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Abstract Recently a number of evolutionary multiobjective overlapping objective vectors in the objective space has not
optimization (EMO) algorithms have been proposed to find a been explicitly discussed. One reason for such little attention
variety ~of well-distributed ~ Pareto-optimal ~or near g gyerlapping objective vectors is that the performance of
Pareto-optimal solutions with a wide range of objective values. EMO algorithms has been often evaluated through
We focus on the handling of overlapping objective vectors in the ; . L Lo
objective space. First we show that there exist a large number of CompUtat'or.]al eXp_er'mems 9”_ multlc')bjectlve. optimization
overlapping objective vectors in each population when EMO Problems with continuous decision variables. Since almost all
algorithms are applied to multiobjective combinatorial EMO algorithms have diversity preserving mechanisms,
optimization problems with only a few objectives. We discuss the many overlapping objective vectors are not likely to exist in
n_umbe_r of overlapping objective_vectors from_a viewpoint of the  a50h population when they are applied to multiobjective
diversity-canvergence balance in the objective space. Next we optimization problems with continuous decision variables
implement two strategies to handle overlapping objective . .
vectors. One strategy is the removal of overlapping objective and/0r many O.ble(?t'ves' On the other hand, t_he hand“ng of
vectors (i.e., overlapping solutions in the objective space). In this Overlapping objective vectors seems to be an important issue
strategy, overlapping objective vectors are removed during the in the application of EMO algorithms to multiobjective
generation update phase except for only a single solution among combinatorial optimization problems with only a few
them. As a result, each solution in the next population has a objectives. In such an application, there may exist a large
different location in the objective space. The other strategy is the . - . .

. g . .~ number of overlapping objective vectors in each population.
removal of overlapping decision vectors (i.e., overlapping . ) )
solutions in the decision space) so that each solution in the next ~FirSt we examine whether there exist a large number of
population has a different location in the decision space. In this overlapping objective vectors in each population ugto
strategy, the next population may include overlapping objective computational experiments on a number of test problems. As
vectors because different solutions in the decision space are notg representative EMO algorithm, we use the NSGA-II
necessarily different in the objective space. Finally we examine algorithm of Debet al [4] because it is one of the most
the effect of each strategy on the performance of EMO -k d f tiv-used EMO  aldorith in th
algorithms  through  computational ~ experiments  on V_Ve hown and Irequently-use ) a.gorl ms in_the
multiobjective 0/1 knapsack problems. literature. As test problems, we use Min-Ex in Deb [2], ZDT1,

ZDT2 and ZDT3 in Zitzleret al [5], multiobjective 0/1

Keywords Diversity preserving mechanisms, evolutionaryknapsack problems in Zitzler and Thiele [6], multiobjective
multiobjective optimization (EMO), multiobjective combinatorial flowshop scheduling problems in Ishibuatt al [7], and
optimization, multiobjective genetic algorithms. multiobjective fuzzy rule selection problems in Ishibuchi and

Yamamoto [8]. It is shown that a large number of solutions are
overlapping with each other in the objective space in the

[. Introduction application of the NSGA-Il algorithm to combinatorial

Since Schaffer's work [1], a large number of evolutionar?pt'm'za}“on problems whl.Ie.th|.s s not the case in the
multiobjective optimization (EMO) algorithms have beerfPplication to function optimization problems. We further

proposed to find a variety of well-distributed Pareto-optimaq!SCUS_S experimental results 'from a .V|e.wp0|nt of the
or near Pareto-optimal solutions with a wide range cs:pversny-convergence balance in the objective space. More
objective values (e.g., see Deb [2] and Coelical [3]) specifically, we monitor the number of overlapping objective

Whereas various diversity preserving mechanisms have be&rors together with several performance indices that

discussed in the design of EMO algorithms, the handling greasure the convergence of solutions to the Pareto front and
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the diversity of solutions. We also examine the effect of If there exists a solutiow* that satisfies the following
incorporating an additional diversity preserving mechanismelationsx* is said to be the absolutely optimal solution of the
into the NSGA-II algorithm on the number of overlappingnultiobjective optimization problem in (1)-(2):
objective vectors.

Next we implement two strategies to handle overlappindi (x*) = max{fij (x) |[xOX} fori=12,.. k. (3
objective vectors. One strategy is the removal of overlapping
objective vectors (i.e., overlapping solutions in the objective In general, multiobjective optimization problems do not
space). Overlapping solutions in the objective space dngve such an absolutely optimal solution that is optimal with
removed during the generation update phase except forespect to all objectives. This is because different objectives
randomly chosen single solution among them. As a resultsually conflict with each other in multiobjective
each solution in the next population has a different location @ptimization. Thus a different concept of optimal solutions,
the objective space. The other strategy is the removal Which is defined based on a dominance relation between two
overlapping decision vectors (i.e., overlapping solutions igolutions, is often used in the field of multiobjective
the decision space). Duplicate copies are removed during ttimization.
generation update phase so that each solution in the nextetx andy be two feasible solutions of the multiobjective
population has a different location in the decision space (i.8aximization problem in (1)-(2). The solutignis said to
so that they are different from each other). It should be notdéminate the solutiox (i.e., y is better tharx) when the
that overlapping objective vectors are not necessarily tffi@llowing relations hold:
same solution in the decision space. That is, overlapping
objective vectors are not always overlapping with each othéli, fj(x) < fi(y) and H, f;(x) < fi(y) . (4)
in the decision space. Thus each population may include
overlapping objective vectors when we use the secondlIf there exists no feasible solutigrthat dominates, x is
strategy. said to be a Pareto-optimal solution. In this case,optimal

Effects of each strategy on the performance of the NSGAiH the sense that is not dominated by any other feasible
algorithm are examined through computational experimengslution. The set of all Pareto-optimal solutions is the
on multiobjective 0/1 knapsack problems. We show that thHeareto-optimal solution set. We denote the Pareto-optimal
two strategies slightly improve the performance of theolution set by St in this paper. The image of the
NSGA-Il algorithm. We also show that the NSGA-IIPareto-optimal solution set onto the objective space is called
algorithm is significantly improved by the two strategies whethe Pareto front. That is, the Pareto front is the Pareto-optimal
they are used together with the tournament selection schesodution set in the objective space.
with large tournament size based on the weighted sum fithesd.et Sbe a set of feasible solutions. When no solutidifn
function. That is, the removal of overlapping objectivalominated by any other solution i§, we call S a
vectors plays an important role under the high selectioron-dominated solution set in this paper.
pressure based on the weighted sum fitness function. . .

