®

Check for
updates

Reducing Time Complexity of Fuzzy C Means
Algorithm

Amrita Bhattacherjee!, Sugata Sanyal?, and Ajith Abraham?®
I Department of Statistics, St. Xavier’s College, Kolkata 700016, India
2 School of Technology and Computer Science, Tata Institute of Fundamental Research,
Mumbai 400005, India
3 Machine Intelligence Research Labs (MIR Labs) Scientific Network for Innovation and
Research Excellence, Auburn, WA 98071, USA
ajith.abraham@ieee.org

Abstract. The Fuzzy C-Means clustering technique is one of the most popular
soft clustering algorithms in the field of data segmentation. However, its high
time complexity makes it computationally expensive, when implemented on very
large datasets. Kolen and Hutcheson [1] proposed a modification of the FCM
Algorithm, which dramatically reduces the runtime of their algorithm, making it
linear with respect to the number of clusters, as opposed to the original algorithm
which was quadratic with respect to the number of clusters. This paper proposes
further modification of the algorithm by Kolen et al., by suggesting effective seed
initialisation (by Fuzzy C-Means++, proposed by Stetco et al. [2]) before feeding
the initial cluster centers to the algorithm. The resultant model converges even
faster. Empirical findings are illustrated using two synthetic and two real-world
datasets.

Keywords: Clustering - Fuzzy partitions - Time complexity - Fuzzy C-means
algorithm - Unsupervised machine learning

1 Introduction

Cluster analysis or clustering is a method of grouping data points into different clusters
or categories such that objects within the same cluster are more similar to each other than
objects in different clusters. The objects are grouped together based on some similarity
measure, which is specified depending on the data at hand and the objective of the task.
This method has widespread application, ranging from pattern recognition and market
segmentation to image processing and various other fields of data analysis.

The Fuzzy C-Means algorithm is one such clustering algorithm, which facilitates
soft partitioning of the objects in the dataset. The earliest applications of clustering
primarily focused on ‘crisp’ partitions of objects, where each point either fully belongs
to a category or does not belong to a category at all. This approach relied on the idea that

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Abraham et al. (Eds.): IBICA 2021, LNNS 419, pp. 332-347, 2022.
https://doi.org/10.1007/978-3-030-96299-9_33

Reducing Time Complexity of Fuzzy C Means Algorithm 333

an object in a category does not bear any resemblance to any of the categories except to
the one it belongs to. Soft partitions, on the other hand, rely on the idea that each object is
characterised by the extent to which they belong to all the clusters/categories. A measure
of this extent of an object’s resemblance to each cluster is introduced by Zadeh (1965)
[11] in the form of what is now known as a ‘membership function’. The final goal is to
create partitions or clusters with soft or fuzzy margins. As stated by Bezdek et al. [3]: “A
fuzzy c-partition of (the dataset) X is one which characterizes the membership of each
sample point in all the clusters by a membership function which ranges between 0 and
1. The detailed definition of fuzzy c-means (FCM) partitioning and the corresponding
algorithm, as proposed by Bezdek et al. [3], is given in Sect. 3.1.

The main limitation of this algorithm is its time complexity and memory require-
ments. The algorithm alternates between estimating cluster centers from the membership
matrix and updating the membership matrix based on the cluster centers. As such, the
membership matrix, which is of the order of the number of objects to be clustered, is
repeatedly accessed and updated, on every iteration. This greatly affects the speed of
the algorithm when the dataset is very large. This problem has been widely addressed in
the literature. This paper focuses on the modification proposed by Kolen and Hutcheson
(2002) [1], where the membership matrix is not generated (or updated) iteratively. This
modification generates an algorithm which has a time complexity of O(ncp) as opposed
to Bezdek’s original FCM Algorithm, which had a time complexity of O(nc’p), where
n is the number of objects in the dataset, c is the number of clusters and p is the number
of features of each object/point in the data. Let us call this algorithm FCM-U, where U
refers to the membership matrix.

