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Abstract: Recently a number of evolutionary multiobjective 
optimization (EMO) algorithms have been proposed to find a 
variety of well-distributed Pareto-optimal or near 
Pareto-optimal solutions with a wide range of objective values. 
We focus on the handling of overlapping objective vectors in the 
objective space. First we show that there exist a large number of 
overlapping objective vectors in each population when EMO 
algorithms are applied to multiobjective combinatorial 
optimization problems with only a few objectives. We discuss the 
number of overlapping objective vectors from a viewpoint of the 
diversity-convergence balance in the objective space. Next we 
implement two strategies to handle overlapping objective 
vectors. One strategy is the removal of overlapping objective 
vectors (i.e., overlapping solutions in the objective space). In this 
strategy, overlapping objective vectors are removed during the 
generation update phase except for only a single solution among 
them. As a result, each solution in the next population has a 
different location in the objective space. The other strategy is the 
removal of overlapping decision vectors (i.e., overlapping 
solutions in the decision space) so that each solution in the next 
population has a different location in the decision space. In this 
strategy, the next population may include overlapping objective 
vectors because different solutions in the decision space are not 
necessarily different in the objective space. Finally we examine 
the effect of each strategy on the performance of EMO 
algorithms through computational experiments on 
multiobjective 0/1 knapsack problems.  
 

Keywords: Diversity preserving mechanisms, evolutionary 
multiobjective optimization (EMO), multiobjective combinatorial 
optimization, multiobjective genetic algorithms.  
 

I. Introduction 

Since Schaffer’s work [1], a large number of evolutionary 
multiobjective optimization (EMO) algorithms have been 
proposed to find a variety of well-distributed Pareto-optimal 
or near Pareto-optimal solutions with a wide range of 
objective values (e.g., see Deb [2] and Coello et al. [3]). 
Whereas various diversity preserving mechanisms have been 
discussed in the design of EMO algorithms, the handling of 

overlapping objective vectors in the objective space has not 
been explicitly discussed. One reason for such little attention 
to overlapping objective vectors is that the performance of 
EMO algorithms has been often evaluated through 
computational experiments on multiobjective optimization 
problems with continuous decision variables. Since almost all 
EMO algorithms have diversity preserving mechanisms, 
many overlapping objective vectors are not likely to exist in 
each population when they are applied to multiobjective 
optimization problems with continuous decision variables 
and/or many objectives. On the other hand, the handling of 
overlapping objective vectors seems to be an important issue 
in the application of EMO algorithms to multiobjective 
combinatorial optimization problems with only a few 
objectives. In such an application, there may exist a large 
number of overlapping objective vectors in each population. 

First we examine whether there exist a large number of 
overlapping objective vectors in each population through 
computational experiments on a number of test problems. As 
a representative EMO algorithm, we use the NSGA-II 
algorithm of Deb et al. [4] because it is one of the most 
well-known and frequently-used EMO algorithms in the 
literature. As test problems, we use Min-Ex in Deb [2], ZDT1, 
ZDT2 and ZDT3 in Zitzler et al. [5], multiobjective 0/1 
knapsack problems in Zitzler and Thiele [6], multiobjective 
flowshop scheduling problems in Ishibuchi et al. [7], and 
multiobjective fuzzy rule selection problems in Ishibuchi and 
Yamamoto [8]. It is shown that a large number of solutions are 
overlapping with each other in the objective space in the 
application of the NSGA-II algorithm to combinatorial 
optimization problems while this is not the case in the 
application to function optimization problems. We further 
discuss experimental results from a viewpoint of the 
diversity-convergence balance in the objective space. More 
specifically, we monitor the number of overlapping objective 
vectors together with several performance indices that 
measure the convergence of solutions to the Pareto front and 
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the diversity of solutions. We also examine the effect of 
incorporating an additional diversity preserving mechanism 
into the NSGA-II algorithm on the number of overlapping 
objective vectors. 

Next we implement two strategies to handle overlapping 
objective vectors. One strategy is the removal of overlapping 
objective vectors (i.e., overlapping solutions in the objective 
space). Overlapping solutions in the objective space are 
removed during the generation update phase except for a 
randomly chosen single solution among them. As a result, 
each solution in the next population has a different location in 
the objective space. The other strategy is the removal of 
overlapping decision vectors (i.e., overlapping solutions in 
the decision space). Duplicate copies are removed during the 
generation update phase so that each solution in the next 
population has a different location in the decision space (i.e., 
so that they are different from each other). It should be noted 
that overlapping objective vectors are not necessarily the 
same solution in the decision space. That is, overlapping 
objective vectors are not always overlapping with each other 
in the decision space. Thus each population may include 
overlapping objective vectors when we use the second 
strategy.  

Effects of each strategy on the performance of the NSGA-II 
algorithm are examined through computational experiments 
on multiobjective 0/1 knapsack problems. We show that the 
two strategies slightly improve the performance of the 
NSGA-II algorithm. We also show that the NSGA-II 
algorithm is significantly improved by the two strategies when 
they are used together with the tournament selection scheme 
with large tournament size based on the weighted sum fitness 
function. That is, the removal of overlapping objective 
vectors plays an important role under the high selection 
pressure based on the weighted sum fitness function. 

This paper is organized as follows. First we explain basic 
concepts of multiobjective optimization in Section II. Next 
we examine the existence of overlapping objective vectors in 
each population through computational experiments on a 
number of test problems in Section III. Then we examine the 
effects of the two strategies for the handling of overlapping 
objective vectors in Section IV. Finally we conclude this 
paper in Section V. 

 

II. Multiobjective Optimization 

A. Multiobjective Optimization Problem 

Let us consider the following k-objective maximization 
problem: 

 

Maximize ))(...,),(),(()( 21 xxxxf kfff= , (1) 

subject to Xx ∈ , (2) 
 

where f(x) is an objective vector, fi(x) is the ith objective 
function to be maximized, x is a decision vector, and X is the 
feasible region in the decision space. 