. : . . ) . B. Performance Indices of Solution Sets

This paper is organized as follows. First we explain basic i ) )

concepts of multiobjective optimization in Section II. Next Whereas EMO algorithms try to find all Pareto-optimal

we examine the existence of overlapping objective vectors §RIUtONS, it is not always easy to find true Pareto-optimal

each population thugh computational experiments on gSolutions of multiobjective optimization problems. Thus an

number of test problems in Section Iil. Then we examine VO algorithm usually presents a non-dominated solution set
effects of the two strategies for the handling of overlappingt© the decision maker at the end of its execution wheeaa
objective vectors in Section IV. Finally we conclude thi®€® viewed as an approximation for the Pareto-optimal

paper in Section V. solution set. o .
A number of performance indices have been proposed in

the literature to evaluate non-dominated solution sets (e.qg.,

Il. Multiobjective Optimization see Deb [2] and Coelket al [3]). Those performance indices

A. Multiobjective Optimization Problem have been used to compare different solution sets (i.e., to
Let us consider the following-objective maximization compare different EMO algorithms). There is, however, no
problem: performance index that can simultaneously measure various

aspects of non-dominated solution sets (e.g., their diversity
Maximize f(x) = (f1(x), f2(x), ..., fk(x)), (1) and their convergence to the Pareto-optimal solution set) as
subject tox I X, ) pointed out in some studies [9]-[11]. Moreover the use of only

a single performance index is sometimes misleading. Thus we
wheref(x) is an objective vectoffj(x) is theith objective use several performance indices in order to evaluate both the
function to be maximized is a decision vector, andis the diversity of non-dominated solution sets and their
feasible region in the decision space. convergence to the Pareto-optimal solution set.
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Let S and S be a non-dominated solution set and thdéowever, is minimum. That is, this solution set is very good in
Pareto-optimal solution set, respectively. The convergencetefms of the convergence but very poor in terms of the
the non-dominated solution s& to the Pareto-optimal diversity.
solution setS* is measured by the following performance In order to measure not only the convergence but also the
index called the generational distance [12]: diversity, Czyzak and Jaszkiewicz [13] used the following

performance index called the Rineasure (see Fig. 2):
GD(S) =L > min{|lf (x)=f(y)ll: ydS%, (5)
| S|xGs 1

DIr(S)= Ed ggmin{llf(x)-f(Y)Ili x0S}. (6)
y

where |[f (x) =f(y) || is the Euclidean distance between the

two solutionsx andy in the objective space. The generationahs shown in Fig. 2, the Qilmeasure is the average distance
distance is the average distance from each soluti8nadrits  from each Pareto-optimal solution in S* to its nearest
nearest Pareto-optimal solutionSh(see Fig. 1). solution inS.

The diversity of the non-dominated solution Setan be
more directly measured by the sum of the range of objective

o ° values for each objective function (see Fig. 3):
e e .
= / ° SpreadS) = 3 [max{ fi (x)} - min{ fj (x)}] . )
@© i=1 xOS xds
S o/.
) This measure is similar to the maximum spread of Zitzler
o [14].
In order to measure both the diversity and the convergence,
® we can also use the hypervolume measure [15] that calculates
the volume of the dominated region by the non-dominated

0 maximize f, solution setS in the objective space. The hypervolume
measure is illustrated in Fig. 4.

Figure 1. lllustration of the generational distance. Closed circles and open
circles correspond to Pareto-optimal solutionsStnand solutions inS,

respectively. «
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0 maximize fl Figure 3. lllustration of the spread measure. Open circles correspond to

solutions in the non-dominated solution Set

Figure 2. lllustration of the D& measure. Closed circles and open circles
correspond to Pareto-optimal solution$frand solutions ir§, respectively. o ) o
As shown in Fig. 4, the boundary of the dominated region in

the objective space is called the attainment surface [16]. From
. . . multiple attainment surfaces obtained by iterative executions
Whereas the generational distance measures the proximity ., emo algorithm for a multiobjective optimization

of thg non—dqmmated solution s8tto the Par.eto—opumal problem, we can calculate the 50% attainment surface as a
solution se®, it does not always mean the quali®tiet us kind of their average result. For details of the calculation of

consider an extreme case wh&eonsists of only a single yho 5094 attainment surface, see Fonseca and Fleming [16]
Pareto-optimal solution. In this case, the generational dlstargﬁd Deb [2]

is zero (i.e., its best value). The diversity of this solution set,
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from the reduced current population. This ranking procedure
is iterated until all solutions are tentatively removed from the
current population (i.e., until ranks are assigned to all
solutions). The ranking procedure is illustrated in Fig. 5
where solutions with higher ranks (i.e., smaller ranks) are
viewed as better solutions.

Diversity preserving is realized in the NSGA-II algorithm
by calculating a crowding measure for each solution among
those with the same rank after the ranking procedure is
completed. Roughly speaking, the crowding measure is the
sum of distances from adjacent solutions over each objective
(see Fig. 6 wher@a+b is assigned to a solution with Rank 3).

Figure 4. lllustration of the hypervolume measure. Open circles correspong gre specifically, two adjacent solutions of each solution are

to solutions in the non-dominated solution Set

C. NSGA-II Algorithm

found among those with the same rank for each objective.
Then the distance between these two adjacent solutions is
calculated with respect to the corresponding objective.

