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     Abstract: Groundwater long-term monitoring (LTM) is 
required to assess human health and environmental risk of 
residual contaminants after active groundwater remediation 
activities are completed.  However, LTM can be costly because 
of the large number of sampling locations that exist at a site 
from previous site characterization and remediation activities.  
The cost of LTM may be reduced by identifying redundant 
sampling locations.  However, care must be taken so that the 
elimination of specific individual wells from the monitoring 
network does not result in unacceptable levels of data loss and 
errors.  An ant colony optimization (ACO) algorithm is 
proposed to identify optimal sampling networks that minimize 
the number of monitoring locations while maintaining the 
overall data loss below a given threshold.  ACO is inspired by 
the ability of an ant colony to identify the shortest route between 
its nest and a food source through indirect communication and 
positive feedback.  Metrics for quantifying well redundancy and 
overall data loss after optimization are quantified and used in 
the ACO heuristics.  To demonstrate its effectiveness, the ACO 
developed for LTM optimization is applied to a case study with 
30 existing monitoring wells.  The LTM optimization problem 
was solved using different data loss thresholds to identify 
solutions with 27 to 21 wells remaining in the LTM network.  
Contour mapping of the contaminant plume using the remaining 
wells show that the ACO solutions are effective and practical.  
These results demonstrated that ACO is a promising method for 
solving LTM optimization problems.    
 

Keywords: Ant colony optimization, Computational intelligence 
applications, Groundwater monitoring.  

I. Introduction 
Groundwater long-term monitoring (LTM) has become 
increasingly important and prevalent in recent years, 
especially as active remediation concludes and the use of 

monitored natural attenuation increases.  LTM is required to 
assess human health and environmental risk of residual 
contaminants after active groundwater remediation activities 
are completed.  LTM can be costly given the large number of 
sampling locations (from dozens to hundreds), frequency of 
sampling (as often as quarterly), and number of constituents 
monitored at a given site.  Biotic, chemical, and physical data 
are collected during monitoring, in which these data should be 
relevant to site-specific objectives [24].  The U.S. Department 
of Energy (DOE) estimated that the total costs for monitoring 
at their sites where long term stewardship has been mandated 
may be up to $100 million per year [20]. The U.S. Navy 
estimated the costs of LTM and remedial active operation in 
Navy’s contaminated sites are from $46 million for 1999 to 
$77 million for 2003 [22].  Since LTM is required for scores 
of years at many sites, the cumulative costs can be significant.  
Thus a need exists to reduce LTM costs through optimization. 

The overall goal of LTM optimization is to reduce 
monitoring costs while still capturing sufficient information 
about contaminant levels and plume movement.  Since the 
majority of monitoring costs is from sampling, the focus is to 
reduce number and frequency of monitoring points and to 
decide which contaminants and constituents require sampling. 
An existing monitoring network typically has more than 
necessary sampling locations for the purpose of LTM.  Thus 
LTM costs may be reduced by identifying redundant sampling 
locations, which is the focus of this work.  

Two common approaches to LTM optimization are 
mathematical optimization and statistical analysis.  In 
mathematical optimization, optimal LTM sampling is 
identified by applying search algorithms that maximize or 
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minimize a given objective function subject to constraints.  
These optimization algorithms use plume predictions based 
on numerical simulation models of contaminant transport and 
groundwater flow and/or geostatistical interpolation to guide 
the search.  For example, [6] optimized groundwater 
monitoring networks using a genetic algorithm stochastic 
search method combined with Monte Carlo simulation of 
plume movement.  Reference [16] developed an approach 
using simulated annealing for stochastic global optimal search 
and statistical methods to reduce temporal redundancy and 
increase spatial accuracy of monitoring networks.  Reference 
[17] optimized sampling networks using geostatistical 
interpolation through inverse distance weighting (IDW), 
ordinary kriging combined with a fate-and-transport model, 
and genetic algorithms.  Reference [25] introduced new 
spatial moment constraints based on [17] to obtain robust 
long-term monitoring optimization designs.  Reference [12] 
designed an improved detection network for a landfill using a 
two- dimensional simulation model alone without 
mathematical optimization methods.  The drawback of using 
simulation models to predict contaminant plume movement is 
that limited site data or complex hydrogeological conditions 
will lead to uncertainty in the model and input parameters, 
causing errors in the predications and possibly unreliable 
optimal monitoring networks.  

