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Abstract—The classification accuracy of a Support Vector
Machine is dependent upon the specification of model pa-
rameters. The problem of finding these parameters, called the
model selection problem, can be very computationally intensive,
and is exacerbated by the fact that once selected, these model
parameters do not carry across from one dataset to another.

This paper describes implementations of both Ant Colony
Optimization and Particle Swarm Optimization techniques
to the SVM model selection problem. The results of these
implementations on some common datasets are compared to
each other and to the results of other SVM model selection
techniques.
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I. INTRODUCTION

This paper discusses the application of Ant Colony Op-
timization (ACO) and Particle Swarm Optimization (PSO)
techniques to the problem of finding the optimal set of
parameters of a Support Vector Machine (SVM) classifier,
referred to as the SVM model selection problem.

Support vector machines [1] have successfully demon-
strated their effectiveness at classifying many types of
datasets [2]. However, they can be very slow to train and
require the specification of control parameters.

These SVM parameters have a substantial impact on the
SVM’s classification accuracy. For example, in the case of
one of datasets tested, proper choice of the SVM parameters
raised the SVM’s classification accuracy from less than 55%
at the lowest to over 96%. The process of finding these
parameters, however, requires multiple training runs of the
SVM, which is a computationally intensive process. Even
once discovered, the parameter values at which the SVM
exhibits the best classification performance are only optimal
for a particular dataset. In applications that must classify
either a large number of different datasets or datasets that
are constantly changing, a fast and effective SVM parameter
optimization method is essential.

In Section II, we briefly describe the SVM model selection
problem. In Section III, we discuss PSO and ACO optimiza-
tion techniques used for the SVM model selection problem
and introduce our implementation of the ACO algorithm
as applied to the SVM model selection problem which
we call APS-SVM. In Section IV, we describe specific

implementation details we used to to conduct our tests
of the PSO and APS-SVM algorithms. In Section V, we
present the results of these tests and analyze and compare
the characteristics of the implemented algorithms. Finally,
in Section VI, we discuss additional ways in which the
performance of these SVM parameterization techniques can
be analyzed.

II. SVM MODEL SELECTION

In this and the following sections, we will analyze the
optimization of parameters for SVMs. A full discussion of
the details of SVMs is beyond the scope of this paper; in
this paper we are only considering the effectiveness of the
parameters used to train an SVM. For further details on
support vector machines, the reader is referred to [1], [2].

This paper focuses on the Cost-based Support Vector
Classifier (C-SVC). This type of SVM requires the spec-
ification of two parameters: a cost parameter C, which is
typically anywhere between 2−5 and 220, and a parameter γ
which is typically anywhere between 2−20 and 23 [3], [4].

The process by which we have chosen to discover these
optimal—or as close to optimal as we can achieve under
constraints—parameters is by iteratively guessing parame-
ters, then performing 10-fold cross-validation of the SVM
using those parameters. This paper discusses and compares
search methods used to determine those parameters.

The naı̈ve search method to find the near-optimal param-
eters is called the grid search [3], which tries evenly-spaced
combinations of the SVM parameters [4]. For instance, if
performing a coarse search of the region between 2−5 and
220 for the cost parameter, we can choose to try every
cost parameter 2n for n = −5,−3,−1, . . . , 21. For each
of these cost parameters, we try every γ at the value 2n for
n = −20,−18,−16, . . . , 0, 4. However, this search involves
156 different parameter combination choices, which requires
156 SVM training runs. A more granular seach would
require an even more computationally intensive effort.

III. OPTIMIZATION TECHNIQUES

A variety of search methods have been applied to the
SVM model selection problem, including the grid search
method described in Section II as well as metaheuristic
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techniques such as genetic algorithms [5], Gaussian process-
based optimization [6], ant colony optimization [7], and
particle swarm optimization [8], [9]. In this section, we
will focus on the PSO and ACO techniques, as well as
implementation issues in applying them to the SVM model
selection problem.

A. Particle Swarm Optimization

The PSO algorithm draws its characteristics from the
research areas of swarm intelligence and evolutionary com-
putation. PSO is based on the metaphor of a swarm of
particles “flying” through the fitness landscape to find the
optimum values of a fitness function. Individual particles
communicate their fitness values to the entire swarm, thus
guiding the swarm to promising regions of the search space.
For a full discussion of the PSO algorithm and its many
variations, see [10], [11].

As the PSO algorithm is originally defined over a con-
tinuous multivariate domain, it is readily applicable to the
SVM model selection problem. Descriptions of existing
applications of PSO to the SVM model selection problem
can be found in [8], [9].