Recently developed EMO algorithms share some comméinally the calculated distance for each objective is summed
features such as fitness evaluation based on the dominaHBeoVver thek objectives. An infinitely large value is assigned
relation in (4), diversity preserving and elitism. The NSGA-[{0 extreme solutions with the minimum or maximum objective
algorithm of Debet al. [4], which is one of the most value of at least one objective among solutions with the same
well-known and frequently-used EMO algorithms, also had@nk. The calculation of the crowding measure is illustrated in
these features. In this sense, it is a typical EMO algorithm. frg. 6.
this paper, we use the NSGA-II algorithm due to its typicality

as well as its simplicity, popularity and high search ability.
The basic framework of the NSGA-II algorithm can be

written as follows:
[NSGA-II]
Step 1P = InitializeP)

Step 2: While the stopping condition is not satisfied, do

Step 3: P’ = GeneticOperation§)
Step 4: P = ReplaceP UP)

Step 5: End while

Step 6: Returii¥)

In Step 1, the populatidn is initialized. The initialization
is usually performed randomly. In Step 3, an offspring
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populationP’ is generated from the current populatieroy
selection, crossover and mutation. The standard binary

tournament selection scheme is usually used to choose a pair

of parent solutions. The size of the offspring populaibis
usually the same as that of the current popul&idn Step 4,

the best solutions are chosen from the merged population
(P U P) to construct the next populatioR as in the

(u +A)-ES generation update scheme. Elitism is realized in

Step 4 by choosing the best solutions from the current and
offspring populations.

Each solution in the current population is evaluated in Step
2 in the following manner to select a pair of parent solutions
using the dominance relation in (4) and a crowding measure.
First, Rank 1 is assigned to all non-dominated solutions in the
current population. Solutions with Rank 1 are tentatively
removed from the current population. Next, Rank 2 is

Figure 5. Ranking in the NSGA-II algorithm.
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assigned to all non-dominated solutions in the reduced currdrigure 6. Calculation of the crowding measure in the NSGA-Il algorithm.

population. Solutions with Rank 2 are tentatively removed
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In the binary tournament selection scheme in Step 3, twave 30 continuous decision variables in the unit interval [0,
solutions are randomly selected from the current populatioh]. That is, the decision space of these test problems is the
If the two solutions have different ranks, the better solutioB0-dimensional unit hyper-cube [0,39] All the six test
with the higher rank (i.e., smaller rank) is chosen as a pargmbblems in [5] can be written in the following form:
solution. If they have the same rank, the better solution with a
larger value of the crowding measure is chosen as a parktihimize fi(x) and fo(x) = g(x)h( f1(x), g(x )). (20)
solution. By iterating this tournament selection scheme, a pair
of parent solutions are selected. An offspring solution is |, aiI the first three test problems (ZDT1 to ZDT8)x)
generated from the selected pair of parent solutions Q}ﬁdg(x) are defined as follows:
crossover and mutation in our implementation of the NSGA-II

algorithm. The selection, crossover and mutation are iterated 9 n
until a pre-specified number of offspring solutions aref;(x) =x; and g(x) :1+T1 > X, (12)
generated. n=1im

In Step 4 of the NSGA-II algorithm, each solution in the
merged popu|a‘[ion is evaluated by the ranking procedure awaeren is the number of decision variables (i.e., 30). The first
the crowding measure in the same manner as in Step 3 #yiee test problems in [5] are different from each other in the
parent selection. A pre-specified number of the best solutiofi€finition of the functiorh(fy, g) as follows:
are selected from the merged population based on the rank of
each solution and its value of the crowding measure. In th®T1: h(f;, g)=1-./f1/g , (12)
generation update phase in Step 4 as well as the parent_ _ 2
selection phase in Step 3, solutions with higher ranks & '2: N(f1. 9)=1-(11/9)%, (13)
viewed as better solutions. Among solutions with the sanm®T3: h(fy, g)=1- /fllg - (f1/9)Bin(L0mfy) . (14)
rank, larger values of the crowding measure are viewed as
better.

. . . Zitzler and Thiele [6] used nine multiobjective 0/1
The convergence of solutions to the Pareto front is realiz

. . ) . ) Eﬂapsack problems, each of which has two, three or four
by choosing better solutions with respect to their ranks in t

: : jectives and 250, 500 or 750 items, to evaluate the
parent selection phase and the generation update phase. a’

di v of solut ) intained by choosi bett formance of a number of EMO algorithms. Each test
Iversity of solutions 1S maintained by choosing beUel, o m withk knapsacks (i.ek objectives andt constraints)
solutions with respect to the crowding measure amo

. , . dn items is written as follows:
solutions with the same rank. For more details of each step o

the NSGA-II algorithm, see Deb [2] and Debal [4] Maximizef(x) :(fl(X), fz(X), - fk(x )), (15)
. . . . . n
lll. Examination of Overlapping Objective  subjectto Y wjxj<c, i=12 ...k, (16)
Vectors 71
n
A. Test Problems where fi(x)= 3 pjXj, =12 ...,K. a7
j=1

As test problems, we use Min-Ex in Deb [2], ZDT1, ZDT2

and ZDT3 in Zitzleret al [5], multiobjective 0/1 knapsack . . . . . . .
. . S In this formulationx is ann-dimensional binary vectopj

problems in Zitzler and Thiele [6], multiobjective rowshopiS the profit of itenj according to knapsadkwi is the weight
scheduling problems in Ishibuatial [7], and multiobjective P m g P ! 9

. . . . f item | according to knapsadk andci is the capacity of
fuzzy rule selection problems in Ishibuchi and Yamamoto [SE'napsag:k' Each sgolutiorx ?s handled :as a binarS stri)rqg of
We briefly explain each test problem in this subsection. :

Deb [2] used the following two-objective minimizationlengthn' We denote thk-objectiven-item test problem as the

problem called Min-Ex to illustrate characteristics of ?E-n knapsack problem. Multiobjective (.)/l knapsack problems
. i ave been used frequently to examine the performance of
number of EMO algorithms:

EMO algorithms in the literature (e.g., Jaszkiewicz [17], [18],
N Knowles & Corne [19], Mumford [20], and Zydallis &
Minimize fi(x) =xq and fo(x) = (1+X2)/ xq, (8) Lamont [21]).
subject t00.1<x < land0< x; < 5. 9) When an EMO algorithm is applied to the multiobjective
0/1 knapsack problem in (15)-(17), genetic operations often
We represent each decision variable by a binary string génerate infeasible solutions that do not satisfy the constraint
length 30 using standard binary coding. conditions in (16). We use a repair method based on a
Zitzler et al [5] framed six test problems (ZDT1 to ZDT6) maximum profit/weight ratio as suggested by Zitzler and
to examine the performance of a number of EMO algorithmShiele [6]. When an infeasible solution is generated, a
We use the first three test problems (ZDT1 to ZDT3), whicfeasible solution is created by removing items (i.e., by
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changing the corresponding values in the binary skifigm In addition to the three-objective problem in (22), we also
1 to 0) in the ascending order of the maximum profit/weightse the following two-objective fuzzy rule selection problem
ratio defined as with the first two objectives in (22):

qj = max{pjj /wj :i=12,..k}, j=12...n. (18)  Maximize f1(x ), and minimize fo(x ) (23)