Statistical methods have been applied to improve existing 
monitoring networks by analyzing current or historical data.  
Reference [2] developed the monitoring and remediation 
optimization system (MAROS), which is a decision support 
system that uses a ranking rule-based approach combined 
with Delaunay triangulation to reduce sampling locations and 
statistical methods to reduce sampling frequency.  Reference 
[5] developed the Geostatistical Temporal/Spatial (GTS) 
optimization algorithm, which is a site specific technique 
based on kriging and is applicable to sites with a large number 
of monitoring wells.  Reference [19] developed the 
cost-effective sampling (CES) method to reduce sampling 
frequency through a decision support system based on trend 
analysis and simple statistical measures.  However, MAROS, 
GTS, and CES are not mathematical optimization methods; 
they are decision support tools in which manual iterative steps 
rather than automated processes are used to improve existing 
LTM networks in a sequential ranking procedure.  As such, 
these decision support tools do not focus on identifying global 
optimum solutions and do not have the benefits of 
mathematical optimization methods, such as the ability to 
evaluate multiple options while considering the interactions 
between decision variables, objectives, and constraints 
simultaneously.  More importantly, ranking methods that 
eliminate the most redundant well(s) each iteration are similar 
to greedy search procedures, which typically result in 
suboptimal and local optima solutions. 

This work presents the development of a groundwater LTM 
network optimization methodology based on a recent and 

promising global stochastic search algorithm.  The goal is to 
present a proof of concept that the ant colony optimization 
(ACO) paradigm can be effectively created and applied to 
solve the LTM spatial optimization problem of maximizing 
cost-effectiveness through reducing sampling locations while 
maintaining sufficient data to limit errors.  To the authors’ 
knowledge, this is the first development of ACO for 
groundwater remediation and monitoring problems.  In the 
following sections, an overview of ACO is presented, and 
then the mathematical formulation of the LTM optimization 
problem is described and the metrics for data redundancy and 
overall data loss are introduced.  The results of the application 
of the developed ACO for LTM network optimization to a 
case study are presented and discussed.  

II. Ant Colony Optimization (ACO) 
ACO is an evolutionary computation optimization method 
based on ants’ collective problem-solving ability.  This global 
stochastic search method is inspired by the ability of a colony 
of ants to identify the shortest route between the nest and a 
food source.  Individual ants contribute their own knowledge 
to other ants in the colony by depositing pheromones, which 
act as chemical markers, along the paths they traverse.  
Through indirect communication with other ants via foraging 
behavior, a colony of ants can establish the shortest path 
between the nest and the food source over time with a positive 
feedback loop known as stygmergy.  As individual ants 
traverse a path, pheromones are deposited along the trail, 
altering the overall pheromone density.  More trips can be 
made along shorter paths and the resulting increase in 
pheromone density attracts other ants to this paths.  
Furthermore, shorter paths will tend to have higher 
pheromone densities than longer paths since pheromone 
density decreases over time due to evaporation [3].  This 
shortest path represents the global optimal solution and all the 
possible paths represent the feasible region of the problem.  
This stygmergy behavior was observed by [9], in which the 
movement of live ants was observed.  

ACO algorithms have been successfully adapted to solve 
difficult combinatorial optimization problems with discrete 
search space.  The first ant colony simulation algorithm was 
developed by [8] to solve the classic NP-hard traveling 
salesman problem (TSP).  In the TSP, the goal is to obtain a 
shortest path that connects all the cities while visiting each 
city only once.  The distance between two cities is used as a 
heuristic for determining ant movement and pheromone 
density.  The pheromone is updated based on evaporation of 
the existing pheromone along the segment, the quality of the 
overall solution as determined by the ant’s overall path, and 
any pheromone deposited by the best ant.  The iterative 
procedure of ants traversing different paths, based on 
pheromone density and local solution quality, and pheromone 
updating guides the stochastic search to the optimal solution. 

Reference [4] compared ACO with other stochastic search 
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algorithms, including the genetic algorithm, evolutionary 
programming, and simulated annealing, by solving the TSP 
with 50, 75, and 100 cities.  Results showed that ACO 
identified the best solution for each TSP case. ACO 
algorithms also have been developed for other classical 
optimization problems, including the quadratic assignment 
problem, job-shop scheduling problem, vehicle routing 
problem, and graph-coloring problem [4].  Moreover, [11] 
showed that under certain conditions, solutions from 
ant-based optimization converge to the global optimum with a 
probability close to 1. 

More recently, ACO algorithms have been applied to solve 
a wide range of engineering and science problems. To date, a 
limited number of works have been published in which ACO 
or swarm intelligence has been used to solve water resources 
and hydrology problems; nevertheless, these do not focus on 
groundwater management and remediation design 
optimization problems.  In water resources, [15] used ACO to 
optimize water distribution systems designs and [23], which 
used particle swarm optimization to determine pump speeds 
to minimize the total costs in water distribution systems.  
Reference [1] used ACO to solve an inverse modeling 
problem of identifying unsaturated soil parameters. 