This paper employs the FCM-U algorithm and pairs it with the popular approach
of effective seed initialisation for even faster convergence. Here, the FCM++ algorithm
(proposed by Stetco et al. [2]) is implemented for effective seed initialization. On club-
bing these two algorithms together, the model runs faster and empirically converges
earlier than the FCM-U algorithm. The following section discusses some related works
in reducing time complexity of the FCM Algorithm, followed by short descriptions of
the original FCM algorithm, the FCM++ approach and the FCM-U algorithm. Then, the
proposed model is defined, followed by a comparative analysis of the results obtained
when this algorithm is employed for clustering datasets. Finally, some further scopes of
improvement are discussed.

2 Related Works

Several researchers have proposed methods to tackle the problem of high computational
cost that comes with implementation of the Fuzzy C-Means algorithm.

In 1986, Cannon, Dave and Bezdek [4] proposed an Approximate Fuzzy C-Means
algorithm where the exact variates in the equation are replaced with integer/real-valued
estimates. Tolias and Panas [5] applied spatial constraints on image segmentation
problems using a fuzzy rule-based system, which showed reduced computational time.

334 A. Bhattacherjee et al.

In 1994, Kamel and Selim [6] proposed two algorithms that converged faster than the
FCM algorithm, having adopted a continuous process where the algorithm starts updating
the membership values as soon as a part of cluster centers are updated. In 1998, Cheng
etal. [7] proposed a multi-stage random sampling approach where the cluster centers are
estimated after taking repeated random samples from the data. Then, the centroids are
initialised over the entire data. This process reported a speed-up of 2-3 times than the
original algorithm. Hore et al. [8] proposed a single-pass fuzzy c-means algorithm using
weighted point calculation. In 2002, Kolen and Hutcheson [1] proposed a modification
which eliminates the task of repeatedly updating the membership matrix, this reducing
the time complexity to a linear function of the number of clusters; as opposed to the
original algorithm which was a quadratic function of the number of clusters. This was
particularly beneficial for large datasets. In fact, this paper implements this approach in
the proposed algorithm along with effective seed initialisation. Another angle of attack
adopted by researchers is manipulating the data itself. Hung and Yang [9] proposed the
psFCM algorithm which used a simplified subset of the original data to speed up the
convergence. Several approaches were made to eliminate initial bias and reduce the time
taken for convergence of the FCM algorithm. These research works mainly focused
on modifying the initial centroids which are passed to the algorithm. Effective seed
initialisation shows promising result in removing initial bias of the FCM algorithm. In
2015, Stetco, Zeng and Keane [2] extended the idea of K-Means++ [10] algorithm into
the standard version of Fuzzy C-Means.

3 Fuzzy C-Means (FCM) Algorithm and Its Variants

LetX = {X1, X2, ..., X} be a set of n points in RP, the p-dimensional Euclidean space.
For 1 < ¢ < n,c € N, the set of natural number, a fuzzy c-partition of X is represented
by (U, X) where, U is a matrix of order n x c, that is —

U = (()) 1

where, u;; denotes the membership value of the i point in X to the j fuzzy set. Here,
1 <i<mnand1 < j < c. The values of the membership matrix are subject to the
following conditions:

I 0<uy<1Vij
2. Z;:] MU == 1, Vl
3. 0< Yl uj <nVj

Reducing Time Complexity of Fuzzy C Means Algorithm 335

The FCM algorithm defines a constant m, which is called the fuzziness parameter
and corresponds to the degree of fuzziness of the clusters.
By convention, we take m > 1. The FCM Algorithm then defines ‘cluster centers’
Vi, 1<j<cas:
n
iz Xillf]

> u?,’-’

The membership function is typically defined as:

< ranaT)
w=(5(#)7) - @

forl <i<nand 1 <j<c

)

Vi =

where,
djj = |lx; — vjl| is the distance of the it point in X to the j* cluster center.
The cost function is defined as:

n C
In(U.ViX) =" " ultll —vy? 3)

i=1 j=1

Therefore, the Fuzzy C-means algorithm as proposed by Bezdek is given by:

Algorithm 1: FCM

. Fix ¢, m. Choose an initial membership matrix U®

1
2. At step k, compute the means vj, 1<j<c using equation 3.1.1
3. Update membership matrix U, using equation 3.1.2

4

. Repeat steps 2 and 3 until:
|| g — y® || < €. Or, until k reaches the maximum number of
permissible iterations