InIshibuchi et al [7], [22], multiobjective flowshop \ye genote thek-objective test problem withN candidate
scheduling problems were used to examine the performaqggzy rules as thk-N fuzzy rule selection problem.
of some EMO and memetic EMO algorithms. Each solution

of a flowshop scheduling problem withjobs is represented B. Results on Multiobjective Function Optimization

by a permutation of the given jobs {X, », ..., &} In this subsection, we report our experimental results on the

Two-objective test problems in [7], [22] are written as four multiobjective function optimization problems with
continuous decision variables: Min-Ex, ZDT1, ZDT2 and

Minimize fi(x) =max{C; |i =12, ...,n}, (19)  zDT3. The NSGA-Il algorithm was applied to each test

Minimize f,(x) = max{max{C; —d;, 0} [i =1,2,...,n}, (20) problem 50 times using the following parameter values:

whereC; andd; are the completion time and the due-date d®opulation size: 100,
theith job J, respectively. The first objective is to minimizeCrossover probability: 0.8 (One-point crossover),
the makespan (i.e., the maximum completion time) while thdutation probability: 1IN (N is the string length),
second objective is to minimize the maximum tardiness.  Stopping condition: 3000 generations.
Three-objective flowshop scheduling problems in [7], [22]
have the following objective in addition to the two objectives | Fig. 7, we show the average number of different

in (19) and (20): objective vectors at each generation for each test problem.
o n From this figure, we can see that the average number of
Minimize f3(x) = zci ' (21)  gifferent objective vectors was always more than 80% of the
=1 population size for all the four test problems. This means that

Each flowshop scheduling problem in [7] has 20 machingsch population did not include many overlapping solutions
and 20, 40, 60 or 80 jobs. We denote khebjective test jy our computational experiments on the four test problems of
problem withn jobs as thé-n flowshop scheduling problem. myltiobjective  function optimization with continuous

As test problems, we also use multiobjective fuzzy rulgecision variables.
selection problems of Ishibuchi and Yamamoto [8], [23]. Experimental results in Fig. 7 suggest that the existence of
They used EMO and memetic EMO algorithms fogyerlapping solutions is not a serious issue in the application
multiobjective design of fuzzy rule-based classificatiogf EMO algorithms to multiobjective function optimization
systems in the following manner. with continuous decision variables. This may be the reason

First a pre-specified number of candidate fuzzy rules wejghy this issue has not been explicitly discussed in many
generated from training patterns for each class. For detailss@fidies on EMO algorithms in the literature.

fuzzy rule generation, see the textbook on fuzzy data mining
by Ishibuchiet al [24]. Then non-dominated rule sets were
found as subsets of the generated candidate fuzzy rules with
respect to the following three objectives:

100

Maximize fi(x), minimize fy(x), and minimize f3(x )
(22)

90
wherex denotes a subset of the candidate fuzzy rulesxii®.,
a set of selected rulesi(x) is the number of correctly
classified training patterns by the selected rules fia(x) is
the number of the selected rules, &) is the total number
of antecedent conditions of the selected rules.

Let N be the total number of generated candidate fuzzy
rules (i.e.,N/M is the number of generated candidate fuzzy
rules for each class wheké is the number of classes). Then

each solution of the three-objective rule selection problem in ber of dift ) o
: ; ; Figure 7. Average number of different objective vectors at each generation
(22) 1S represented by a bmary string of Ie”gih for the multiobjective function optimization problems.

85

80

Number of different objective vectors

0 o000 2000 3000
Generation
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[
C. Results on Multiobjective Knapsack Problems 8
We applied the NSGA-Il algorithm to the three 2
two-objective knapsack problems (i.e., 2-250, 2-500 and £ 80 .
2-750 knapsack problems) 50 times using the same parameter g i A bn e B3
values as the computational experiments in Fig. 7 for the & gl o §
multiobjective function optimization problems. Fig. 8 shows & LF V/Af' |
the average number of different objective vectors at each & i
. L O 40f v -
generation for each two-objective knapsack problem. % \ o
LY l
5 W' —A— 2-500 knapsack problem
10 5 i —o— 3-500 knapsack problem|
' ' ' = —o— 4-500 knapsack problem|
Z 0 —To00 2000 3000

80§ .
Generation

60
Figure 9. Average number of different objective vectors at each generation

40 for the 500-item knapsack problems with two, three and four objectives.

—o— 2-250 knapsack problem) D. Results on Multiobjective Flowshop Scheduling

Number of different objective vectors

20t e
e gggg Ilznapsac:: prog:em_ We applied the NSGA-II algorithm to the two-objective
, © o naplsac pr.o em flowshop scheduling problems with 40 and 80 jobs (i.e., 2-40
0 1000 2000 3000 and 2-80 flowshop scheduling problems) using the following

Generation parameter values:

Figure 8. Average number of different objective vectors at each generatigppu'atlon Size. 1(_),0' .

for the two-objective knapsack problems. Crossover probability: 0.8 (Two-point order crossover),
Mutation probability: 0.8 per string (Shift mutation),
Stopping condition: 3000 generations.

From Fig. 8, we can see that the number of different

objective vectors rapidly decreased to about 20% of the These parameter values are almost the same as those in the

population size during the first 500 generations. That is, eaBFevious computational experiments in Fig. 8 and Fig. 9. For

population included a lager number of overlapping objectiv@enetic operations such as order crossover and shift mutation,

vectors especially in the early stage of evolution. see [7], [22], [25]. Various genetic operations for flowshop

We also examined the effect of increasing the number ®¢heduling were compared with each other in Mueatd.

objectives on the number of overlapping objective vectoig5]-

through computational experiments on 50®-item knapsack ~ Experimental results are summarized in Fig. 10. The

problems with two, three and four objectives (i.e., 2-50@umber of different objective vectors was decreased to about

3-500 and 4-500 knapsack problems). We used the sag{¥b6 of the population size in the first 1000 generations. This

parameter values as in the previous computationdléans that many solutions in each population were

experiments in Fig. 8. Experimental results are summarizedamerlapping with each other in the objective space.