III. LTM Spatial Optimization Problem 
This work focuses on LTM spatial optimization through 
reducing the number of sampling locations in an existing 
LTM network during a given sampling event.  As in other 
LTM optimization works [2], this study assumes that the 
contaminant plume is stable because of previous contaminant 
transformation or remediation activities and that the 
groundwater monitoring data used for optimization has 
undergone review and standard quality assurance/quality 
control practices.  Thus LTM optimization is considered 
during the later stages of remediation projects.  While 
redundant data are valuable during early periods of 
remediation to assess performance, they often are 
unnecessary during later periods when LTM is the focus.  By 
identifying redundant data at individual sampling locations, 
the overall LTM network may be optimized to reduce the 
overall LTM costs.  To do so, data redundancy and overall 
data loss of the reduced network must be quantified, which 
both are based on concentration interpolation.  

A. Concentration Interpolation 

When monitoring wells are eliminated from the LTM 
network, concentration of contaminants or other constituents 
at unsampled locations must be estimated based on the 
concentration values from nearby measured locations. The 
challenge in interpolation is determining the weights of the 
measured data used to estimate values at unsampled locations.  
One commonly used interpolation method is inverse distance 
weighting (IDW), which is based on the concept that closer 
points tend to be more alike than those that are farther apart.  

One advantage of IDW is that it is a computationally simple 
deterministic interpolation method.  IDW assumes that each 
measured point has a local influence that diminishes with 
distance between unmeasured and measured locations.  Points 
closer to the interpolation location are weighted more than 
those farther away.  To estimate a value at any unmeasured 
location, IDW uses the measured values from surrounding 
locations and weighs them according to the distance between 
the measured points and the interpolation location (1), (2).  
For example, the concentration at location (x0, y0) may be 
estimated using IDW interpolation by: 
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C0 is the estimated concentration at location (x0, y0); Ci is the 
measured concentration at location (xi, yi); di0 is the distance 
between points (x0, y0) and (xi,yi); p is a parameter (typically p 
=2); and n is the number of neighbors around location (x0, y0) 
included in the interpolation.  

Another common interpolation method is kriging, which 
uses statistical data analysis to determine spatial correlations 
and variances between sampling locations.  In kriging the 
weights of measured data are identified by the distance 
between measured points and estimation location and 
variogram functions.  Kriging is an empirical geostatistical 
method that may be computationally intensive for larger 
problems.  Reference [14] compared three commonly used 
interpolations techniques, including kriging, IDW, and 
natural neighbor interpolation, on five monitoring data sets 
using cross-validation. Reference [18] compared ordinary, 
multigaussian, intrinsic, and quantile kriging with nonlinear 
least squares inverse distance weighting and IDW by applying 
the interpolation approaches to small, medium, and larges 
cases of LTM optimization problems.  Because IDW provides 
reasonable interpolation results, is applicable for sites with 
small data sets that may be insufficient for geostatistical 
analysis, and is easy to implement, IDW is the interpolation 
method used in this work which focuses on the ACO 
development rather than interpolation methods.  
Nevertheless, other estimation methods, such as kriging and 
simulation modeling, may be substituted in place of IDW in 
the methodology presented here.  

B. Data Redundancy 

Individual sampling locations are evaluated with respect to 
their redundancy in the LTM network in order to identify 
candidate monitoring wells to eliminate.  The Relative 
Estimation Error (REE) is developed here to quantify the 
spatial redundancy of measured data.  The REE is the 
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normalized difference between the estimated and measured 
concentrations and is defined as 
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where Ci is the measured concentration of the well i and Cest,i 
is the estimated concentration of the well i.  Note that the 
estimated concentration is compared with the measured value, 
which is assumed to be the “true” concentration during a 
given sampling period.  Since the difference between Cest,i and 
Ci  is normalized by the minimum of these two values, the 
REE is very sensitive to the residual.  REE values may range 
from 0 to more than 1,000.  Individual monitoring wells with 
low REE values are potential redundant sampling locations.  
Acceptable REE values may vary among individual 
monitoring wells depending on their location.  For example, 
for boundary wells to be considered potential redundant 
wells, the acceptable REE values may be lower than the 
values for interior wells since monitoring wells along the 
boundary of a contaminant plume help to define the extent of 
the plume. 