3.1 Effective Seed Initialization and Eliminating the U-Matrix

The Fuzzy C-Means++ algorithm as proposed by Stetco et al. uses effective seed
initialisation to determine the starting values for the FCM algorithm.
Before stating the algorithm, we state some notations:

c : number of clusters
p : dimension of the datapoints

: the spreading factor
: the ¢ x p prototype matrix
: the n x p data matrix

X< w

336 A. Bhattacherjee et al.

They defined a value P;, corresponding to the i data point in X, given by:

& Y)
~ sum(d®)

where, d°(x;, V) denotes the distance (raised to the power s) from a point x; € X to its
closest representative in R. The value of s controls the spreading factor of the algorithm.
A small value of s will choose centers which are very close to each other, whereas a
very large value of s might lead to the choice of outliers as cluster centers. When s is
taken to be zero, the algorithm reduces to random seed initialisation. Further, the first
point is randomly chosen and determines the selection of all the other centers. With the
values and parameters defined above, the FCM++ algorithm by Stetco et al. is as given
in Algorithm 2.

Algorithm — 2: FCM++ initialisation

function FCM++ (X, c)

begin
V=V U random point from dataset
while sizeOfV < k do
begin

choose x; EX with probability P;
V=V U x
end
return V
end //FCM++ ends here

We now state the algorithm as proposed by Kolen et.al. which constitutes the main
body of the algorithm. In 2002, John Kolen and Tim Hutcheson proposed a modification
in the algorithm which reduced the time of computation drastically. They eliminated the
storage of the membership matrix at every iteration, and directly computed the updated
cluster centers and is detailed in Algorithm 3.

Notations:

: number of clusters

: dimension of the datapoints
: number of data points

: the fuzziness coefficient

: the ¢ x p prototype matrix
: the current cost measure

: the n x p data matrix

X g <8 B80T

Reducing Time Complexity of Fuzzy C Means Algorithm 337

Algorithm — 3 : Eliminating U-Matrix
function UpdateV(V,c,X,p,n,m)

begin
//save the current V matrix
oldv=v
//Initialise cost at 0
J =20
rowsumU = 0 //c-dimensional vector
V=0 //initialise new V matrix to zero
for k=1 to n do
begin

//Calculate the distances from the current datapoint X[i] to the
centers in oldV

//Calculate the numerators and denominators of equation 3.1.2 for
this data point

//initialise accumulator for denominator in equation 3.1.2

denom3 = 0

for i = 1 to ¢ do

begin
//calculate distance between current datapoint and it" cluster
center
dsqgr[i] = (|[X[k]-0ldV[i]|])?

//save numer3[i] for future use
numer3[i] = (dsqr[i]) @/m1

//Update denom3
denom3 = denom3 + 1/numer3[i]
end
for 1 = 1 to ¢ do
begin
u = (numer3[i]*denom3) (™
//Update the cost (optional)
J = J + dsqgr[i]*u

//Update the numerator of prototype centers
V[i] = VI[i] + u*X[k] //p-vector operation

//Update the future denominators of the centers
rowsumU[i] = rowsumU[i] + u
end //for i = 1 to ¢
end //for k = 1 to n

//Combine numerator and denominators
for i = 1 to ¢ do
V[i] = V[i]/rowsumU[i] //p-vector operation

return V,J
end //UpdateV ends here

3.2 Proposed Algorithm

This paper implements an algorithm which combines the previous methods into a single
implementation. In other words, we first generate a prototype matrix using effective seed
initialisation (FCM++), and then use this initial prototype matrix as the starting point of
the algorithm as stated in Sect. 3.1. Additionally, some modifications were made so that
the algorithm works even when the cluster centers are points from the dataset itself. The
algorithm is as stated below:

338 A. Bhattacherjee et al.

Step 1 : Run algorithm 2 to obtain initial cluster centers

Step 2 : Pass V obtained in Step 1 to algorithm 3. Run algorithm 3 with some
modifications. The modified version is given below -

function ModifiedUpdateV(V,c,X,p,n,m)

begin
oldv=v
J =0
rowsumU = 0
V=20
for k=1 to n do
begin
denom3 = 0
flag = -1 //flag to check equality of points with cluster center
for 1 = 1 to ¢ do
begin
dsqr[i] = (lIX[k]-oldV[i]]|])?
if dsgr[i]==0:
flag = 1
continue to next i
numer3[i] = (dsqr[i]) /™1
denom3 = denom3 + 1/numer3[i]
end
for i = 1 to ¢ do
begin
if i==flag:
u=1
V[i] = V[i]+X[k]
rowsumU[1] = rowsumU[i]+1
else:

u (numer3[i] *denom3) ("

J J + dsqgr[i]*u
V[i] = V[i] + u*X[k]
rowsumU[1] = rowsumU[i] + u

end //for i = 1 to c
end //for k = 1 to n

for i =1 to ¢ do
V[i] = V[i]/rowsumU[i]
return V,J
end //UpdateV ends here

4 Experimental Results

Kolen and Hutcheson [1] illustrated the performance impacts of their modification in
great detail. The algorithm implemented in this paper shows further improvement in
computation speed owing to effective seed initialisation. The results are illustrated on
4 datasets — the Iris Dataset [12], Wine Dataset [13] and 2 synthetic datasets generated
from gaussian distributions. The time for convergence (to reach the same cost value) was
measured (in seconds) for both the original FCM algorithm and the proposed modified
algorithm while varying the number of clusters. The empirical findings are Tabulated in
Tables 1, 2, 3 and 4.

Table 1 indicate that the proposed algorithm provides a considerable gain in time
due to faster convergence with the same cost value. The time taken for convergence
is plotted in Fig. 1. The black points are the time taken (in seconds) by the original
algorithm, plotted against the number of clusters specified to the algorithm. To compare
the rate of change in time taken for each algorithm, a simple linear regression is fitted for
each of them. The following graph gives a visual representation of the results obtained.

Reducing Time Complexity of Fuzzy C Means Algorithm 339

Table 1. Time for convergence for the Iris dataset

Number of clusters Algorithm used
Original FCM Proposed FCM
2 0.058 0.021
3 0.147 0.047
4 0.193 0.072
5 0.299 0.093
6 0.384 0.101
040 Graph4.1.1
—— Original Algorithm
0.35 { — Proposed Algorithm
030 1
é 0.25 1
z 020 1
é 0.15 1
010 1
0.05 1 /

T T T T T T

20 25 30 35 40 45 5.0 55 6.0
Number of clusters

Fig. 1. Iris dataset performance

The regression equations obtained are:

Timeoriginal = (0.0804 x N) — 0.1054

Timepyoposea = (0.0206 x N) — 0.0156

where, N represents the number of clusters. The regression is done keeping the number of
features in the dataset constant. It can be noted visually from the graph that the time taken
by the original algorithm is consistently higher than that by the proposed algorithm. In
addition, the rate of increase in time as the number of clusters increases can be obtained
from the regression equations as follows:

Slope for Original Algorithm = 0.0804

Slope for Proposed Algorithm = 0.0206

Clearly, the rate of increase in time for a unit increase in the number of clusters
is approximately 4 times higher for the original algorithm than that for the proposed

340 A. Bhattacherjee et al.

algorithm. This validates a considerable amount of savings in time, especially for higher
number of clusters.

The time taken are recorded while keeping the cost value constant for a given num-
ber of clusters, which enables a fair comparison. The cost is calculated using (3). For
perspective, the performance of the proposed algorithm in predicting the correct clusters
can be visually estimated by looking at the following graphs. Figure 2 represents the
true clusters as available in ground truth labels of the dataset.