Fig. 9. From Fig. 9, we can see that the increase in the numbeln the same manner as Fig. 10, we also applied the

of objectives leads to the increase in the number of differeéNSGA-Il algorithm to the three-objective flowshop

objective vectors (i.e., the decrease in the number ®gheduling problems with 40 and 80 jobs (i.e., 3-40 and 3-80

overlapping objective vectors). flowshop scheduling problems). Experimental results are
summarized in Fig. 11. From the comparison between Fig. 10
and Fig. 11, we can see that the increase in the number of
objectives leads to the increase in the number of different
objective vectors (i.e., the decrease in the number of
overlapping objective vectors). The same observation was
obtained for the multiobjective knapsack problems in the
previous subsection.
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1003 - . - . - 0.1 for the mutation form 1 to O,
—o— 2-40 scheduling problem| IN for the mutation from O to 1N(is the string
80 —-&-- 2-80 scheduling problem| length),
Stopping condition: 3000 generations.
60 These parameter values are almost the same as those in the
previous computational experiments on the other test
problems. We biased the mutation probability in order to
efficiently decrease the number of selected fuzzy rules in each
solution (for details, see [8], [23], [24]). We also used a
domain-specific heuristic trick to remove unnecessary fuzzy
rules from each solution as in [8], [23], [24].
Experimental results are summarized in Fig. 12 where the
Generation number of different objective vectors was very small (i.e.,
about 5% of the population size). This means that almost all
Figure 10. Average number of different objective vectors at each generatigPlutions in each population were overlapping with each other
for the two-objective flowshop scheduling problems with 40 and 80 jobs. in the objective space during the execution of the NSGA-II
algorithm on the two-objective fuzzy rule selection problems

40

20k LA NNV AN N C AN AP A TN EYAAY
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L 1 L 1 L
0 1000 2000 3000
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g 1003 : . : .
g DXLy Do e 2 DA A o
2 80 S 30 . : : : :
g e 2-150 fuzzy rule selection
= o ————2-300 fuzzy rule selection
o 60} - 2
S g
£ I £
ft )
S 4 : £
5 i —o— 3-40 scheduling problen] 5 10 7
= —-2~- 3-80 scheduling problen kS b
S \ | \ | \ ) r === === 3
Z 0 1000 2000 3000 2
- n 1 n 1 "
Generation Z 0 1000 2000 3000

Generation
Figure 11. Average number of different objective vectors at each generation

for the three-objective flowsh heduli bl ith 40 and 80 job
or the fhree-objective flowshop scheduling problems Wi an 10 SI'—'igure 12. Average number of different objective vectors at each generation

for the two-objective fuzzy rule selection problems with 150 and 300

E. Results on Multiobjective Fuzzy Rule Selection candidate fuzzy rules.

In computational experiments on fuzzy rule selection
problems, we used the wine data set in the UC Irvine Machine
Learning Repository. This data set is a three-class patterrin the same manner as Fig. 12, the NSGA-II algorithm was
classification problem with 13 continuous attributes and 17&°Plied to the three-objective fuzzy rule selection problems
training patterns. First we generated a pre-specified numbeVéth the 150 and 300 candidate fuzzy rules for the wine data
candidate fuzzy rules for each of the three classes of the wifd- Experimental results are summarized in Fig. 13. Whereas
data set. The number of candidate fuzzy rules for each cl&&8 number of different objective vectors increased from Fig.
was specified as 50 and 100 (i.e., 150 and 300 in total). Thb# (i-€., from about 5% to about 12% of the population size),
the NSGA-Il algorithm was applied to the two-objectivét was still very small in Fig. 13. That is, almost all solutions
fuzzy rule selection problem 50 times for each of the two setégre still overlapping with each other in the objective space
of the generated candidate fuzzy rules. We used the followif§en in the case of the three objectives.
parameter values:

Population size: 100,
Crossover probability: 0.8 (One-point crossover),
Mutation probability:
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30 - . - . - In Fig. 15, we show an intermediate population at the
3-150 fuzzy rule selection 1000th generation in a single run of the NSGA-II algorithm
——==3-300 fuzzy rule selection for each of the three parameter specifications. Fig. 15 visually

demonstrates the effects of a low crossover probability and a

I i
20 ) . - . .
high mutation probability on the diversity of solutions.

Nl e e b A b e o

Number of different objective vectors

0 — 000 2000 3000
Generation

Figure 13. Average number of different objective vectors at each generation

for the three-objective fuzzy rule selection problems with 150 and 300 o (0.8, 1/500) |

Number of different objective vectors

candidate fuzzy rules. 201 —-- (0.8, 4/500) 7
—o— (0.2, 4/500) -
F. Relation between Diversity and Convergence 0 ’ 1500 ' 2600 ' 3000

We have already shown that a large number of overlapping
objective vectors were included in each population when the
NSGA-Il algorithm was applied to some multiobjective
combinatorial optimization problems with only a feWFigure 14. Average number Qf_diff_erent objective vectors at each generation

L. . ., for the three parameter specifications on the 2-500 knapsack problem.
objectives. We have also shown that each population did not
include many overlapping objective vectors in the case of
multiobjective  function optimization with continuous
decision variables. In this subsection, we further examine the
number of overlapping objective vectors from the viewpoint
of the balance between diversity and convergence in
multiobjective evolution.