C. Overall Data Loss 

In addition to evaluating the importance of individual 
monitoring wells, the overall data loss of the reduced LTM 
network due to interpolating concentrations at removed 
redundant wells needs to be quantified.  The overall data loss 
resulting from optimizing the number of sampling locations is 
quantified using the interpolation root mean square error 
(RMSE), which is defined as  
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where m is the number of removed wells, Ci is the measured 

concentration of well i, and Cest,i is the estimated 
concentration of well i estimated using data from the 
remaining wells. It is expected that acceptable optimized 
LTM networks have relatively low RMSE values. The RMSE 
increases due to increased data loss from eliminating too 
many monitoring wells and/or wells that are not redundant 
with respect to the overall monitoring network.  

D. Optimization Formulation for a LTM Example 
Problem 

A field site in the Upper Aquifer at the Fort Lewis Logistics 
Center in Pierce County, Washington [21] is used as an 
example application and case study in this work.  This same 
site was used in a study comparing other LTM network 
improvement approaches [21].  The existing LTM network is 
optimized using the ACO developed in this work.  The 
contaminant of concern is trichloroethylene (TCE), which 
was used as a degreasing agent at the site until 1970’s and has 
a maximum contaminant level (MCL) of 0.005 mg/L.  
Regular monitoring was conducted during the period between 
November 1995 and October 2001.  Data from the September 
2000 monitoring period is used in this work to optimize the 
existing LTM network of 30 monitoring wells (Figure 1).  By 
inspection of the existing data, some wells may be categorized 
as redundant or important by calculating the REE values 
based on estimating the concentration at each well using the 
other 29 data points.  For example, wells 3, 15, and 19 each 
have low REE values that are less than 0.3.  However, well 3 
is defined as boundary well (Figure 1) and may not be 
presumed to be a redundant well.  On the other hand, some 
wells have REE values over 1,000, such as well 12 and 16, 
and may be considered to be very important to the whole 
monitoring network since their values cannot be estimated 
reliably based on neighboring data.  More importantly, using 
a ranking of each well’s REE values with concentrations 
interpolated with data from the other 29 wells can 
significantly underestimate the actual REE for individual 
wells (Figure 2).  This is because the impacts of eliminating 
wells on individual wells are not taken into account.  This 
demonstrates that mathematical optimization is necessary to 

 
Figure 1.  The original 30-well LTM network and contaminant concentration 
plume (with contours in mg/L) based on monitoring data.  
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Figure 2.  Comparison of REE values from solutions using a ranking method 
to eliminate wells.  



Reducing Spatial Sampling in Long-Term Groundwater 23 

simultaneously analyze the effects of eliminating multiple 
wells and results in identifying solutions with better 
performance than those found through a ranking approach. 

The existing LTM network is optimized by solving the 
following combinatorial optimization problem.  The objective 
of this LTM optimization problem is to minimize monitoring 
cost by way of minimizing the number of sampling locations 
while maintaining the overall data loss (RMSE of 
concentration estimations) below a specified threshold.  
Mathematically, this optimization formulation is described as 
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where n is the number of remaining monitoring wells in the 
reduced LTM network, m is the number of removed wells, Ci 
is the measured concentration of removed well i, Cest,i is the 
estimated concentration of removed well i interpolated using 
data from the remaining wells, and T is the threshold RMSE.  
This optimization formulation (5) and (6) is solved with 
different RMSE thresholds to identify optimal reduced LTM 
networks with wells different number of remaining wells.  As 
the RMSE threshold decreases, it is expected that more wells 
remain in the LTM network.  In this work, we focus on 
developing an ACO algorithm to solve this single-objective 
formulation.  However, it may be possible to reformulate this 
problem into a multi-objective problem and adapt 
multi-objective ACO algorithms developed for other 
applications (for example, [7], [10], [13]) to this problem. 

 

IV. ACO Development for LTM Optimization 
An ACO algorithm for solving the groundwater LTM spatial 
optimization problem is developed in this work.  In order to 
adapt ACO to the LTM optimal sampling problem, heuristics 
for the ACO paradigm need to be made.  Unlike the TSP, the 
path distance itself is not important in the LTM optimization 
problem.  The developed ACO paradigm developed here is 
based loosely on [1].  The developed method is a 
mathematical optimization approach that uses IDW as the 
interpolation method.  The overall goal of LTM optimization 
is to minimize the number of monitoring wells used for 
sampling by minimizing spatial redundancy while data loss is 
minimized (5) and (6). 

