represented as a

piece of machine code, as fitness evaluation requires

physical execution of the individuals. The basic unit of

evolution here is a native machine code instruction that

runs on the floating-point processor unit (FPU). Since

different instructions may have different sizes, here

instructions are clubbed up together to form instruction

blocks of 32 bits each. The instruction blocks hold one or

more native machine code instructions, depending on the

sizes of the instructions. A crossover point can occur only

between instructions and is prohibited from occurring

within an instruction. However the mutation operation

does not have any such restriction. LGP uses a specific

linear representation of computer programs. Instead of the

tree-based GP expressions of a functional programming

language (like LISP) programs of an imperative language

(like C) are evolved. A LGP individual is represented by a

variable-length sequence of simple C language

instructions. Instructions operate on one or two indexed

variables (registers) r, or on constants c from predefined

sets. The result is assigned to a destination register, for

example, ri = rj* c. Here is an example LGP program:

void LGP(double v[8])

[0] = v[5] + 73;

v[7] = v[3] – 59;

if (v[1] > 0)

if (v[5] > 21)

v[4] = v[2] . v[1];

v[2] = v[5] + v[4];

v[6] = v[7] . 25;

v[6] = v[4] – 4;

v[1] = sin(v[6]);

if (v[0] > v[1])

v[3] = v[5] . v[5];

v[7] = v[6] . 2;

v[5] = v[7] + 115;

if (v[1] <= v[6])

v[1] = sin(v[7]);

}

A LGP can be turned into a functional

representation by successive replacements of variables

starting with the last effective instruction. The maximum

number of symbols in a LGP chromosome is 4 * Number

of instructions.

Evolving programs in a low-level language

allows us to run those programs directly on the computer

processor, thus avoiding the need of an interpreter. In this

way the computer program can be evolved very quickly.

An important LGP parameter is the number of registers

used by a chromosome. The number of registers is usually

equal to the number of attributes of the problem. If the

problem has only one attribute, it is impossible to obtain a

complex expression such as the quartic polynomial. In

that case we have to use several supplementary registers.

The number of supplementary registers depends on the

complexity of the expression being discovered. An

inappropriate choice can have disastrous effects on the

program being evolved. LGP uses a modified steady-state

algorithm. The initial population is randomly generated.

The following steps are repeated until a termination

criterion is reached: Four individuals are randomly

selected from the current population. The best two of

them are considered the winners of the tournament and

will act as parents. The parents are recombined and the

offspring are mutated and then replace the losers of the

tournament. We used a LGP technique that manipulates

and evolves a program at the machine code level. The

settings of various linear genetic programming system

parameters are of utmost importance for successful

performance of the system. The population space has been

subdivided into multiple subpopulation or demes.

Migration of individuals among the subpopulations causes

evolution of the entire population. It helps to maintain

diversity in the population, as migration is restricted

among the demes. Moreover, the tendency towards a bad

local minimum in one deme can be countered by other

demes with better search directions. The various LGP

search parameters are the mutation frequency, crossover

frequency and the reproduction frequency: The crossover

operator acts by exchanging sequences of instructions

between two tournament winners. Steady state genetic

programming approach was used to manage the memory

more effectively.

3.2. Multi Expression Programming (MEP)

MEP genes are (represented by) substrings of a variable

length [9][10]. The number of genes per chromosome is

constant. This number defines the length of the

chromosome. Each gene encodes a terminal or a function

symbol. A gene that encodes a function includes pointers

towards the function arguments. Function arguments

always have indices of lower values than the position of

the function itself in the chromosome. This representation

ensures that no cycle arises while the chromosome is

decoded (phenotypically transcripted). According to the

proposed representation scheme, the first symbol of the

chromosome must be a terminal symbol. In this way, only

syntactically correct programs (MEP individuals) are

obtained. An example of chromosome using the sets F=

{+, *} and T= {a, b, c, d} is given below:

1: a

2: b

3: + 1, 2

4: c

5: d

6: + 4, 5

7: * 3, 6

The maximum number of symbols in MEP chromosome

is given by the formula:

Number_of_Symbols = (n + 1) * (Number_of_Genes – 1)

+ 1,

where n is the number of arguments of the function with

the greatest number of arguments. The maximum number

of effective symbols is achieved when each gene

(excepting the first one) encodes a function symbol with

the highest number of arguments. The minimum number

of effective symbols is equal to the number of genes and it

is achieved when all genes encode terminal symbols only.