If there exists a solution x* that satisfies the following 
relations, x* is said to be the absolutely optimal solution of the 
multiobjective optimization problem in (1)-(2): 

 

}|)(max{*)( Xxxx ∈= ii ff  for ki ...,,2,1= . (3) 
 

In general, multiobjective optimization problems do not 
have such an absolutely optimal solution that is optimal with 
respect to all objectives. This is because different objectives 
usually conflict with each other in multiobjective 
optimization. Thus a different concept of optimal solutions, 
which is defined based on a dominance relation between two 
solutions, is often used in the field of multiobjective 
optimization. 

Let x and y be two feasible solutions of the multiobjective 
maximization problem in (1)-(2). The solution y is said to 
dominate the solution x (i.e., y is better than x) when the 
following relations hold: 

 

)()(, yx ii ffi ≤∀   and  )()(, yx ii ffi <∃ . (4) 
 

If there exists no feasible solution y that dominates x, x is 
said to be a Pareto-optimal solution. In this case, x is optimal 
in the sense that x is not dominated by any other feasible 
solution. The set of all Pareto-optimal solutions is the 
Pareto-optimal solution set. We denote the Pareto-optimal 
solution set by S* in this paper. The image of the 
Pareto-optimal solution set onto the objective space is called 
the Pareto front. That is, the Pareto front is the Pareto-optimal 
solution set in the objective space. 

Let S be a set of feasible solutions. When no solution in S is 
dominated by any other solution in S, we call S a 
non-dominated solution set in this paper. 

B. Performance Indices of Solution Sets 

Whereas EMO algorithms try to find all Pareto-optimal 
solutions, it is not always easy to find true Pareto-optimal 
solutions of multiobjective optimization problems. Thus an 
EMO algorithm usually presents a non-dominated solution set 
S to the decision maker at the end of its execution where S can 
be viewed as an approximation for the Pareto-optimal 
solution set. 

A number of performance indices have been proposed in 
the literature to evaluate non-dominated solution sets (e.g., 
see Deb [2] and Coello et al. [3]). Those performance indices 
have been used to compare different solution sets (i.e., to 
compare different EMO algorithms). There is, however, no 
performance index that can simultaneously measure various 
aspects of non-dominated solution sets (e.g., their diversity 
and their convergence to the Pareto-optimal solution set) as 
pointed out in some studies [9]-[11]. Moreover the use of only 
a single performance index is sometimes misleading. Thus we 
use several performance indices in order to evaluate both the 
diversity of non-dominated solution sets and their 
convergence to the Pareto-optimal solution set. 
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Let S and S* be a non-dominated solution set and the 
Pareto-optimal solution set, respectively. The convergence of 
the non-dominated solution set S to the Pareto-optimal 
solution set S* is measured by the following performance 
index called the generational distance [12]: 
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where ||)()(|| yfxf −  is the Euclidean distance between the 

two solutions x and y in the objective space. The generational 
distance is the average distance from each solution in S to its 
nearest Pareto-optimal solution in S* (see Fig. 1). 
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Figure 1.  Illustration of the generational distance. Closed circles and open 
circles correspond to Pareto-optimal solutions in S* and solutions in S, 
respectively. 
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Figure 2.  Illustration of the D1R measure. Closed circles and open circles 
correspond to Pareto-optimal solutions in S* and solutions in S, respectively. 

 
 

Whereas the generational distance measures the proximity 
of the non-dominated solution set S to the Pareto-optimal 
solution set S*, it does not always mean the quality of S. Let us 
consider an extreme case where S consists of only a single 
Pareto-optimal solution. In this case, the generational distance 
is zero (i.e., its best value). The diversity of this solution set, 

however, is minimum. That is, this solution set is very good in 
terms of the convergence but very poor in terms of the 
diversity. 

In order to measure not only the convergence but also the 
diversity, Czyzak and Jaszkiewicz [13] used the following 
performance index called the D1R measure (see Fig. 2): 
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As shown in Fig. 2, the D1R measure is the average distance 
from each Pareto-optimal solution y in S* to its nearest 
solution in S.  

The diversity of the non-dominated solution set S can be 
more directly measured by the sum of the range of objective 
values for each objective function (see Fig. 3): 
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This measure is similar to the maximum spread of Zitzler 
[14]. 

In order to measure both the diversity and the convergence, 
we can also use the hypervolume measure [15] that calculates 
the volume of the dominated region by the non-dominated 
solution set S in the objective space. The hypervolume 
measure is illustrated in Fig. 4. 
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Figure 3.  Illustration of the spread measure. Open circles correspond to 
solutions in the non-dominated solution set S. 
 
 

As shown in Fig. 4, the boundary of the dominated region in 
the objective space is called the attainment surface [16]. From 
multiple attainment surfaces obtained by iterative executions 
of an EMO algorithm for a multiobjective optimization 
problem, we can calculate the 50% attainment surface as a 
kind of their average result. For details of the calculation of 
the 50% attainment surface, see Fonseca and Fleming [16] 
and Deb [2]. 
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Figure 4.  Illustration of the hypervolume measure. Open circles correspond 
to solutions in the non-dominated solution set S. 

 

C. NSGA-II Algorithm 

Recently developed EMO algorithms share some common 
features such as fitness evaluation based on the dominance 
relation in (4), diversity preserving and elitism. The NSGA-II 
algorithm of Deb et al. [4], which is one of the most 
well-known and frequently-used EMO algorithms, also has 
these features. In this sense, it is a typical EMO algorithm. In 
this paper, we use the NSGA-II algorithm due to its typicality 
as well as its simplicity, popularity and high search ability. 

The basic framework of the NSGA-II algorithm can be 
written as follows: 
[NSGA-II] 

Step 1: P = Initialize(P) 
Step 2: While the stopping condition is not satisfied, do 
Step 3:           P’ = GeneticOperations(P) 
Step 4:           P = Replace(P*P’) 

Step 5: End while 
Step 6: Return(P) 
 
In Step 1, the population P is initialized. The initialization 

is usually performed randomly. In Step 3, an offspring 
population P’ is generated from the current population P by 
selection, crossover and mutation. The standard binary 
tournament selection scheme is usually used to choose a pair 
of parent solutions. The size of the offspring population P’ is 
usually the same as that of the current population P. In Step 4, 
the best solutions are chosen from the merged population 
(P * P’) to construct the next population P as in the 

( λµ + )-ES generation update scheme. Elitism is realized in 

Step 4 by choosing the best solutions from the current and 
offspring populations.  