The general representation of the LTM problem in the 
ACO framework is shown in Figure 3.  Ants visit a series of 
locations that represent actions at the monitoring wells.  When 
at well i (i=1, 2, …, M) in the monitoring network, an ant has 
two choices: either eliminate the well (j=0) or include the well 
(j=1) in the updated monitoring network (Figure 3).  As the 
ant travels through the monitoring network, it decides to visit 

location j=0 or j=1 for each well i, therefore including or 
excluding each well from the reduced LTM network.  The 
number of decision variables is the total number of wells 
considered for optimization, with each variable having a 
binary option, resulting 2M combinations of monitoring well 
networks.  A challenge in applying ACO for solving 
optimization problems is the development of a heuristic for 
the foraging and stygmergy behavior of ants.  In this work, the 
REE at individual wells and overall RMSE of the monitoring 
network are used to regulate pheromone density and ant 
movement.  The overall ACO algorithm is summarized in the 
following steps: 

1. The order in which each ant visits the wells is randomized 
for each individual ant to ensure that the colony explores 
different regions of search domain, thus each ant may 
have a different visiting order from other ants. Each ant 
must visit all wells once and only once before arriving to 
the food source from the nest (i.e. starting node), 
considering all wells in the original monitoring network.  
The initial pheromone at the beginning of the first 
iteration at each node is equal.  In this work, the number 
of ants in one colony is equal to the number of 
monitoring wells in the original LTM network. 

2. Data redundancy is quantified using the relative 
estimation error (REE) (3). If the current well is 
classified as a boundary well, then the REE is calculated 
first; if and only if the REE is less than a specified 
boundary threshold, Tedge (in this work Tedge = 0.1), then 
the decision of whether to keep or eliminate this 
boundary well will be determined by ants by continuing 
onto step.  Otherwise, the boundary well is retained in 
this ant’s solution. Since wells on the edge of the LTM 
network are important for plume delineation, the 
probability of eliminating these wells from the 
monitoring network is lower than that of interior wells.  

Legend: 
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Figure 3.  An ant’s trail is comprised of visits to nodes that represent decision
j at each well i and identifies the monitoring wells retained or eliminated in the 
reduced network.  
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Evaluation of the REE is part of the heuristic developed 
for the LTM problem to allow ants to make decisions 
about individual wells.  An individual well’s contribution 
to or impact on its neighboring locations is evaluated via 
a cross-validation procedure.  Ant k identifies well x, 
which is the closest well to its current location well i. The 
REE at well x is calculated twice: REE(x,0) is determined 
using the concentration at well x interpolated without the 
data from the current well i, and REE(x,1) is determined 
by including the concentration data from current well i.  
A local assessment of current well i’s contribution to the 
local area is made by comparing the REE(x,0) and 
REE(x,1) values. A low REE(x,0) value indicates that 
well i provides little additional information (low 
contribution) when used to estimate the concentration at 
well x, whereas a high REE(x,0) value indicates that well 
i may be important to well x.  Moreover, a large 
difference between REE(x,0) and REE(x,1) indicates that 
well i contributes to interpolating the concentration at 
well x.   

3. An ant decides its next step based on a weighted 
combination of the current pheromone density along a 
segment and the redundancy of a well.  It is this balance 
between these two heuristics that differentiates ACO 
from other search methods or a sequential ranking 
method, which takes a greedy approach to identifying 
redundant wells.  Ant k decides to visit option j=0 or j=1 
for well i, indicating that well i is excluded or included 
the overall monitoring network, respectively, based on a 
probability function defined by:  
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where )0(iτ  and )1(iτ  are the pheromone levels during 

the current iteration for the cases that represent 
eliminating well i (j=0) or retaining well i (j=1), 
respectively, and á and â are parameters that weight the 
pheromone and REE components.  The values P(i,0) and 
P(i,1) represent the probability well i will be eliminated 
or retained in k’s monitoring network.  Since P(i,0) + 
P(i,1) = 1, only P(i,0) is directly calculated.  Note that if 
well i is eliminated, then well i will no longer be 
considered as a neighbor or existing well by ant k for 
additional well assessments in the current iteration.   

4.  Steps 2-4 are repeated for each well in the LTM network 
for ant k, in the order randomly assigned in step 1. 

5. After ant k has visited all wells in the existing LTM 
network, the overall data loss, which quantifies the 
overall quality of the reduced set of monitoring wells, is 
evaluated by calculating the interpolation RMSE.  The 
concentrations at the removed wells are estimated using 
data from the remaining wells. The RMSE is affected by 
the number and spatial distribution of removed wells.   

6. Steps 2-5 are repeated for all other ants in the colony, 
with the path of all ants affected by the pheromone 
deposited along trails during the previous iteration.   