The translation of a MEP chromosome into a computer

program represents the phenotypic transcription of the

MEP chromosomes. Phenotypic translation is obtained by

parsing the chromosome top-down. A terminal symbol

specifies a simple expression. A function symbol specifies

a complex expression obtained by connecting the

operands specified by the argument positions with the

current function symbol.

For instance, genes 1, 2, 4 and 5 in the previous

example encode simple expressions formed by a single

terminal symbol. These expressions are:

E1 = a,

E2 = b,

E4 = c,

E5 = d,

Gene 3 indicates the operation + on the operands

located at positions 1 and 2 of the chromosome. Therefore

gene 3 encodes the expression: E3 = a + b. Gene 6

indicates the operation + on the operands located at

positions 4 and 5. Therefore gene 6 encodes the

expression: E6 = c + d. Gene 7 indicates the operation *

on the operands located at position 3 and 6. Therefore

gene 7 encodes the expression: E7 = (a + b) * (c + d). E7 is

the expression encoded by the whole chromosome.

There is neither practical nor theoretical evidence that one

of these expressions is better than the others. This is why

each MEP chromosome is allowed to encode a number of

expressions equal to the chromosome length (number of

genes). The chromosome described above encodes the

following expressions:

E1 = a,

E2 = b,

E3 = a + b,

E4 = c,

E5 = d,

E6 = c + d,

E7 = (a + b) * (c + d).

The value of these expressions may be computed

by reading the chromosome top down. Partial results are

computed by dynamic programming and are stored in a

conventional manner.

Due to its multi expression representation, each

MEP chromosome may be viewed as a forest of trees

rather than as a single tree, which is the case of Genetic

Programming.

Fitness assignment

As MEP chromosome encodes more than one problem

solution, it is interesting to see how the fitness is assigned.

The chromosome fitness is usually defined as the fitness

of the best expression encoded by that chromosome. For

instance, if we want to solve symbolic regression

problems, the fitness of each sub-expression Ei may be

computed using the formula:

,)(
1

,∑
=

−=

n

k
kiki woEf

where ok,i is the result obtained by the expression Ei for

the fitness case k and wk is the targeted result for the

fitness case k. In this case the fitness needs to be

minimized. The fitness of an individual is set to be equal

to the lowest fitness of the expressions encoded in the

chromosome:

When we have to deal with other problems, we

compute the fitness of each sub-expression encoded in the

MEP chromosome. Thus, the fitness of the entire

individual is supplied by the fitness of the best expression

encoded in that chromosome.

3.3. Ensemble Modeling of LGP and MEP
Our goal is to optimize two error measures namely Root

Mean Squared Error (RMSE) and Correlation Coefficient

(CC):

∑
=

−=

N

i
ipredictediactual PPRMSE

1
,,

∑

∑

=

=
=

N

i
iactual

N

i
ipredicted

P

P

CC

1
,

1
,

 The task is to have minimal value of RMSE

and a maximum value for CC. The objective is to

carefully construct the different GP models to achieve the

best generalization performance. Test data is then passed

through these individual models and the corresponding

outputs are recorded. Suppose results obtained by LGP

and MEP are an and bn respectively and the corresponding

desired value is xn. The task is to combine an and bn so as

to get the best output value that maximizes the CC and

minimizes the RMSE values.

 We consider this problem as a multiobjective

optimization problem in which we want to find solution of

this form: (coef1, coef2), where coef1, and coef2 are real

numbers between - 1 and 1, so as the resulting

combination: coef1*an + coef2*bn

would be close to the desired value xn. This means, in fact,

to find a solution so that to simultaneously optimize

RMSE and CC. This problem is equivalent to find the

Pareto solutions of a multiobjective optimization problem.

In our situation, the objectives are RMSE and CC. We use

for this problem a well known Multiobjective

Evolutionary Algorithm (MOEA) – Nondominated

Sorting Genetic Algorithm II (NSGAII) [12]. A short

description of this algorithm is given below.