Each solution in the current population is evaluated in Step 
2 in the following manner to select a pair of parent solutions 
using the dominance relation in (4) and a crowding measure. 
First, Rank 1 is assigned to all non-dominated solutions in the 
current population. Solutions with Rank 1 are tentatively 
removed from the current population. Next, Rank 2 is 
assigned to all non-dominated solutions in the reduced current 
population. Solutions with Rank 2 are tentatively removed 

from the reduced current population. This ranking procedure 
is iterated until all solutions are tentatively removed from the 
current population (i.e., until ranks are assigned to all 
solutions). The ranking procedure is illustrated in Fig. 5 
where solutions with higher ranks (i.e., smaller ranks) are 
viewed as better solutions. 

Diversity preserving is realized in the NSGA-II algorithm 
by calculating a crowding measure for each solution among 
those with the same rank after the ranking procedure is 
completed. Roughly speaking, the crowding measure is the 
sum of distances from adjacent solutions over each objective 
(see Fig. 6 where ba +  is assigned to a solution with Rank 3). 
More specifically, two adjacent solutions of each solution are 
found among those with the same rank for each objective. 
Then the distance between these two adjacent solutions is 
calculated with respect to the corresponding objective. 
Finally the calculated distance for each objective is summed 
up over the k objectives. An infinitely large value is assigned 
to extreme solutions with the minimum or maximum objective 
value of at least one objective among solutions with the same 
rank. The calculation of the crowding measure is illustrated in 
Fig. 6. 
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Figure 5.  Ranking in the NSGA-II algorithm. 
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Figure 6.  Calculation of the crowding measure in the NSGA-II algorithm. 
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In the binary tournament selection scheme in Step 3, two 
solutions are randomly selected from the current population. 
If the two solutions have different ranks, the better solution 
with the higher rank (i.e., smaller rank) is chosen as a parent 
solution. If they have the same rank, the better solution with a 
larger value of the crowding measure is chosen as a parent 
solution. By iterating this tournament selection scheme, a pair 
of parent solutions are selected. An offspring solution is 
generated from the selected pair of parent solutions by 
crossover and mutation in our implementation of the NSGA-II 
algorithm. The selection, crossover and mutation are iterated 
until a pre-specified number of offspring solutions are 
generated. 

In Step 4 of the NSGA-II algorithm, each solution in the 
merged population is evaluated by the ranking procedure and 
the crowding measure in the same manner as in Step 3 for 
parent selection. A pre-specified number of the best solutions 
are selected from the merged population based on the rank of 
each solution and its value of the crowding measure. In the 
generation update phase in Step 4 as well as the parent 
selection phase in Step 3, solutions with higher ranks are 
viewed as better solutions. Among solutions with the same 
rank, larger values of the crowding measure are viewed as 
better.  

The convergence of solutions to the Pareto front is realized 
by choosing better solutions with respect to their ranks in the 
parent selection phase and the generation update phase. The 
diversity of solutions is maintained by choosing better 
solutions with respect to the crowding measure among 
solutions with the same rank. For more details of each step of 
the NSGA-II algorithm, see Deb [2] and Deb et al. [4]. 

 

III. Examination of Overlapping Objective 
Vectors 

A. Test Problems 

As test problems, we use Min-Ex in Deb [2], ZDT1, ZDT2 
and ZDT3 in Zitzler et al. [5], multiobjective 0/1 knapsack 
problems in Zitzler and Thiele [6], multiobjective flowshop 
scheduling problems in Ishibuchi et al. [7], and multiobjective 
fuzzy rule selection problems in Ishibuchi and Yamamoto [8]. 
We briefly explain each test problem in this subsection. 

Deb [2] used the following two-objective minimization 
problem called Min-Ex to illustrate characteristics of a 
number of EMO algorithms: 

 
Minimize 11 )( xf =x  and 122 /)1()( xxf +=x , (8) 

subject to 11.0 1 ≤≤ x  and 50 2 ≤≤ x . (9) 

 
We represent each decision variable by a binary string of 
length 30 using standard binary coding. 

Zitzler et al. [5] framed six test problems (ZDT1 to ZDT6) 
to examine the performance of a number of EMO algorithms. 
We use the first three test problems (ZDT1 to ZDT3), which 

have 30 continuous decision variables in the unit interval [0, 
1]. That is, the decision space of these test problems is the 
30-dimensional unit hyper-cube [0, 1]30. All the six test 
problems in [5] can be written in the following form: 

 
Minimize )(1 xf  and ))(),(()()( 12 xxxx gfhgf ⋅= . (10) 

 
In all the first three test problems (ZDT1 to ZDT3), f1(x) 

and g(x) are defined as follows: 
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where n is the number of decision variables (i.e., 30). The first 
three test problems in [5] are different from each other in the 
definition of the function h(f1, g) as follows: 

 

ZDT1: gfgfh /1),( 11 −= , (12) 

ZDT2: 2
11 )/(1),( gfgfh −= , (13) 

ZDT3: )10sin()/(/1),( 1111 fgfgfgfh π⋅−−= . (14) 

 
Zitzler and Thiele [6] used nine multiobjective 0/1 

knapsack problems, each of which has two, three or four 
objectives and 250, 500 or 750 items, to evaluate the 
performance of a number of EMO algorithms. Each test 
problem with k knapsacks (i.e., k objectives and k constraints) 
and n items is written as follows: 

 

Maximize ))(...,),(),(()( 21 xxxxf kfff= , (15) 

subject to ∑
=

≤
n

j
ijij cxw
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where ∑
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n

j
jiji xpf

1
)(x ,  ki ...,,2,1= . (17) 

 

In this formulation, x is an n-dimensional binary vector, pij  
is the profit of item j according to knapsack i, wij  is the weight 
of item j according to knapsack i, and ci is the capacity of 
knapsack i. Each solution x is handled as a binary string of 
length n. We denote the k-objective n-item test problem as the 
k-n knapsack problem. Multiobjective 0/1 knapsack problems 
have been used frequently to examine the performance of 
EMO algorithms in the literature (e.g., Jaszkiewicz [17], [18], 
Knowles & Corne [19], Mumford [20], and Zydallis & 
Lamont [21]). 