7. After all ants have completed their tours in the iteration, 
the pheromone trails are updated. The pheromone for 
decision j at well i during iteration t+1 is updated using: 

 e
ijijijij ett )()()()( )()1()1( ττλτρτ ∆+∆+−=+  (8) 

where ñ is the pheromone decay coefficient (0� ñ �1); 
τ(ij)(t) is pheromone during iteration t for well i and case j 
(j=0 indicates well i is eliminated; j=1 indicates well i is 
included).  The RMSE is calculated using newly 
interpolated concentrations using the data from the 
remaining wells.  The pheromone density deposited on 
the path taken by ant k depends on how well the RMSE 

the RMSE constraint (6).  For a solution that violates the 
RMSE constraint (RMSE > T), the value of ë is less than 
one, decreasing the pheromone density of this ant’s trail.  
The term ë is the penalty for RMSE constraint violation 

(6) and is defined as
2
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solution is rewarded if it is feasible.  If RMSE ≤ T, then 
 

In the second term of (8), ∆τ(ij) is the total change in 
pheromone associated with decision j at well i, which is 
defined as  

 ∑
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where k
ij )(τ∆  is the change in pheromone due to ant k 

selecting decision j at well i; and K is the total number of 

ants in one colony. The quantity  2
)( k

k
ij nQ=∆τ  

denotes the case when ant k uses well i with decision j 
during the current iteration, Q is a constant related ant 
pheromone density, and nk is the number of remaining 
wells in ant k’s monitoring network.  The third term in (8) 
allows for elitism, in which the pheromone of the ant with 
the best solution found so far is included in the 
pheromone update.  In this term, e is an integer parameter 

and 2
)( e

e
ij nQ=∆τ  is the pheromone of the best path 

(from this elitist ant) found so far, where ne is the number 

Table 1. Parameters used in the ACO for this example problem 
Parameter Value 
Number of neighbors for IDW, n 8 
Exponent parameter in IDW, p 2 
á parameter 0.5 
â parameter -1 
Initial pheromone 0.1 
Total pheromone, Q 500 
Elitism parameter, e 5 
Pheromone evaporation rate, ñ  0.5 

 

a) 

b) 
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of remaining wells in the elitist ant’s solution.  This 
elitism term helps direct future iteration ants toward a 
good solution with higher probability.  

8. Continue to the next iteration t+1 using the updated 
pheromone trails and return to step 1. This entire process 
continues for a preset number of iterations.  

This iterative procedure guides the stochastic search to 
the optimal solution.  In this work, the set of ACO 
parameters were identified by prior evaluations and based 
on the guidelines presented in the literature [4].  Parameter 
values used in this work are summarized in Table 1.  
 

V. Results and Discussion 
The ACO algorithm developed for solving the optimization 
formulation defined by (5) and (6) was applied to the Fort 
Lewis case study [21].  Results indicate that the developed 
algorithm successfully identified feasible solutions that 
satisfy the specified overall data loss (RMSE) constraint (6).  
Figures 4a and 4b show a typical convergence of the average 
RMSE and best feasible solution of a colony during each 
iteration of the ACO search for the case when the RMSE 
threshold (T) is 1.5.  For this example, an ant colony consists 
of 30 individual ants each iteration.  In other words, the 
activity of each ant colony is equivalent to a search with a 

colony containing a single ant over 30 iterations, with each 
ant following a different random order of visiting all wells 
and updating the pheromone density every 30 iterations or ant 
tours.  Thus while Figure 4 indicates that the solution 
converged after 5 iterations for this case, this is 
approximately equivalent to a search using 150 iterations of 
an ACO using a single-ant colony.  In the early iterations, the 
average RMSE of the colony was high (Figure 4a), with 
values over 100, and no feasible solutions identified.  After a 
few additional iterations the average RMSE of the colony 
rapidly decreased to a range between 1.26 and 1.37, while the 
best feasible ant solution (i.e., minimum number of remaining 
wells) in the colony decreased to a range between 22 and 23 
wells (Figure 4b).  During these later iterations, variations of 
8% of the average RMSE and 4% of the minimum number of 
wells occurred for this example case.  The average number of 
wells remaining in the solutions found during the early 
iterations is lower (Figure 4b) since these included infeasible 
solutions in which a high RMSE resulted from eliminating too 
many wells (Figure 4a).  