3.3.1 Nondominated Sorting Genetic Algorithm II

(NSGA II)

K. Deb et al. [12] suggested a fast elitist Nondominated

Sorting Genetic Algorithm (NSGA II). In NSGA II, for

each solution x the number of solutions that dominate

solution x is calculated. The set of solutions dominated by

x is also calculated. The first front (the current front) of

the solutions that are nondominated is obtained.

Let us denote by Si the set of solutions that are

dominated by the solution x
i
. For each solution x

i
 from the

current front consider each solution x
q
 from the set Si. The

number of solutions that dominates x
q

is reduced by one.

The solutions which remain non-dominated after this

reduction will form a separate list. This process continues

using the newly identified front as the current front. Let

P(0) be the initial population of size N. An offspring

population Q(t) of size N is created from current

population P(t). Consider the combined population R(t) =

P(t) ∪ Q(t).

Population R(t) is ranked according to

nondomination. The fronts F1, F2, ... are obtained. New

population P(t+1) is formed by considering individuals

from the fronts F1, F2, ..., until the population size exceeds

N. Solutions of the last allowed front are ranked

according to a crowded comparison relation.

NSGA II uses a parameter (called crowding

distance) for density estimation for each individual.

Crowding distance of a solution x is the average side-

length of the cube enclosing the point without including

any other point in the population. Solutions of the last

accepted front are ranked according to the crowded

comparison distance. NSGA II works as follows. Initially

a random population, which is sorted based on the

nondomination, is created. Each solution is assigned a

fitness equal to its nondomination level (1 is the best

level). Binary tournament selection, recombination and

mutation are used to create an offspring population. A

combined population is formed from the parent and

offspring population. The population is sorted according

to the nondomination relation. The new parent population

is formed by adding the solutions from the first front and

the followings until exceed the population size. Crowding

comparison procedure is used during the population

reduction phase and in the tournament selection for

deciding the winner.

3.4 Artificial Neural Network Model

Artificial Neural Networks (ANNs) have been developed

as generalizations of mathematical models of biological

nervous systems. A neural network is characterized by the

network architecture, the connection strength between

pairs of neurons (weights), node properties, and updating

rules. The updating or learning rules control weights

and/or states of the processing elements (neurons). The

network is initially randomized to avoid imposing any of

our own prejudices about an application on the network.

4. Experiment Setup, Analysis and Results

The experiment system consists of two stages: Model

construction/network training and performance

evaluation. A heavy automobile manufacturing plant was

considered for the prediction of reactive power. All the

training data were standardized before training. The input

parameters considered are the Voltage (V) and Current (I).

We randomly fluctuated the input parameter voltage (V)

+/- 2.5% of the normal value to cater for worst conditions

in the grid voltage regardless of the plant load. This also

tests the learning ability of ANN during worst situations.

Figures 1 and 2 show the input parameters V and I of the

test data.

Figure 1. Test data- input voltage (+/- 30%)

Figure 2. Test data- load current (amperes)

4.1 Parameter settings

For ANN, we used a feedforward network with 2 hidden

layers in parallel, 2 input neurons corresponding to the

input variables and 1 output neuron. The network was

trained using 60% of the data and the remaining 40% data

was used for testing and validation. Initial weights,

learning rate and momentum used were 0.3, 0.1 and 0.1,

respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415 438 461 484 507 530 553 576

Random time interval

S
ta

n
d
a
rd

iz
e
d
 r

e
a
c
tiv

e
 p

o
w

e
r

v
a
lu

e

Actual value LGP MEP Ensemble ANN

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Random time interval

S
ta

n
d
a
rd

iz
e
d
 r

e
a
c
tiv

e
 p

o
w

e
r

v
a
lu

e

Actual value LGP MEP Ensemble ANN

Figure 3. Comparison between ANN, MEP, LGP and ensemble

The training was terminated after 1500 epochs. Parameters

used by MEP, LGP and Ensemble between LGP and MEP

using NSGA II are depicted in Table 1, Table 2 and Table 3

respectively.