When an EMO algorithm is applied to the multiobjective 
0/1 knapsack problem in (15)-(17), genetic operations often 
generate infeasible solutions that do not satisfy the constraint 
conditions in (16). We use a repair method based on a 
maximum profit/weight ratio as suggested by Zitzler and 
Thiele [6]. When an infeasible solution is generated, a 
feasible solution is created by removing items (i.e., by 
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changing the corresponding values in the binary string x from 
1 to 0) in the ascending order of the maximum profit/weight 
ratio defined as 

 

}...,,2,1:max{ kiwpq ijijj == , nj ...,,2,1= . (18) 

 

In Ishibuchi et al. [7], [22], multiobjective flowshop 
scheduling problems were used to examine the performance 
of some EMO and memetic EMO algorithms. Each solution 
of a flowshop scheduling problem with n jobs is represented 
by a permutation of the given n jobs {J1, J2, ..., Jn}. 
Two-objective test problems in [7], [22] are written as 

 

Minimize }...,,2,1|max{)(1 niCf i ==x , (19) 

Minimize }...,,2,1|}0,max{max{)(2 nidCf ii =−=x , (20) 
 

where Ci and di are the completion time and the due-date of 
the ith job Ji, respectively. The first objective is to minimize 
the makespan (i.e., the maximum completion time) while the 
second objective is to minimize the maximum tardiness.  

Three-objective flowshop scheduling problems in [7], [22] 
have the following objective in addition to the two objectives 
in (19) and (20): 

Minimize ∑
=

=
n

i
iCf

1
3 )(x . (21) 

Each flowshop scheduling problem in [7] has 20 machines 
and 20, 40, 60 or 80 jobs. We denote the k-objective test 
problem with n jobs as the k-n flowshop scheduling problem. 

As test problems, we also use multiobjective fuzzy rule 
selection problems of Ishibuchi and Yamamoto [8], [23]. 
They used EMO and memetic EMO algorithms for 
multiobjective design of fuzzy rule-based classification 
systems in the following manner.  

First a pre-specified number of candidate fuzzy rules were 
generated from training patterns for each class. For details of 
fuzzy rule generation, see the textbook on fuzzy data mining 
by Ishibuchi et al. [24]. Then non-dominated rule sets were 
found as subsets of the generated candidate fuzzy rules with 
respect to the following three objectives: 

 
Maximize )(1 xf , minimize )(2 xf , and minimize )(3 xf ,

 (22) 
 

where x denotes a subset of the candidate fuzzy rules (i.e., x is 
a set of selected rules), f1(x) is the number of correctly 
classified training patterns by the selected rules in x, f2(x) is 
the number of the selected rules, and f3(x) is the total number 
of antecedent conditions of the selected rules. 

Let N be the total number of generated candidate fuzzy 
rules (i.e., N/M is the number of generated candidate fuzzy 
rules for each class where M is the number of classes). Then 
each solution of the three-objective rule selection problem in 
(22) is represented by a binary string of length N.  

In addition to the three-objective problem in (22), we also 
use the following two-objective fuzzy rule selection problem 
with the first two objectives in (22): 

 
Maximize )(1 xf , and minimize )(2 xf . (23) 

 
We denote the k-objective test problem with N candidate 
fuzzy rules as the k-N fuzzy rule selection problem. 

B. Results on Multiobjective Function Optimization 

In this subsection, we report our experimental results on the 
four multiobjective function optimization problems with 
continuous decision variables: Min-Ex, ZDT1, ZDT2 and 
ZDT3. The NSGA-II algorithm was applied to each test 
problem 50 times using the following parameter values: 

 
Population size: 100, 
Crossover probability: 0.8  (One-point crossover), 
Mutation probability: 1/N  (N is the string length), 
Stopping condition: 3000 generations. 

 
In Fig. 7, we show the average number of different 

objective vectors at each generation for each test problem. 
From this figure, we can see that the average number of 
different objective vectors was always more than 80% of the 
population size for all the four test problems. This means that 
each population did not include many overlapping solutions 
in our computational experiments on the four test problems of 
multiobjective function optimization with continuous 
decision variables. 

Experimental results in Fig. 7 suggest that the existence of 
overlapping solutions is not a serious issue in the application 
of EMO algorithms to multiobjective function optimization 
with continuous decision variables. This may be the reason 
why this issue has not been explicitly discussed in many 
studies on EMO algorithms in the literature. 
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Figure 7.  Average number of different objective vectors at each generation 
for the multiobjective function optimization problems. 
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C. Results on Multiobjective Knapsack Problems 

We applied the NSGA-II algorithm to the three 
two-objective knapsack problems (i.e., 2-250, 2-500 and 
2-750 knapsack problems) 50 times using the same parameter 
values as the computational experiments in Fig. 7 for the 
multiobjective function optimization problems. Fig. 8 shows 
the average number of different objective vectors at each 
generation for each two-objective knapsack problem. 
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Figure 8.  Average number of different objective vectors at each generation 
for the two-objective knapsack problems. 

 
 

From Fig. 8, we can see that the number of different 
objective vectors rapidly decreased to about 20% of the 
population size during the first 500 generations. That is, each 
population included a lager number of overlapping objective 
vectors especially in the early stage of evolution. 