B. Ant Colony Optimization

Ant Colony Optimization [12] is an optimization tech-
nique typically applied to combinatorial optimization prob-
lems with much success. Like PSO, it draws its inspiration
from the area of swarm intelligence and specifically from
the observation of ant colonies in nature. As ants explore
their environment and discover food sources, they leave
pheromone trails which other ants follow. Over time, these
trails fade unless reinforced by additional ants which follow
them and find food. The ACO technique follows the same
metaphor, where the path can be considered to be a set of
values for the variables in the search space, and reinforce-
ment of these paths is based on the results of the objective
function being optimized.

The typical formulation of ACO is based on discrete vari-
ables, for which the ant colony metaphor is an appropriate
fit. This is the approach used in existing applications of ACO
to the SVM model selection problem, as described in [7].
In order for this to work, however, the naturally continuous
search space of the SVM model selection problem must be
discretized, which limits the granularity at which promising
areas of the search space can be examined.

To avoid this type of discretization step, many researchers
have established methods of applying the ACO metaphor
to a continuous domain. The predominant method of doing
this is by extending the discrete probability mass function
used to determine which path to take in the traditional ACO
algorithm into a continuous Probability Density Function
(PDF), such as is found in [13], which models each variable
in the search space as its own mixture of univariate Gaussian
PDFs.

C. Ant Colony Optimization in Continuous Domains

A more sophisticated extension of the ACO metaphor to
the continuous space—and the basis for the implementation
presented in this paper—was developed in [14]. This Ag-
gregation Pheromone System (APS) treats the entire multi-
variate search space as a mixture of multivariate Gaussian
PDFs.

The APS algorithm, as we have implemented it and
applied it to the SVM model selection problem, will be
referred to as APS-SVM in this paper. APS-SVM begins
much like the traditional ACO algorithm, constructing paths
for the ants by generating the initial set of values from a
multivariate—in our case, bivariate—uniform distribution.
Each of these ants is evaluated by supplying its speci-
fied SVM parameters to the SVM which undergoes cross-
validation to determine classification accuracy.

The results of this cross-validation are used to rank the
ants, and the rankings are used as weights in the creation
of a mixture of multivariate Gaussian PDFs, where the
highest-ranking ant is given the most influence on this
mixture. This Gaussian mixture is then added to the overall
pheromone density of the search space, itself a mixture of
Gaussian and uniform distributions. During this pheromone
update step, the influence of the mixtures of PDFs from
earlier iterations of the algorithm are reduced in weight, thus
incorporating the pheromone evaporation component of the
ACO technique.

Three parameters must be specified which affect the way
the APS-SVM algorithm works: ρ (0 ≤ ρ < 1), controls the
evaporation rate, and thus how much the Gaussian mixture
is influenced by results from several iterations earlier in
the process; α (α > 0) controls how much the rank
of an ant influences the weight of its corresponding part
of the resultant Gaussian mixture; and β (β > 0) is a
scaling factor used to control the exploratory tendencies
of the algorithm by scaling the covariances among the
variables in the Gaussian mixture. Higher vales of β tend to
encourage exploitation of the search space, and lower values
encourage exploration. More details of these parameters and
the underlying mathematical formulation can be found in
[14].

IV. IMPLEMENTATION DETAILS

In the case of our SVM model selection problem, the two
parameters C and γ create a two-dimensional search space
to which we can apply our PSO and APS-SVM optimization
techniques.

As both APS-SVM and PSO are iterative population-
based optimization techniques, we can easily perform side-
by-side comparisons of the two techniques. By using the
same number of individuals and the same number of itera-
tions for both algorithms, we can perform a more rigorous
analysis of the comparative performance of the two algo-
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rithms. For both the PSO and the APS-SVM algorithm, we
used eight individuals (particles or ants) over eight iterations.

We analyzed the results of the APS-SVM and PSO
techniques in two ways: first, we compared the classification
accuracy of parameterized SVMs using a constant number of
training runs, which we also compared against the traditional
grid search technique; and second, a comparison of how
quickly each of the optimization techniques arrived at near-
optimal parameters.

For the PSO algorithm, we used the gbest model of
PSO [11] with an intertial coefficient of 0.75, a cognitive
coefficient of 1.8, a social coefficient of 2, and a velocity
clamping factor of 0.5. For the APS-SVM algorithm, we
used a scaling factor (β) of 0.6, a rank influence factor
(α) of 4, and a pheremone evaporation factor (ρ) of 0.9.
These PSO and APS-SVM settings were found to encourage
convergence toward a maximum in a limited number of
iterations.

The SVM training and testing was performed using the
LIBSVM software package [3]. The data used for our tests
were retrieved from the UCI Machine Learning Repository
[15]. The specific datasets used were a DNA splicing junc-
tion dataset, a German credit score dataset, an Italian wine
characteristic dataset, a vehicle silhouette dataset, and the
oft-used iris flower dataset.