True Clusters Predicted Clusters
25 25 [] © 5
e o
e o oo o
o ofe o
® @ ©
20 20 o o0
o °
eo o L1
< e = »
6 o o § o
c 15 o0 O o0 00 c 15 ®
h . oo o = *e
B eee cece o S
= o oo * =
210 L LN 210
& &
o L)
05 L 05 o
e o o e o
LXK d w0 0:
© 0000000000 o © 0000000000 o
L] ©® o . o o
00 - - - . . - - - 00 : : : : r ; : :
45 50 55 6.0 65 70 15 80 45 50 55 6.0 65 70 75 80
Sepal Length(in cm) Sepal Length(in cm)

Fig. 2. Iris dataset: True and predicted clusters (red stars indicate the predicted cluster centers)

The Wine Dataset contains data on the results of a chemical analysis of 3 different
types of wine grown in the same region in Italy. The 13 different features for each
datapoint are actually the amount of each of the 13 different constituents found in the
analysis. The attributes are real-valued numbers. There is a total of 178 datapoints. The
time for convergence (to reach the same cost value) was measured (in seconds) for both
the original FCM algorithm and the proposed modified algorithm while varying the
number of clusters and the results are depicted in Table 2.

Table 2. Time for convergence for the Wine dataset

Number of clusters Algorithm used
Original FCM Proposed FCM
2 0.184 0.074
3 0.619 0.321
4 0.794 0.288
5 2.493 0.504
6 2.501 0.915

Th proposed algorithm, once again, shows significant economy in terms of time taken
till convergence. A similar study is done to obtain simple linear regression equations for

Reducing Time Complexity of Fuzzy C Means Algorithm 341

each of the algorithms. The regression lines are plotted against the number of clusters
in Fig. 3.

Graph 4.2.1

254 Original Algorithm
- Proposed Algorithm

20 1

15

10 1

Time in seconds

05

0.0 1

20 25 30 35 40 45 50 55 60
Number of clusters

Fig. 3. Wine dataset performance

The regression equations obtained are:

Timeoyiginai = (0.6508 x N) — 1.285

Timeproposea = (0.1865 x N) — 0.326

where, N represents the number of clusters. The regression is done keeping the number
of features in the dataset constant.

It can be noted visually from the graph that the time taken by the original algorithm is
consistently higher than that by the proposed algorithm. In addition, the rate of increase
in time as the number of clusters increases can be obtained from the regression equations
as follows:

Slope for Original Algorithm = 0.6508

Slope for Proposed Algorithm = 0.1865

Here, the rate of increase in time for a unit increase in the number of clusters is
approximately 3.5 times more for the original algorithm than that for the proposed
algorithm. The time taken are recorded while keeping the cost value constant for a given
number of clusters, which enables a fair comparison. The cost is calculated using (3).
Figure 4 illustrates the true clusters and the predicted clusters for the Wine dataset.

Isotropic gaussian blobs are generated using Python’s Scikit-learn library. The dataset
generated for this problem contains 3 clusters where cluster centers are generated at
random from the interval (—10, 10). The standard deviation for each cluster is set at
1 (to maintain homoscedasticity). The random state is fixed at ‘0’. Under the above
conditions, 300 points are generated, each having 3 features. The points are plotted on
a 2-dimensional space for visualisation in Fig. 5.

Alcohol

342 A. Bhattacherjee et al.
True Clusters Predicted Clusters
L J B
1600 . 1600 .
@ K3 @
°® %
1400 . 1400 .
® LN o %o
1200 oo % 1200 ee %
: % ee S e ¢
L] Se
% 1000 . 00t o'..". ® | &0 oot 2 ¢
& o o ee® * E
MR
800 . L e 800
o L J 4
.o' bt L e
600 eoe ¢ 0 @ F 600 ee & .. ‘
o.o' ~ ¢ N Eref) 0
4001 ® *e® .o ¢ wole ® 0, B < .
P) ‘. ° o * °
% P)
' 10 15 120 125 130 135 40 45 150, 10 115 120 125 130 135 140 145 150

Alcohol

Fig. 4. Wine data set: True and predicted clusters (red stars indicate the predicted cluster centers)

10 4 °
00.. ° .'

8.:‘.‘,,::‘&3,. .

SRR R A

| e

24 . .

0 .:{ ?:5... ° .

-4 °

L T 2 SRR

Fig. 5. Isotropic gaussian blobs

The time for convergence (to reach the same cost value) was measured (in seconds)
for both the original FCM algorithm and the proposed modified algorithm while varying
the number of clusters and the results are illustrated in Table 3 and the time taken over
the number of clusters is depicted in Fig. 6.