As shown in Ishibuchi and Narukawa [26], mutation
operations generally increase the diversity of solutions while
crossover operations improve the convergence of solutions to
the Pareto front. In order to examine the effect of crossover
and mutation on the number of overlapping solutions, we
performed computational experiments on the 2-500 knapsack
problems using different parameter specifications of the L . .
crossover and mutation probabilities. 18000 19000

We compared the following three specifications of the Total profit (knapsack 1)
crossover and mutation probabilities with each other: (0.8,

1/500), (0.8, 4/500) and (0.2, 4/500). The first combination @fgure 15. All solutions in the 1000th generation of a single run of the
the crossover and mutation probabilities is the same as tBGA-Il algorithm with each of the three parameter specifications.
previous computational experiments in Fig. 8. The second

combination uses a high mutation probability while the third

one uses a low crossover probability together with a high |, order to examine the relation between the number of
mutation probability. o _ different objective vectors and the other performance indices

In the same manner as in Fig. 8, the NSGA-Il algorithm wag on.dominated solution sets explained in Section I, we
applied to the 2-500 knapsack problem 50 times. In Fig. 14ynitored the generational distance, thexDeasure, the
we show the average number of different objective vector%read measure and the hypervolume measure for the
From Fig. 14, we can see that the use of & low Crossoygyn_qominated solution set at each generation of each run in

probability and a high mutation probability increased thg,,r computational experiments in Fig. 14. Average results
number of different objective vectors. This suggests that sugher 50 runs are summarized in Figs. 16-19.

a combination of the crossover and mutation probabilities has
a positive effect on the diversity of solutions.

Generation

o (0.8, 1/500)
e (0.8, 4/500)
o (0.2, 4/500)

20000

19000

18000

Total profit (knapsack 2)
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Figure 16. Generational distance at each generation for the three parameter

specifications on the 2-500 knapsack problem.
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Figure 19. Hypervolume measure at each generation for the three parameter
specifications on the 2-500 knapsack problem.

From Figs. 16-19, we can see that the use of a low
crossover probability and a high mutation probability (i.e.,
(0.2, 4/500) in each figure) improved the spread measure and
degraded the generational distance. That is, such a parameter
specification increased the diversity of solutions but degraded
the convergence of solutions to the Pareto front. This is
visually shown in Fig. 15 by depicting an intermediate
population of a single run for each of the three parameter
specifications.

The DIg measure and the hypervolume measure were also
improved by the use of a low crossover probability and a high
mutation probability as a result of the increase in the diversity
of solutions. This is because these two measures are related to
both the diversity and the convergence.

Figure 17. D1z measure at each generation for the three parameter During the initial stage of evolution where the number of

specifications on the 2-500 knapsack problem.

2
£ 5000 . .
[a2]
Q
5, 4000
[7)]
S l
e ! 3000
kS
S | 2000
p —
(%- —— (0.8, 1/500)
@ 1000 ———— (0.8, 4/500)
g — (0.2, 4/500)
0 o000 2000 3000
Generation

different objective vectors rapidly decreased in the case of
(0.8, 1/500) in Fig. 14, the convergence was improved
significantly in Fig. 16 while the diversity was not improved
in Fig. 18. During the last 2000 generations (i.e., from the
1000th generation to the 3000th generation) where the
number of different objective vectors gradually increased in
Fig. 14, the diversity of solutions was also gradually improved
in Fig. 18.

From these observations, we can see that the number of
different objective vectors was related to the diversity of
solutions in our computational experiments on the 2-500
knapsack problem.

G. Incorporation of Diversity Preserving Mechanism

In the previous subsection, we improved the diversity of
solutions by the use of a low crossover probability and a high
mutation probability. Here we use a similarity-based mating
scheme of Ishibuchi and Shibata [27]-[29]. They proposed an

Figure 18. Spread measure at each generation for the three paramd@@a of recombining similar solutions [27] and extended it to

specifications on the 2-500 knapsack problem.

the recombination of extreme and similar solutions [28], [29].
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Their similarity-based mating scheme is shown in Fig. 26ame manner as the previous computational experiments in
where one parent (say Parent A) is chosen frazandidates Fig. 8. That is, the crossover and mutation probabilities were

and its mate (say Parent B) is chosen ffboandidates. specified as 0.8 and 1/500, respectively. Experimental results
are summarized in Figs. 21-25 (i.e., the number of different
T objective vectors in Fig. 21, the generational distance in Fig.
22, the Dk measure in Fig. 23, the spread measure in Fig. 24,
Crossover and the hypervolume measure in Fig. 25).
| |
Parent A Parent B

Selection of the most | Parent A Selection of the most
extreme solution | > similar solution to

Parent A

1 2 Tt a HL_l Hzl...Hﬁ_l

Figure 20. Similarity-based mating scheme [27], [28].

—o— (a,B)=(1,1)

Number of different objective vectors

201 —- (a,B) = (5, 5)
i —— (a! B) = (101 10)-
In the similarity-based mating scheme, fissttandidates 0 : 1000 5000 3000
are selected from the current population by iterating the .
Generation

standard binary tournament selection procedurmes. Next

the average objective vector of the seleatechndidates is

calculated in the Objective space. The most dissimilar Oﬁ'@ure 21. Average number of different objective vectors at each generation
L. . . of the modified NSGA-II algorithm on the 2-500 knapsack problem.

from the average objective vector among ¢heandidates is

chosen as the first parent (Parent A in Fig. 20). The

dissimilarity (and the similarity) is measured as the Euclidean o

distance in the objective space. Tifwandidates are selected o S 1000 r— ' ' ' '

by iterating the standard binary tournament procefiraes. c = m\ — (@,B)=(1,1)
Finally the most similar one to Parent A among fBe % 800 ———=(a,B)=(55) A
candidates is chosen as its mate (i.e., Parent B in Fig. 20). 5 \ (a.p)=(10,10) .

T
—

In this manner, extreme and similar parents are recombinee[,f$ 600
by the similarity-based mating scheme. The tendency toC

choose extreme and similar parents can be controlled by theo:, 400k
values of the two parametersand. o

We incorporated the similarity-based mating scheme intoq.:)
the NSGA-Il algorithm. That is, the binary tournament 8 s 2o
selection procedure of the NSGA-II algorithm is iterated to g

selecta andf candidates in the modified NSGA-II algorithm. 0 ' 1000 5000 3000

All the other parts except for the parent selection scheme are .

the same as the original NSGA-II algorithm. Generation
We applied the modified NSGA-II algorithm to the 2-500

knapsack problem using the three specifications of the tvﬁgure 22. (_Benerational distance at each generation of the modified

parameterst andBas follows: (a, B) = (1, 1), (5, 5), (10, 10). NSGA-II algorithm on the 2-500 knapsack problem.