Table 1. Parameters used by MEP

Parameter Value

Population size 50

Chromosome length 40

Number of generations 150

Crossover probability 0.9

Number of mutations/chromosome 3

Number of constants 10

Table 2. Parameters used by LGP

Parameter Value

Population size 100

Mutation frequency 95%

Number of demes 10

Crossover frequency 50%

Number of constants 60

Table 3. Parameters used by Ensemble

Parameter Value

Population size 250

Number of generations 500

Crossover probability 0.5

4.2 Comparison of results

Table 4 shows the comparative performance of ANN, MEP,

LGP and ensemble between LGP and MEP for the reactive

power prediction problem.

Table 4. Reactive power prediction performance

 ANN MEP LGP Ensemble

RMSE 0.01210 0.0141 0.01104 0.0106

CC 0.9992 0.996 0.994 0.9999

From the experimental results, it is clear that the results

obtained by the ensemble between GP techniques

outperformed each of the individual techniques (LGP, MEP

and neural network) in terms of performance time and error

achieved. In Figure 3 the graphical comparison between

ANN, MEP, LGP and Ensemble is presented.

5. Conclusions

This paper presented three techniques for the reactive

power prediction problem. The ANN was clearly dominated

by the GP techniques. We also combined the two GP

techniques used so that to optimizes the error. The different

GP techniques (LGP and MEP) were combined using an

ensemble approach by an evolutionary multiobjective

algorithm so as to simultaneously optimize the RMSE and

CC. We evolved a set of coefficients in order to obtain an

ensemble combination of the two techniques by applying a

well known multiobjective evolutionary algorithm called

NSGA II. Empirical results also illustrate that a

combination of these techniques is very useful. The results

obtained by an ensemble of these paradigms clearly

outperform results obtained by each technique individually.

For this problem, we considered random values of

input parameter voltage to test the learning ability of

connectionist systems during worst conditions. The

performance could have been even better if the observed

rather than fluctuated values of voltage were used.

Moreover, the considered connectionist models are very

robust, capable of handling the noisy and approximate data

that are typical in power systems, and therefore should be

more reliable during worst conditions.

6. Acknowledgements

This research was supported by the International Joint

Research Grant of the IITA (Institute of Information

Technology Assessment) foreign professor invitation

program of the MIC (Ministry of Information and

Communication), Korea.

References

[1] Sawyer D., Non-stop Monitoring, IEE Review, Volume

45(3), May 1999.

[2] Nauk D., Klawonn F and Kruse R, Foundations of

Neuro Fuzzy Systems, John Willey & Sons, 1997.

[3] Miller T.J.E., Reactive Power Control in Electric

Systems, Wiley – Interscience, 1982.

[4] Dorf R.C., The Electrical Engineering Handbook,

CRC-IEEE press, 1997.

[5] Cory B.J., Weedy B.M., Electric Power Systems, (4th

Edition), John Wiley & Sons; 1998.

[6] Abraham A. and Nath B., Artificial Neural Networks

for Intelligent Real Time Power Quality Monitoring

Systems, First International Power & Energy

Conference, INT-PEC'99, 1999.

[7] Sugeno M., Industrial Applications of Fuzzy Control,

Elsevier Science Pub Co., 1985.

[8] Sheble G.B., Reactive Power: Basics, Problems and

Solutions, IEEE Press, 1987.

[9] M. Oltean, C. Grosan. Evolving Evolutionary

Algorithms using Multi Expression Programming,

Proceedings of the 7th European Conference on

Artificial Life, Dortmund, Germany, pp. 651-658,

2003.

[10] M. Oltean and C. Grosan. A Comparison of Several

Linear GP Techniques. Complex Systems, Vol. 14, Nr.

4, pp. 285-313, 2003

[11] Banzhaf. W., Nordin. P., Keller. E. R., Francone F. D.

Genetic Programming: An Introduction on The

Automatic Evolution of Computer Programs and its

Applications, Morgan Kaufmann Publishers, Inc.,

1998.

[12] Deb K., Agrawal S., Pratab A., Meyarivan T., A fast

elitist non-dominated sorting genetic algorithms for

multiobjective optimization: NSGA II. KanGAL report

200001, Indian Institute of Technology, Kanpur, India,

2000.