Referring to Fig. 6, the regression equations obtained are:

]"imeOriginal = (0.197 X N) —0.345

Timepoposed = (0.064 x N) — 0.115

where, N represents the number of clusters. The number of features in the dataset is
kept constant. It can be noted visually that the time taken by the original algorithm is
consistently higher than that by the proposed algorithm. In addition, the rate of increase

Reducing Time Complexity of Fuzzy C Means Algorithm 343

Table 3. Time for convergence for the Gaussian dataset (Type 1)

Number of clusters Algorithm used
Original FCM Proposed FCM
2 0.115 0.043
3 0.126 0.037
4 0.461 0.126
5 0.642 0.225
6 0.840 0.267
Graph 431
08— Original Algorithm
- Proposed Algorithm
v 06
=
c 041
=
=
0.2 1
0.0

20 25 30 35 40 45 50 55 6.0
Number of clusters

Fig. 6. Isotropic gaussian blobs dataset performance

in time as the number of clusters increases can be obtained from the regression equations
as follows:

Slope for Original Algorithm = 0.197

Slope for Proposed Algorithm = 0.064

Here, the rate of increase in time for a unit increase in the number of clusters is approx-
imately 3 times more for the original algorithm than that for the proposed algorithm.
Hence, we can conclude that the proposed algorithm facilitates a significant amount of
savings in time to converge to the same clustering result. Figure 7 illustrates the true and
predicted clusters of this simulated dataset.

As illustrated in Fig. 8, samples from 4 gaussian distributions of varying means and
standard deviations are taken to create overlapping clusters. For this particular evalua-
tion, the means of the 4 distributions are taken as (—3,1), (2,2), (1,—3) and (5,4) with
respective standard deviations 1, 0.5, 1.5 and 2 respectively. 250 points are generated
from each of these distributions (making a total of 1000 datapoints). The time for con-
vergence (keeping the cost same) is measured in seconds for both the original and the

344 A. Bhattacherjee et al.

True Clusters

Predicted Clusters

10

10 []
*® ® 9
.... '
8 8 s * .
° N Ve .,
o
: sy o T ety e
~ o4 *.% ’?: S 4 *.%’o:
g ° ° “ § Ld L] “
g - ° ‘5 « ™ *
& 2 o g 2
0 e o 0
PR T IE
"J}” . -2 *
-2 . s.. o
o.o‘ L4
-4 ® -4
T3 23 91 3 3 F 43 2T 3313 33
Feature 1 Feature 1

Fig. 7. Isotropic gaussian blobs dataset: True and predicted clusters (red stars indicate the

predicted cluster centers)

proposed algorithm are depicted in Table 4 and the clustering results are illustrated

in Figs. 9 and 10.

00 50

Fig. 8. Gaussian Dataset (Type 2)

75

10.0

Table 4. Time for convergence for the Gaussian dataset (Type 2)

Number of clusters Algorithm used
Original FCM Proposed FCM
2 0.738 0.321
3 1.973 0.619
4 1.264 0.442
5 5.288 0.910
6 12.016 2.402

Reducing Time Complexity of Fuzzy C Means Algorithm 345

The time taken by each of the 2 algorithms is regressed separately on the number of
clusters, and two regression equations are obtained. Note that even though the regression
line seems to suggest that, for 2 clusters, proposed algorithm takes more time than the
original algorithm, it can be seen from the plotted points that, in the data, the proposed
algorithm does in fact take less time for all clusters. The regression equations obtained
are:

Timeoyiginar = (2.587 x N) — 6.093

Timeproposed = (0.445 x N) — 0.842

where, N represents the number of clusters. The number of features in the dataset is kept
constant.

It can be noted that the rate of increase in time as the number of clusters increases
can be obtained from the regression equations as follows —

Slope for Original Algorithm = 2.587

Slope for Proposed Algorithm = 0.445

Here, the rate of increase in time for a unit increase in the number of clusters is approx-
imately 5 times more for the original algorithm than that for the proposed algorithm,
which is especially pronounced for high number of clusters. Hence, we can conclude that
the proposed algorithm facilitates a significant amount of savings in time to converge to
the same clustering result.