It should be noted that the modified NSGA-II algorithm with
(1, 1) is exactly the same as the original NSGA-II algorithm.
This is because the binary tournament selection is executed
only once to choose a single parent. The larger the values of
these two parameters are, the modified NSGA-II algorithm
has the stronger tendency to choose extreme and similar
parents.

Our computational experiments were performed in the
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From these results, we can see that the similarity-based
mating scheme increased the number of different objective
vectors (Fig. 21), improved the diversity of solutions (Fig. 24),
and degraded the convergence of solutions (Fig. 22). The D1
measure (Fig. 23) and the hypervolume measure (Fig. 25)
were improved by the similarity-based mating scheme as a
result of the improvement in the diversity of solutions.

IV. Removal of Overlapping Objective Vectors

In the previous section, we demonstrated that a large number
of overlapping objective vectors were included in each
population when the NSGA-Il algorithm was applied to

Figure 23. DI1g measure at each generation of the modified NSGA-Imultiobjective combinatorial optimization problems with
algorithm on the 2-500 knapsack problem.

Spread measure

[]
b=
Q

B

5000,

- (a! B) = (11 1)
- = (a,ﬁ):(S, 5) T
(a! B) = (101 10) 1
1000 2000
Generation

3000

only a few objectives. We also demonstrated that the number
of overlapping objective vectors was decreased by diversity
preserving efforts such as the use a higher mutation
probability and the incorporation of the similarity-based
mating scheme. In this section, we examine a more direct way
for diversity preserving: removal of overlapping objective
vectors.

A. Two Strategies for Removing Overlapping Solutions

We remove overlapping objective vectors during the
generation update phase so that each solution in the next
population has a different location in the objective space. That
is, overlapping objective vectors are removed from the
merged population before the next population is constructed.

In order to keep the population size constant (i.e., to
prevent the next population from becoming smaller than the
population size), we first generate an initial population with

Figure 24. Spread measure at each generation of the modified NSGAflo overlapping objective vectors. In this case, the number of
algorithm on the 2-500 knapsack problem.

Hypervolume measure

Better

Worse«

(x10%) ,
4.0 i
3.9}
3.8}
s [y — (@B)=(11)

/ - (a,B):(S, 5)
3.6r |/ (a, B) =(10, 10)

0 1000 2000
Generation

3000

different objective vectors in the merged population is always
larger than or equal to the population size. This means the size
of the merged population is always larger than or equal to the
population size even after overlapping objective vectors are
removed. Thus we can always construct the next population of
the pre-specified size with no overlapping objective vectors.
We also examine a similar strategy where overlapping
decision vectors (i.e., overlapping solutions in the decision
space) are removed from the merged population. Thus each
solution in the next population has a different location in the
decision space. This means that each solution is different from
each other (i.e., no duplicate copies of solutions are included
in the next population). When we use this strategy, we first
generate an initial population with no duplicate copies.

B. Effects of Removing Overlapping Solutions

Through computational experiments on the(® knapsack
problem, we examined the effect of the two strategies on the
performance of the NSGA-II algorithm. As in the previous

Figure 25. Hypervolume measure at each generation of the modifiedaction. we applied the NSGA-Il algorithm to the 2-500
NSGA-II algorithm on the 2-500 knapsack problem. ’

knapsack problem 50 times using the following parameter
values:
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(]
Population size: 100, o) g 1000 : . : .
Crossover probability: 0.8 (One-point crossover), 8 = —o— NSGA-II 1
Mutation probability: IN (N is the string length), ] 800l —-&-— Objective space removal
Stopping condition: 3000 generations. % i —uo— Decision space removal |
. . . o 600}
We also applied two variants of the NSGA-II algorithm to &
the 2-500 knapsack problem 50 times. One variant has thQ
removal strategy of overlapping objective vectors and them 400-
other variant has the removal strategy of overlapping deC|S|0nCD
vectors. The average number of different objective vectors atc|_> s 2008
each generation is shown in Fig. 26 for the second variant (i.&-? b
the removal of overlapping decision vectors). Since o . L . L .
0 1000 2000 3000

overlapping objective vectors are removed in the first variant,
the number of different objective vectors is always the same Generation

as the population size. In the second variant where

overlapping decision vectors are removed in the deCiSi%ure 27. Generational distance at each generation of the NSGA-II
space, each population can include overlapping objectigigorithm and its two variants on the 2-500 knapsack problem.

vectors because different solutions in the decision space are
not necessarily different in the objective space. Even so, the
number of different objective vectors is almost always the
same as the population size in Fig. 26. That is, the diversity of

N
o
o
o

—O0— NSGA-II T
—-2-— Objective space removal |

4]
&
o
=
solutions in each population was significantly improved by @ 4 1500 o— Decision space removal
the two removal strategies in terms of the number of diﬁerenta T
objegtive vectors. « 1200+
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2 & | 800
S 80 a) l
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% E’ 400
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g . Figure 28. D1g measure at each generation of the NSGA-II algorithm and
c —o— Decision space removal its two variants on the 2-500 knapsack problem.
=] 1 . 1 .
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i )
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Figure 26. Average number of different objective vectors at each generation m | . NSGA-II
of the NSGA-IlI algorithm and its two variants on the 2-500 knapsack

—-&-— Objective space removal
—o— Decision space removal

N
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?

problem.

d measure

The NSGA-II algorithm and its two variants are compared
with each other in terms of the four performance indices in
Figs. 27-30. Whereas the two removal strategies clearlyg
improved the diversity of solutions in each population in ¢
terms of the number of different objective vectors in Fig. 26,
their effects on the four performance indices in Fig. 27-30
were not clear. They slightly improved the diversity of 0 ‘ 1000 5000 3000
solutions (compare Fig. 29 with Fig. 24 for evaluating the .
effects of the removal strategies on the diversity of solutions). Generation
It is also interesting to note that the removal strategies did not

degrade the convergence of solutions to the Pareto front (§&|re 29. Spread measure at each generation of the NSGA-II algorithm and
Fig. 27) its two variants on the 2-500 knapsack problem.
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Figure 32. D1g measure at the 3000th generation of the NSGA-II algorithm
Figure 30. Hypervolume measure at each generation of the NSGA-#nd its two variants on the 2-500 knapsack problem.

algorithm and its two variants on the 2-500 knapsack problem.