Optimal solutions for several cases of number of remaining 
wells were identified by solving the LTM optimization 
formulation with different values in the overall data loss 
threshold (T) constraint (7). As expected, results indicate that 

Table 2. Summary of optimal LTM networks identified by 
ACO algorithm 

Remaining 
Wells 

Reduction 
in Wells 

Wells Eliminated RMSE 
Average 
(Std Dev) 

REE 

27 10 % 2, 15, 19 0.383 
0.361 

(0.157) 

26 13 % 2, 10, 11, 25 0.595 
0.578 

(0.166) 

25 17 % 10, 11, 15, 19, 25 0.559 
0.523 

(0.219) 

24 20 % 
2, 10, 11, 15, 19, 

25 
0.545 

0.515 
(0.197) 

23 23 % 
2, 3, 10, 11, 15, 

18, 25 
0.637 

0.562 
(0.323) 

22 27 % 
2, 10, 11, 13, 15, 

18, 19, 25 
0.725 

0.649 
(0.345) 

21 30 % 
2, 10, 11, 13, 15, 

18, 19, 23, 25 
1.165 

0.862 
(0.832) 
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Figure 4.  Examples of the convergence of the a) average RMSE; b) objective 
function (number of remaining wells).  
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Figure 5.  Variation of overall data loss as quantified by the RMSE with the 
number of remaining wells in the optimized LTM network.  The average REE
of the interpolated concentrations for the eliminated wells, along with error 
bars represented one standard deviation, is shown for comparison.  
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as the number of remaining wells decreases, the average REE 
for the eliminated wells and overall RMSE increase 
non-linearly (Figure 5 and Table 2).  Since concentrations at 
wells eliminated from the monitoring network are estimated 
using the remaining wells, fewer remaining wells may 
increase the REE of each deleted well, and consequently, the 
RMSE increases.  The RMSE values here are the lowest for a 
given number of remaining wells based on a minimum of 50 
replicate runs of the ACO for each case.  For the cases with 25 
and 26 remaining wells, the reduced LTM networks identified 
by the ACO are near-optimal in terms of RMSE compared to 
the solution for the 24-well case.  However, the solutions for 
the 24-, 25-, and 26-well cases are all similar; the average 
REE for the 25- and 26-well solutions fall within one standard 
deviation of the average REE for the 24-well solution (Table 
2).  Figure 5 indicates that after reducing the number of wells 
in the LTM network to a certain point, the trade-off between 
eliminating additional wells and maintaining an acceptable 
level of error changes such that the resulting increase in 
overall RMSE becomes too large.  For example in this 
problem, eliminating more than 8 wells out of the original 30 
results in a sharp increase in the RMSE as well as the average 
and standard deviation of the REE of the interpolated 
concentrations (Figure 5 and Table 2).   

The reduced LTM networks identified by the ACO also 
were evaluated using concentration contours (Figure 6a).  The 
contours were developed using interpolated concentrations 
calculated using the same IDW method employed in the ACO 
algorithm at the eliminated wells and the measured data at the 
remaining monitoring wells.  Results show that the eliminated 
wells are distributed in the areas inside the plume boundary 
and among clustered wells.  Differences between the contours 
resulting from the reduced networks and the original contours 
were minor for most cases (Figure 6a).  In the extreme case 
with 21 remaining wells, which represents a 30% reduction in 

monitoring wells, there is some contour area loss at the 0.05 
mg/L concentration isopleth.  This result verifies that the 
trade-off between well reduction and data loss through 
interpolation error may not be beneficial or desirable when 
too many wells are eliminated, as also indicated in Figure 5 
and Table 2.  Decision makers need to assess what their error 
tolerance is and whether this higher data loss, as indicated by 
the contour map (Figure 6a), is a reasonable trade-off for cost 
savings through eliminating wells.  Thus the RMSE value 
alone may not be sufficient to evaluate a solution; additional 
analysis such as through contour mapping, which shows the 
RMSE and individual REE qualitatively, may be necessary.  

The same LTM optimization example problem also was 
solved following a procedure based on the MAROS 
procedure for sampling optimization outlined in [2].  In 
particular, a ranking of slope factor (SF) values was used here 
to sequentially eliminate wells using.  The SF is defined as the 
normalized difference between the measured and estimated 
log-concentrations and is used to quantify an individual well’s 
contribution to the entire monitoring network [2].  Note that 
for comparison to the ACO algorithm, the estimated 
concentrations were interpolated using IDW here.  In 
MAROS a well may be considered redundant if the value of 
SF is smaller than a specified value.  However, the SF is not 
very sensitive to differences between Cest,i and Ci.  The case 
with 23 wells remaining in the monitoring network was 
analyzed (Figure 6b).  A limitation of MAROS is that the 
impact of removing additional wells on previously removed 
wells is not explicitly considered.  Thus there is a possibility 
that the SF of previously removed wells may increase and 
even might violate SF thresholds, such that a well should not 
be considered a redundant well.  For example, well 15 was 
eliminated during the fourth iteration with a SF value of 
0.120, but its SF value increased to 0.169 after 3 more wells 
were deleted.  Therefore the estimated concentration and 