We also examined the effect of increasing the number of 
objectives on the number of overlapping objective vectors 
through computational experiments on the 500-item knapsack 
problems with two, three and four objectives (i.e., 2-500, 
3-500 and 4-500 knapsack problems). We used the same 
parameter values as in the previous computational 
experiments in Fig. 8. Experimental results are summarized in 
Fig. 9. From Fig. 9, we can see that the increase in the number 
of objectives leads to the increase in the number of different 
objective vectors (i.e., the decrease in the number of 
overlapping objective vectors). 
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Figure 9.  Average number of different objective vectors at each generation 
for the 500-item knapsack problems with two, three and four objectives. 

 

D. Results on Multiobjective Flowshop Scheduling 

We applied the NSGA-II algorithm to the two-objective 
flowshop scheduling problems with 40 and 80 jobs (i.e., 2-40 
and 2-80 flowshop scheduling problems) using the following 
parameter values: 

 
Population size: 100, 
Crossover probability: 0.8  (Two-point order crossover), 
Mutation probability: 0.8 per string (Shift mutation), 
Stopping condition: 3000 generations. 

 
These parameter values are almost the same as those in the 

previous computational experiments in Fig. 8 and Fig. 9. For 
genetic operations such as order crossover and shift mutation, 
see [7], [22], [25]. Various genetic operations for flowshop 
scheduling were compared with each other in Murata et al. 
[25]. 

Experimental results are summarized in Fig. 10. The 
number of different objective vectors was decreased to about 
20% of the population size in the first 1000 generations. This 
means that many solutions in each population were 
overlapping with each other in the objective space.  

In the same manner as Fig. 10, we also applied the 
NSGA-II algorithm to the three-objective flowshop 
scheduling problems with 40 and 80 jobs (i.e., 3-40 and 3-80 
flowshop scheduling problems). Experimental results are 
summarized in Fig. 11. From the comparison between Fig. 10 
and Fig. 11, we can see that the increase in the number of 
objectives leads to the increase in the number of different 
objective vectors (i.e., the decrease in the number of 
overlapping objective vectors). The same observation was 
obtained for the multiobjective knapsack problems in the 
previous subsection. 
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Figure 10.  Average number of different objective vectors at each generation 
for the two-objective flowshop scheduling problems with 40 and 80 jobs. 
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Figure 11.  Average number of different objective vectors at each generation 
for the three-objective flowshop scheduling problems with 40 and 80 jobs. 

 

E. Results on Multiobjective Fuzzy Rule Selection 

In computational experiments on fuzzy rule selection 
problems, we used the wine data set in the UC Irvine Machine 
Learning Repository. This data set is a three-class pattern 
classification problem with 13 continuous attributes and 178 
training patterns. First we generated a pre-specified number of 
candidate fuzzy rules for each of the three classes of the wine 
data set. The number of candidate fuzzy rules for each class 
was specified as 50 and 100 (i.e., 150 and 300 in total). Then 
the NSGA-II algorithm was applied to the two-objective 
fuzzy rule selection problem 50 times for each of the two sets 
of the generated candidate fuzzy rules. We used the following 
parameter values: 

 
Population size: 100, 
Crossover probability: 0.8  (One-point crossover), 
Mutation probability:  

            0.1 for the mutation form 1 to 0, 
            1/N for the mutation from 0 to 1 (N is the string 
length), 
Stopping condition: 3000 generations. 

 
These parameter values are almost the same as those in the 

previous computational experiments on the other test 
problems. We biased the mutation probability in order to 
efficiently decrease the number of selected fuzzy rules in each 
solution (for details, see [8], [23], [24]). We also used a 
domain-specific heuristic trick to remove unnecessary fuzzy 
rules from each solution as in [8], [23], [24]. 

Experimental results are summarized in Fig. 12 where the 
number of different objective vectors was very small (i.e., 
about 5% of the population size). This means that almost all 
solutions in each population were overlapping with each other 
in the objective space during the execution of the NSGA-II 
algorithm on the two-objective fuzzy rule selection problems 
for the wine data set. 
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Figure 12.  Average number of different objective vectors at each generation 
for the two-objective fuzzy rule selection problems with 150 and 300 
candidate fuzzy rules. 

 
 
In the same manner as Fig. 12, the NSGA-II algorithm was 

applied to the three-objective fuzzy rule selection problems 
with the 150 and 300 candidate fuzzy rules for the wine data 
set. Experimental results are summarized in Fig. 13. Whereas 
the number of different objective vectors increased from Fig. 
12 (i.e., from about 5% to about 12% of the population size), 
it was still very small in Fig. 13. That is, almost all solutions 
were still overlapping with each other in the objective space 
even in the case of the three objectives. 
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Figure 13.  Average number of different objective vectors at each generation 
for the three-objective fuzzy rule selection problems with 150 and 300 
candidate fuzzy rules. 

 

F. Relation between Diversity and Convergence 

We have already shown that a large number of overlapping 
objective vectors were included in each population when the 
NSGA-II algorithm was applied to some multiobjective 
combinatorial optimization problems with only a few 
objectives. We have also shown that each population did not 
include many overlapping objective vectors in the case of 
multiobjective function optimization with continuous 
decision variables. In this subsection, we further examine the 
number of overlapping objective vectors from the viewpoint 
of the balance between diversity and convergence in 
multiobjective evolution. 

As shown in Ishibuchi and Narukawa [26], mutation 
operations generally increase the diversity of solutions while 
crossover operations improve the convergence of solutions to 
the Pareto front. In order to examine the effect of crossover 
and mutation on the number of overlapping solutions, we 
performed computational experiments on the 2-500 knapsack 
problems using different parameter specifications of the 
crossover and mutation probabilities. 

We compared the following three specifications of the 
crossover and mutation probabilities with each other: (0.8, 
1/500), (0.8, 4/500) and (0.2, 4/500). The first combination of 
the crossover and mutation probabilities is the same as the 
previous computational experiments in Fig. 8. The second 
combination uses a high mutation probability while the third 
one uses a low crossover probability together with a high 
mutation probability. 

In the same manner as in Fig. 8, the NSGA-II algorithm was 
applied to the 2-500 knapsack problem 50 times. In Fig. 14, 
we show the average number of different objective vectors. 
From Fig. 14, we can see that the use of a low crossover 
probability and a high mutation probability increased the 
number of different objective vectors. This suggests that such 
a combination of the crossover and mutation probabilities has 
a positive effect on the diversity of solutions. 