C. Use of Higher Selection Pressure

Whereas the two removal strategies clearly increased the
diversity of solutions in each population in terms of the
number of different objective vectors, their effects on the four
performance indices were not clear in our computational &
experiments in the previous subsection. In this subsection, weo
examine their effects under higher selection pressure.

We performed computational experiments on the 2-500
knapsack problem using the NSGA-II algorithm and its two
variants under various specifications of the tournament size
for parent selection. We examined five specifications of the
tournament size: 1, 2, 5, 10, 20. Except for the tournament
size, we used the same parameter values in the previous
subsection. Average results at the 3000th generation over 50

easure

Sprea

Worse

Better

6000 T T T T T

—e— NSGA-II
—4— Objective space removal
5000 —<— Decision space removal .

4000

3000

1
1 2 5 10 20
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runs are summarized in Figs. 31-34. In each figure, the dottegure 33. Spread measure at the 3000th generation of the NSGA-II
line shows the performance of the Origina| NSGA-|plgorithm and its two variants on the 2-500 knapsack problem.

algorithm with the standard parameter values.
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Figure 31. Generational distance at the 3000th generation of the NSGA#figure 34. Hypervolume measure at the 3000th generation of the NSGA-II
algorithm and its two variants on the 2-500 knapsack problem. algorithm and its two variants on the 2-500 knapsack problem.
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From Figs. 31-34, we can see that the increase in the @
tournament size improved the three performance indices in 2 s00L ' ' ' ' o
Figs. 32-34 related to the diversity of solutions whereas it 7| N\ |
degraded the generational distance in Fig. 31. We can also se@
from Figs. 31-34 that the two removal strategies did not have 2 S00f }
a large effect on any performance indices. @
Finally we examined the use of the following weighted sum GE) 400+ .
in the parent selection phase of the NSGA-II algorithm: e
fitnesgx) = wy F1(X) +Wa F(x) + T Wi fic(X) (24) 2 | 3% —e—nsGA-I ]
11 272 kKA 5 " —A— Objective space removal
% 200 —O— Decision space removal .
wherew = (W, Wo, ..., W ) IS a weight vector: m L L . ! !
1 2 5 10 20
wy +wo + [MFwy, =1 and w; = Ofori=12,...,k. (25) Tournament size

. . i . Figure 36. D1 measure at the 3000th generation of the NSGA-II algorithm
The weight vectow is randomly specified whenever a Pallang its two variants with the weighted sum fitness function.

of parent solutions are to be selected. That is, two parent
solutions are selected based on the common weight vector.
The next pair of parent solutions are selected using a different
weight vector, which is randomly specified after a previous
pair of parent solutions are selected. The weighted sum fithess
function with a random weight vector was used in
multiobjective genetic local search algorithms (i.e.,
multiobjective memetic algorithms) in Ishibuchi and Murata
[30], Jaszkiewicz [31], [32] and Ishibucdtial [33]. It should

be noted that the ranking and the crowding measure of the
NSGA-II algorithm are still used in the generation update
phase. The weighted sum fitness function is used only in the
parent selection phase.
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In the same manner as the above-mentioned computational 2000— 5 5 10 50

experiments, we applied the modified NSGA-II algorithm and
its two variants with the weighted sum fitness function to the
2-500 knapsack problem 50 times. Experimental results are
summarized in Figs. 35-38 in the same manner as Fig. 31—5@
The dotted line in each figure shows the performance of the
original NSGA-II algorithm.

Tournament size

ure 37. Spread measure at the 3000th generation of the NSGA-II
orithm and its two variants with the weighted sum fitness function.
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Figure 35. Generational distance at the 3000th generation of the NSGA#igure 38. Hypervolume measure at the 3000th generation of the NSGA-II
algorithm and its two variants with the weighted sum fitness function.  algorithm and its two variants with the weighted sum fitness function.
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It is clear in Figs. 35-38 that the removal strategies haduaed in the original NSGA-II algorithm, the tournament size
positive effect on all the four performance indices. It is alsaas specified as 20 in its variant in Fig. 39 and Fig. 40. Fig. 39
clear that the two variants of the modified NSGA-II algorithnshows a final solution set obtained by a single run of each
with the weighted sum fitness function outperformed thalgorithm. On the other hand, Fig. 40 shows the 50%
original NSGA-II algorithm (the dotted line in each figure) inattainment surface over 50 runs of each algorithm. From these
many cases. figures, we can see that the use of the weighted sum fithess
function and the removal strategy significantly increased the
diversity of solutions while slightly degrading the
convergence of solutions to the Pareto front.

20000

V. Concluding Remarks

In this paper, we first clearly demonstrated that each
population included a large number of overlapping objective
vectors when the NSGA-II algorithm of Delt al [4] was
applied to multiobjective combinatorial optimization
problems with only a few objectives. The number of
overlapping objective vectors was small when it was applied
. . . . . to multiobjective function optimization problems with
17000 18000 19000 20000 continuous decision variables.
. Next we demonstrated that the number of overlapping

Total prOfIt (knapsaCk 1) objective vectors was decreased by the use of a lower
crossover probability and a higher mutation probability. We
Figure 39. A final solution set at the 3000th generation of each algorithm‘s:llSO showed that the similarity-based mating scheme [28],
[29] had a similar effect on the number of overlapping
objective vectors. Such diversity preserving efforts improved
the diversity of solutions and degraded the convergence of
i solutions to the Pareto front.

Then we examined two removal strategies: removal of
overlapping solutions in the objective space and the decision
space. We did not observe any clear performance
- improvement of the NSGA-II algorithm by the removal
strategies with respect to the four performance indices. All the
four performance indices were, however, clearly improved by
the use of the weighted sum fithess function with high
. selection pressure (i.e., with large tournament size) in the
NSGA-II algorithm together with the removal strategies. This
17000 18'000 : 119000 : 20000 M&Y suggest that aogd diver;ity—converggnce balanc_e was
realized by the use of the weighted sum fithess function with

Total prOﬁt (knapsaCk 1) high selection pressure and the removal strategies.

19000

e NSGA-II

18000~ Weighted sum & Removall

Total profit (knapsack 2)

20000+

19000

18000~

Total profit (knapsack 2)

Figure 40. The 50% attainment surface at the 3000th generation over 50
runs of each algorithm.
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