                      
Figure 6.  Comparison of concentration contours based on data from the original 30 wells with the 23 wells and interpolated values at the 7 redundant wells  
from the a) ACO solution and b) MAROS-based solution.   

a) b) 
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error (SF) of previously removed wells needs be recalculated 
each iteration.  Eliminating the well with the lowest SF value 
each iteration is analogous to a greedy search procedure.  
There is potential that if a well other than the well with the 
lowest SF is selected for elimination then additional wells 
may be removed without violating overall constraints and 
thresholds.  In MAROS [2], after a well is eliminated based on 
SF the overall information loss metrics Average 
Concentration Ratio (CR) and Area Ratio (AR) are calculated.  
However, these are averaged metrics, and individual 
estimated errors of wells removed in previous iterations are 
not explicitly assessed.   

When comparing the results from the ACO and the 
aforementioned procedure based on MAROS for the case 
with 23 remaining wells (Figure 6), it is seen that the ACO 
results are very similar to and slightly better than the 
MAROS-based results.  The resulting overall RMSE is 0.637 
for the ACO solution and 0.721 for the MAROS-based 
solution.  The difference is due to the location of two removed 
wells: wells 13 and 19 are chosen by MAROS-based 
procedure while wells 3 and 11 are selected by the ACO.  
Concentration contours based on the data from sampled wells 
and interpolated values at the deleted wells for the 23-well 
networks identified by the ACO and MAROS-based 
procedure are shown in Figure 6.  These contours are overlain 
on the contours created using data from the original 30-well 
network. The contours from the ACO solution slightly 
overestimate contaminant contour regions, in particular at the 
0.01 mg/L isopleth, in comparison to the contours developed 
using data from original 30-well LTM network.  The ACO 
results are slightly more conservative compared to the minor 
underestimation of the 0.005 mg/L isopleth of the 
MAROS-based solution.  Overall, the two sets of resultant 
contours match the original contours very well.  

 

VI. Conclusions 
A new algorithm for LTM spatial optimization using ACO is 
presented in this work as a proof of concept.  ACO is a global 
search procedure inspired by ant colony foraging activity and 
stygmergy.  The goal of the LTM optimization problem is to 
minimize the number of sampling wells, as a surrogate to 
minimizing sampling costs, while satisfying constraints on 
overall data loss.  The developed ACO algorithm is a 
stochastic search procedure used to optimize LTM networks 
by identifying redundant sampling locations.  Metrics used to 
quantify individual and overall data loss due to interpolating 
concentrations at unsampled locations are presented and used 
to develop heuristics that guide the ACO search for optimal 
reduced LTM networks.   

This work demonstrates that the ACO is a promising 
method for optimizing monitoring networks. This is 
significant given the predicted costs of LTM in the coming 
decades.  The ACO was applied to a case study with 30 wells 

in the original LTM network, and the results indicate that the 
developed algorithm can identify optimal and near-optimal 
monitoring networks. The resulting reduced sampling 
locations are feasible solutions that also are intuitively logical 
solutions in which the eliminated wells typically are located in 
areas inside the contaminant plume boundary and among 
clustered wells.  The ACO solution performs slightly better 
than the solution identified by a ranking method based on the 
MAROS decision support system [2].  By solving the LTM 
optimization problem with the ACO using different data loss 
thresholds, trade-offs between number of wells eliminated 
from the monitoring network and overall data loss, as 
quantified by the interpolation RMSE, can be evaluated.  Both 
the RMSE and comparisons of plume contours based on the 
original LTM network and the reduced network help convey 
to the decision maker the performance of the optimized 
monitoring networks.  It can be seen that a limit to the number 
of wells eliminated exists such that the trade-off between cost 
reductions via reduced sampling and data loss is no longer 
acceptable.   

The ACO heuristic may be extended to apply additional 
formulations of the LTM optimization problem that address 
additional environmental monitoring real-world issues.   For 
example, a new ACO paradigm for LTM optimization based 
on an analogy to the TSP may be adapted based on the ACO 
developed in this work.  In this formulation, an ant may 
choose to visit any well not previously visited based on 
similar redundancy metrics and pheromone density.  In this 
way, the LTM problem is not limited to a binary decision 
variable formulation in which the order in which wells are 
visited are determined randomly for each ant each iteration.  
Moreover, an ACO algorithm may be developed to solve both 
the spatial and temporal LTM optimization problem in which 
the sampling locations and frequency are optimized. 
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