In Fig. 15, we show an intermediate population at the 
1000th generation in a single run of the NSGA-II algorithm 
for each of the three parameter specifications. Fig. 15 visually 
demonstrates the effects of a low crossover probability and a 
high mutation probability on the diversity of solutions. 
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Figure 14.  Average number of different objective vectors at each generation 
for the three parameter specifications on the 2-500 knapsack problem. 

 
 

18000 19000

18000

19000

20000

Total profit (knapsack 1)

T
ot

al
 p

ro
fit

 (
kn

ap
sa

ck
 2

)

(0.8, 1/500)
(0.8, 4/500)
(0.2, 4/500)

 
 

Figure 15.  All solutions in the 1000th generation of a single run of the 
NSGA-II algorithm with each of the three parameter specifications. 

 
 
In order to examine the relation between the number of 

different objective vectors and the other performance indices 
of non-dominated solution sets explained in Section II, we 
monitored the generational distance, the D1R measure, the 
spread measure and the hypervolume measure for the 
non-dominated solution set at each generation of each run in 
our computational experiments in Fig. 14. Average results 
over 50 runs are summarized in Figs. 16-19. 
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Figure 16.  Generational distance at each generation for the three parameter 
specifications on the 2-500 knapsack problem. 
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Figure 17.  D1R measure at each generation for the three parameter 
specifications on the 2-500 knapsack problem. 
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Figure 18.  Spread measure at each generation for the three parameter 
specifications on the 2-500 knapsack problem. 
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Figure 19.  Hypervolume measure at each generation for the three parameter 
specifications on the 2-500 knapsack problem. 

 
 
From Figs. 16-19, we can see that the use of a low 

crossover probability and a high mutation probability (i.e., 
(0.2, 4/500) in each figure) improved the spread measure and 
degraded the generational distance. That is, such a parameter 
specification increased the diversity of solutions but degraded 
the convergence of solutions to the Pareto front. This is 
visually shown in Fig. 15 by depicting an intermediate 
population of a single run for each of the three parameter 
specifications. 

The D1R measure and the hypervolume measure were also 
improved by the use of a low crossover probability and a high 
mutation probability as a result of the increase in the diversity 
of solutions. This is because these two measures are related to 
both the diversity and the convergence. 

During the initial stage of evolution where the number of 
different objective vectors rapidly decreased in the case of 
(0.8, 1/500) in Fig. 14, the convergence was improved 
significantly in Fig. 16 while the diversity was not improved 
in Fig. 18. During the last 2000 generations (i.e., from the 
1000th generation to the 3000th generation) where the 
number of different objective vectors gradually increased in 
Fig. 14, the diversity of solutions was also gradually improved 
in Fig. 18. 

From these observations, we can see that the number of 
different objective vectors was related to the diversity of 
solutions in our computational experiments on the 2-500 
knapsack problem. 

G. Incorporation of Diversity Preserving Mechanism 

In the previous subsection, we improved the diversity of 
solutions by the use of a low crossover probability and a high 
mutation probability. Here we use a similarity-based mating 
scheme of Ishibuchi and Shibata [27]-[29]. They proposed an 
idea of recombining similar solutions [27] and extended it to 
the recombination of extreme and similar solutions [28], [29]. 
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Their similarity-based mating scheme is shown in Fig. 20 
where one parent (say Parent A) is chosen from α candidates 
and its mate (say Parent B) is chosen from β candidates. 

 

Selection of the most
extreme solution

1 2 α

Crossover

Selection of the most
similar solution to

Parent A

1 2 β

Parent A Parent B

Parent A

 
 

Figure 20.  Similarity-based mating scheme [27], [28]. 

 
 
In the similarity-based mating scheme, first α candidates 

are selected from the current population by iterating the 
standard binary tournament selection procedure α times. Next 
the average objective vector of the selected α candidates is 
calculated in the objective space. The most dissimilar one 
from the average objective vector among the α candidates is 
chosen as the first parent (Parent A in Fig. 20). The 
dissimilarity (and the similarity) is measured as the Euclidean 
distance in the objective space. Then β candidates are selected 
by iterating the standard binary tournament procedure β times. 
Finally the most similar one to Parent A among the β 
candidates is chosen as its mate (i.e., Parent B in Fig. 20).  

In this manner, extreme and similar parents are recombined 
by the similarity-based mating scheme. The tendency to 
choose extreme and similar parents can be controlled by the 
values of the two parameters α and β. 

We incorporated the similarity-based mating scheme into 
the NSGA-II algorithm. That is, the binary tournament 
selection procedure of the NSGA-II algorithm is iterated to 
select α and β candidates in the modified NSGA-II algorithm. 
All the other parts except for the parent selection scheme are 
the same as the original NSGA-II algorithm.  

We applied the modified NSGA-II algorithm to the 2-500 
knapsack problem using the three specifications of the two 
parameters α and β as follows: =),( βα (1, 1), (5, 5), (10, 10). 

It should be noted that the modified NSGA-II algorithm with 
(1, 1) is exactly the same as the original NSGA-II algorithm. 
This is because the binary tournament selection is executed 
only once to choose a single parent. The larger the values of 
these two parameters are, the modified NSGA-II algorithm 
has the stronger tendency to choose extreme and similar 
parents. 

Our computational experiments were performed in the 

same manner as the previous computational experiments in 
Fig. 8. That is, the crossover and mutation probabilities were 
specified as 0.8 and 1/500, respectively. Experimental results 
are summarized in Figs. 21-25 (i.e., the number of different 
objective vectors in Fig. 21, the generational distance in Fig. 
22, the D1R measure in Fig. 23, the spread measure in Fig. 24, 
and the hypervolume measure in Fig. 25). 
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Figure 21.  Average number of different objective vectors at each generation 
of the modified NSGA-II algorithm on the 2-500 knapsack problem. 
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Figure 22.  Generational distance at each generation of the modified 
NSGA-II algorithm on the 2-500 knapsack problem. 