V. RESULTS

Table I shows the classification accuracy of SVMs where
the parameters are discovered via grid search, PSO, and
APS-SVM techniques. The grid search was run over a grid
of 13 C values and 12 γ values, for a total of 156 SVM
training runs. The APS-SVM and PSO algorithms were
limited to 64 training runs: eight individuals (particles or
ants) over eight iterations.

SVM Classifier Accuracy
Grid∗ PSO† APS-SVM†

Avg StDev Avg StDev Avg StDev
DNA 96.13% 0.14% 96.49% 0.12% 96.42% 0.12%
Credit 77.46% 0.15% 77.50% 0.28% 77.44% 0.17%
Wine 99.16% 0.39% 99.21% 0.29% 99.33% 0.24%
Vehicle 85.90% 0.36% 86.11% 1.79% 86.67% 0.18%
Iris 97.47% 0.28% 97.87% 0.28% 97.93% 0.42%
∗Each grid search requires 156 SVM training runs
†PSO and APS-SVM searches limited to 64 total SVM training runs.
Averages and standard deviations computed over ten trials

Table I
CLASSIFICATION ACCURACY RESULTS

In order to mitigate the stochastic nature of the APS-
SVM and PSO algorithms, we performed ten trials of
each algorithm for the specified number of iterations, and
provided the resulting average SVM classification accuracy
and standard deviation over these ten trials.

Figure 1 offers an representative example of the rate at
which the PSO and APS-SVM techniques approach the near-
optimal SVM parameters. The “APS-SVM Best” and “PSO
Best” lines represent the classification accuracy resulting
from the best parameter choice by the algorithms during
a particular iteration of the algorithm. The “APS-SVM
Average” and “PSO Average” lines represent the average
of the classification accuracy resulting from the parameters
selected by each individual of the algorithm’s population at
a particular iteration. Again, much like in Table I, the values
in Figure 1 represent averages over ten trials.
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Figure 1. Comparison of APS-SVM and PSO performance, Vehicle
Silhouette dataset

As can be seen in Table I, both PSO and APS-SVM
demonstrate selection of parameters resulting in SVM clas-
sification accuracy roughly equivalent to the much more
computationally-intensive grid search selection. They are
able to find these parameters when restricted to 64 total
training runs as opposed to the 156 training runs required
by the grid search, a significant savings in the total amount
of required training time.

The rates at which the PSO and APS-SVM algorithms ap-
proach near-optimal parameters, as exemplified in Figure 1,
allow us to compare some of the operational characteristics
of the PSO and APS-SVM techniques. By examining the
“Best” and “Average” lines of the two algorithms, we can
get a sense of the algorithms’ underlying exploitative and
exploratory abilities, respectively.

A quick inspection of the “Best” lines shows that both
the PSO and APS-SVM algorithms are able to arrive at
high-quality parameter selections at early iterations in the
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process. Thus, we conclude that both algorithms are able
to adequately exploit the search space and provide us with
a local near-optimum value in a reasonable number of
iterations.

Analysis of the “Average” lines in Figure 1—and similar
graphs developed for the other datasets but not included
here—demonstrates more of a difference between the APS-
SVM and PSO algorithms for the SVM model selection
problem. The higher average classification accuracy for the
PSO algorithm can be explained by the nature of our imple-
mentation of the PSO and APS-SVM algorithms; in particu-
lar, the gbest model of PSO tends to focus on exploiting one
particular region as the cost of exploration. Meanwhile, the
mixture of multivariate Gaussian distributions maintained by
the APS-SVM algorithm tends to emphasize exploration of
the search space.

It is important to note that much of the exploitative and ex-
ploratory abilities of the PSO and APS-SVM algorithms can
be controlled by changing the implementation parameters
used by these algorithms. However, we note that we arrived
at our results using the same APS-SVM and PSO control
parameters for each of the datasets attempted. Thus, while
SVM classification accuracy is heavily dependent on the
choice of SVM parameters customized for a specific dataset,
the chosen APS-SVM or PSO control parameters were
valid for every dataset we attempted. These implementation
parameters, once discovered, should not need to be changed
for new, previously unseen datasets.

VI. CONCLUSION AND FUTURE WORK

We have demonstrated the application of two metaheuris-
tic techniques—particle swarm optimization and ant colony
optimization—to the SVM model selection problem, with
promising results as compared to the more computationally-
intensive naı̈ve grid search technique often used for this
problem. Furthermore, we have performed an assessment
and side-by-side comparison of the results of our imple-
mentation of ACO and PSO algorithms to the SVM model
selection problem.

While our implementation already provides a significant
time savings over traditional grid search methods, additional
testing and analysis may provide even greater improvement.
By varying the parameters for both our APS-SVM and PSO
implementations and examining the results, we may be able
to increase the algorithms’ abilities to explore and exploit
the parameter search space of an SVM classifier. Further
testing, comparison, and analysis may both provide us with
a more finely-tuned SVM parameter selection technique and
foster novel enhancements to our existing implementations.
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