Graph4.4.1

12 {1 — original Algorithm .
- Proposed Algorithm

Time in seconds

20 25 30 35 40 45 50 55 60
Number of clusters

Fig. 9. Gaussian Dataset (Type 2) performance

For visualisation, the true clusters are plotted below, followed by a graph illustrating
the predicted clusters —

346 A. Bhattacherjee et al.

True Clusters
10

Predicted Clusters

10

8 8 o °® .
® * o
6 6 LS4 \:o .‘

Feature 2

-2

-4

-6

Feature 2

-2 4

-4

-6

® Moo

25 00 25 50
Feature 1

5.0

25

00 25 50
Feature 1

75 100

Fig. 10. Gaussian datset (Type 2): True and predicted clusters

5 Conclusions

Comparative analyses of the time taken for Algorithm 2 and Algorithm 3, when imple-
mented individually are already elaborated in [3] and [2] respectively. This paper com-
bined these algorithms and compared its performance with the original Fuzzy C-Means
algorithm to empirically confirm that it indeed accelerates the speed of the algorithm,
which becomes more evident for larger datasets and higher number of clusters. In fact,
the cluster accuracy stays intact (and in some cases, improves over the original FCM
algorithm). Empirical results indicate faster convergence with very high cluster accu-
racy (as confirmed by Adjusted Rand Index during runtime). One can be interested in
tailoring the algorithm to the specific data in hand. In this context, feature normalisa-
tion, feature engineering, sampling from the dataset could be viable options for further
speeding up the convergence. The FCM algorithm largely depends on the initial centers
selected. Further attempts could be made to eliminate the initial bias to ensure that the
algorithm converges to a better solution. FCM++ has been proven to be a good approach
in this context. However, testing other methods of effective seed initialisation (prefer-
ably along with Hutcheson and Kolen’s [1] algorithm) might yield promising results.
Combining other time-reduction approaches like random sampling of the datapoints or
multi-stage random sampling [7] have been proven to be very successful. Pairing this
strategy with the proposed algorithm is expected to perform extremely well for large
datasets. Another open field of application is image segmentation. FCM algorithm finds
manifold implementations in image segmentation problems, where the image sizes are
quite high. In such a scenario, modifying the algorithm to accommodate image data and
effectively reducing its runtime will open new avenues. The authors of this paper are
looking into a similar implementation on image data, and tailor the time complexity
reduction approach towards image-segmentation problems.

Reducing Time Complexity of Fuzzy C Means Algorithm 347

References
1. Kolen, J.F., Hutcheson, T.: Reducing the time complexity of the fuzzy c-means algorithm.
IEEE Trans. Fuzzy Syst. 10(2), 263-267 (2002)
2. Stetco, A., Zeng, X.-]., Keane, J.: Fuzzy C-means++: fuzzy C-means with effective seeding
initialization. Expert Syst. Appl. 42(21), 7541-7548 (2015)
3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput.
Geosci. 10(2-3), 191-203 (1984)
4. Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient implementation of the fuzzy c-means
clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2, 248-255 (1986)
5. Tolias, Y.A., Panas, S.M.: On applying spatial constraints in fuzzy image clustering using a
fuzzy rule-based system. IEEE Signal Process. Lett. 5(10), 245-247 (1998)
6. Kamel, M.S., Selim, S.Z.: New algorithms for solving the fuzzy clustering problem. Pattern
Recognit. 27(3), 421-428 (1994)
7. Cheng, T.W., Goldgof, D.B., Hall, L.O.: Fast fuzzy clustering. Fuzzy Sets Syst. 93(1), 49-56
(1998)
8. Hore, P., Lawrence, O.H., Dmitry, B.G.: Single pass fuzzy ¢ means. In: 2007 IEEE
International Fuzzy Systems Conference. IEEE (2007)
9. Hung, M.-C., Yang, D.-L.: An efficient fuzzy c-means clustering algorithm. In: Proceedings
2001 IEEE International Conference on Data Mining. IEEE (2001)
10. Arthur, D., Sergei, V.: k-means++: The Advantages of Careful Seeding. Stanford (2006)
11. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338-353 (1965)
12. https://archive.ics.uci.edu/ml/datasets/iris. Accessed 20 Nov 2021
13. https://archive.ics.uci.edu/ml/datasets/wine. Accessed on 20 Nov 2021