 
 



12  Hisao Ishibuchi et. al 

0 1000 2000 3000

400

800

1200

1600

2000

Generation

B
e

tte
r 

   
   

   
   

   
   

   
   

   
   

   
 W

or
se

D
1 R

m
ea

su
re

B
e

tte
r 

   
   

   
   

   
   

   
   

   
   

   
 W

or
se

D
1 R

m
ea

su
re

(α, β ) = (1, 1)
(α, β ) = (5, 5)
(α, β ) = (10, 10)

 
Figure 23.  D1R measure at each generation of the modified NSGA-II 
algorithm on the 2-500 knapsack problem. 
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Figure 24.  Spread measure at each generation of the modified NSGA-II 
algorithm on the 2-500 knapsack problem. 
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Figure 25.  Hypervolume measure at each generation of the modified 
NSGA-II algorithm on the 2-500 knapsack problem. 

 

 
From these results, we can see that the similarity-based 

mating scheme increased the number of different objective 
vectors (Fig. 21), improved the diversity of solutions (Fig. 24), 
and degraded the convergence of solutions (Fig. 22). The D1R 
measure (Fig. 23) and the hypervolume measure (Fig. 25) 
were improved by the similarity-based mating scheme as a 
result of the improvement in the diversity of solutions. 

 

IV. Removal of Overlapping Objective Vectors 
 

In the previous section, we demonstrated that a large number 
of overlapping objective vectors were included in each 
population when the NSGA-II algorithm was applied to 
multiobjective combinatorial optimization problems with 
only a few objectives. We also demonstrated that the number 
of overlapping objective vectors was decreased by diversity 
preserving efforts such as the use a higher mutation 
probability and the incorporation of the similarity-based 
mating scheme. In this section, we examine a more direct way 
for diversity preserving: removal of overlapping objective 
vectors. 

A. Two Strategies for Removing Overlapping Solutions 

We remove overlapping objective vectors during the 
generation update phase so that each solution in the next 
population has a different location in the objective space. That 
is, overlapping objective vectors are removed from the 
merged population before the next population is constructed. 

In order to keep the population size constant (i.e., to 
prevent the next population from becoming smaller than the 
population size), we first generate an initial population with 
no overlapping objective vectors. In this case, the number of 
different objective vectors in the merged population is always 
larger than or equal to the population size. This means the size 
of the merged population is always larger than or equal to the 
population size even after overlapping objective vectors are 
removed. Thus we can always construct the next population of 
the pre-specified size with no overlapping objective vectors. 

We also examine a similar strategy where overlapping 
decision vectors (i.e., overlapping solutions in the decision 
space) are removed from the merged population. Thus each 
solution in the next population has a different location in the 
decision space. This means that each solution is different from 
each other (i.e., no duplicate copies of solutions are included 
in the next population). When we use this strategy, we first 
generate an initial population with no duplicate copies. 

B. Effects of Removing Overlapping Solutions 

Through computational experiments on the 2-500 knapsack 
problem, we examined the effect of the two strategies on the 
performance of the NSGA-II algorithm. As in the previous 
section, we applied the NSGA-II algorithm to the 2-500 
knapsack problem 50 times using the following parameter 
values: 
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Population size: 100, 
Crossover probability: 0.8  (One-point crossover), 
Mutation probability: 1/N  (N is the string length), 
Stopping condition: 3000 generations. 

 
We also applied two variants of the NSGA-II algorithm to 

the 2-500 knapsack problem 50 times. One variant has the 
removal strategy of overlapping objective vectors and the 
other variant has the removal strategy of overlapping decision 
vectors. The average number of different objective vectors at 
each generation is shown in Fig. 26 for the second variant (i.e., 
the removal of overlapping decision vectors). Since 
overlapping objective vectors are removed in the first variant, 
the number of different objective vectors is always the same 
as the population size. In the second variant where 
overlapping decision vectors are removed in the decision 
space, each population can include overlapping objective 
vectors because different solutions in the decision space are 
not necessarily different in the objective space. Even so, the 
number of different objective vectors is almost always the 
same as the population size in Fig. 26. That is, the diversity of 
solutions in each population was significantly improved by 
the two removal strategies in terms of the number of different 
objective vectors. 
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Figure 26.  Average number of different objective vectors at each generation 
of the NSGA-II algorithm and its two variants on the 2-500 knapsack 
problem. 

 
 
The NSGA-II algorithm and its two variants are compared 

with each other in terms of the four performance indices in 
Figs. 27-30. Whereas the two removal strategies clearly 
improved the diversity of solutions in each population in 
terms of the number of different objective vectors in Fig. 26, 
their effects on the four performance indices in Fig. 27-30 
were not clear. They slightly improved the diversity of 
solutions (compare Fig. 29 with Fig. 24 for evaluating the 
effects of the removal strategies on the diversity of solutions). 
It is also interesting to note that the removal strategies did not 
degrade the convergence of solutions to the Pareto front (see 
Fig. 27). 
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Figure 27.  Generational distance at each generation of the NSGA-II 
algorithm and its two variants on the 2-500 knapsack problem. 
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Figure 28.  D1R measure at each generation of the NSGA-II algorithm and 
its two variants on the 2-500 knapsack problem. 
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Figure 29.  Spread measure at each generation of the NSGA-II algorithm and 
its two variants on the 2-500 knapsack problem. 
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Figure 30.  Hypervolume measure at each generation of the NSGA-II 
algorithm and its two variants on the 2-500 knapsack problem. 
 

C. Use of Higher Selection Pressure 

Whereas the two removal strategies clearly increased the 
diversity of solutions in each population in terms of the 
number of different objective vectors, their effects on the four 
performance indices were not clear in our computational 
experiments in the previous subsection. In this subsection, we 
examine their effects under higher selection pressure. 

We performed computational experiments on the 2-500 
knapsack problem using the NSGA-II algorithm and its two 
variants under various specifications of the tournament size 
for parent selection. We examined five specifications of the 
tournament size: 1, 2, 5, 10, 20. Except for the tournament 
size, we used the same parameter values in the previous 
subsection. Average results at the 3000th generation over 50 
runs are summarized in Figs. 31-34. In each figure, the dotted 
line shows the performance of the original NSGA-II 
algorithm with the standard parameter values. 
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Figure 31.  Generational distance at the 3000th generation of the NSGA-II 
algorithm and its two variants on the 2-500 knapsack problem. 
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Figure 32.  D1R measure at the 3000th generation of the NSGA-II algorithm 
and its two variants on the 2-500 knapsack problem. 
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Figure 33.  Spread measure at the 3000th generation of the NSGA-II 
algorithm and its two variants on the 2-500 knapsack problem. 
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Figure 34.  Hypervolume measure at the 3000th generation of the NSGA-II 
algorithm and its two variants on the 2-500 knapsack problem. 
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From Figs. 31-34, we can see that the increase in the 
tournament size improved the three performance indices in 
Figs. 32-34 related to the diversity of solutions whereas it 
degraded the generational distance in Fig. 31. We can also see 
from Figs. 31-34 that the two removal strategies did not have 
a large effect on any performance indices. 

Finally we examined the use of the following weighted sum 
in the parent selection phase of the NSGA-II algorithm: 

 
)()()()( 2211 xxxx kk fwfwfwfitness +⋅⋅⋅++= , (24) 

 
where )...,,,( 21 kwww=w  is a weight vector: 

 
121 =+⋅⋅⋅++ kwww   and  0≥iw  for ki ...,,2,1= . (25) 

 
The weight vector w is randomly specified whenever a pair 

of parent solutions are to be selected. That is, two parent 
solutions are selected based on the common weight vector. 
The next pair of parent solutions are selected using a different 
weight vector, which is randomly specified after a previous 
pair of parent solutions are selected. The weighted sum fitness 
function with a random weight vector was used in 
multiobjective genetic local search algorithms (i.e., 
multiobjective memetic algorithms) in Ishibuchi and Murata 
[30], Jaszkiewicz [31], [32] and Ishibuchi et al. [33]. It should 
be noted that the ranking and the crowding measure of the 
NSGA-II algorithm are still used in the generation update 
phase. The weighted sum fitness function is used only in the 
parent selection phase.  

In the same manner as the above-mentioned computational 
experiments, we applied the modified NSGA-II algorithm and 
its two variants with the weighted sum fitness function to the 
2-500 knapsack problem 50 times. Experimental results are 
summarized in Figs. 35-38 in the same manner as Fig. 31-34. 
The dotted line in each figure shows the performance of the 
original NSGA-II algorithm. 
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Figure 35.  Generational distance at the 3000th generation of the NSGA-II 
algorithm and its two variants with the weighted sum fitness function. 
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Figure 36.  D1R measure at the 3000th generation of the NSGA-II algorithm 
and its two variants with the weighted sum fitness function. 
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Figure 37.  Spread measure at the 3000th generation of the NSGA-II 
algorithm and its two variants with the weighted sum fitness function. 
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Figure 38.  Hypervolume measure at the 3000th generation of the NSGA-II 
algorithm and its two variants with the weighted sum fitness function. 
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It is clear in Figs. 35-38 that the removal strategies had a 
positive effect on all the four performance indices. It is also 
clear that the two variants of the modified NSGA-II algorithm 
with the weighted sum fitness function outperformed the 
original NSGA-II algorithm (the dotted line in each figure) in 
many cases. 
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Figure 39.  A final solution set at the 3000th generation of each algorithms. 
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Figure 40.  The 50% attainment surface at the 3000th generation over 50 
runs of each algorithm. 
 
 

 In order to visually demonstrate the effect of the use of the 
weighted sum fitness function and the removal strategies on 
the performance of the NSGA-II algorithm, the following two 
algorithms are compared with each other in Fig. 39 and Fig. 
40. One is the original NSGA-II algorithm with the standard 
parameter specification (NSGA-II in Fig. 39 and Fig. 40), and 
the other is the modified NSGA-II algorithm with the 
weighted sum fitness function and the removal strategy in the 
objective space (Weighted sum & Removal in Fig. 39 and Fig. 
40). Whereas the binary tournament selection scheme was 

used in the original NSGA-II algorithm, the tournament size 
was specified as 20 in its variant in Fig. 39 and Fig. 40. Fig. 39 
shows a final solution set obtained by a single run of each 
algorithm. On the other hand, Fig. 40 shows the 50% 
attainment surface over 50 runs of each algorithm. From these 
figures, we can see that the use of the weighted sum fitness 
function and the removal strategy significantly increased the 
diversity of solutions while slightly degrading the 
convergence of solutions to the Pareto front. 

V. Concluding Remarks 

In this paper, we first clearly demonstrated that each 
population included a large number of overlapping objective 
vectors when the NSGA-II algorithm of Deb et al. [4] was 
applied to multiobjective combinatorial optimization 
problems with only a few objectives. The number of 
overlapping objective vectors was small when it was applied 
to multiobjective function optimization problems with 
continuous decision variables.  

Next we demonstrated that the number of overlapping 
objective vectors was decreased by the use of a lower 
crossover probability and a higher mutation probability. We 
also showed that the similarity-based mating scheme [28], 
[29] had a similar effect on the number of overlapping 
objective vectors. Such diversity preserving efforts improved 
the diversity of solutions and degraded the convergence of 
solutions to the Pareto front. 

Then we examined two removal strategies: removal of 
overlapping solutions in the objective space and the decision 
space. We did not observe any clear performance 
improvement of the NSGA-II algorithm by the removal 
strategies with respect to the four performance indices. All the 
four performance indices were, however, clearly improved by 
the use of the weighted sum fitness function with high 
selection pressure (i.e., with large tournament size) in the 
NSGA-II algorithm together with the removal strategies. This 
may suggest that a good diversity-convergence balance was 
realized by the use of the weighted sum fitness function with 
high selection pressure and the removal strategies. 
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