
International Journal of Computational Intelligence Research.
ISSN 0973-1873 Vol.1, No.1 (2005), pp. 29-41
© Research India Publications http://www.ijcir.info

Approximation Capabilities of Hierarchical Neural-

Fuzzy Systems for Function Approximation on
Discrete Spaces

Xiao-Jun Zeng

School of Informatics
University of Manchester, U.K.

e-mail: x.zeng@manchester.ac.uk

John Yannis Goulermas
Department of Electrical Engineering and Electronics

University of Liverpool, U.K.
e-mail: j.y.goulermas@liverpool.ac.uk

John A Keane
School of Informatics

University of Manchester, U.K.
e-mail: john.keane@manchester.ac.uk

Panos Liatsis

Information and Biomedical Engineering Centre
School of Engineering and Mathematical Sciences

City University, London EC1V 0HB, U.K.
e-mail: p.liatsis@city.ac.uk

Abstract—This paper investigates function approximation
on discrete input spaces by both neural networks and neural-
fuzzy systems. Rather than use existing neural networks for
function approximation on continuous input spaces, this paper
proposes, based on a hierarchical systematic perspective, four
simplified approximation schemes: simplified neural networks,
extended simplified neural networks, simple hierarchical neural-
fuzzy systems and hierarchical neural-fuzzy systems. Each
scheme is proven to be a universal approximator (i.e., each can
approximate any function on discrete input spaces to any
degree of accuracy). The results provide both several new and
simpler approximation schemes for function approximation on
discrete spaces and show that there exist simpler and more
effective methods for function approximation on discrete
spaces compared with continuous spaces.

Keywords: Neural Networks, Fuzzy Systems, Neural-Fuzzy
Systems, Hierarchical systems.

I. Introduction
Approximation or representation capabilities of neural
networks and fuzzy systems have attracted considerable
research in the last 15 years. In neural networks, following
from the proof of their universal approximation property
(Cybenko [5], Hecht-Nielsen[11], and Carroll and
Dickinson [3], Hornik, Stinchcombe, and White[12]), it has
been proved that various neural networks are universal
approximators and that the various results on approximation
accuracy are also available (see, for example, [1], [13]-[15],
[17], [18], [20], [21], and [23]). In fuzzy systems, the work
on their approximation capabilities (Buckley [2], Kosko[16]
and Wang [24]) has shown that fuzzy systems are also
universal approximators. Since then, a number of results
related to approximation capabilities and accuracy have

been published (see, for example, [4], [10], [19], [28], and
[29]-[31]); more recently these results have been extended
to hierarchical and hybrid systems (see, for example, [8],
[22], [25], [26], [33] and [34]). In addition to research on
neural networks’ and fuzzy systems’ approximation
capability, the approximation capabilities of wavelets and
support vector machines (SVM) have been investigated (see,
for example, [6] and [9]). However, almost all these
available results focus on function approximation on
continuous input spaces with few results available for
function approximation on discrete spaces. This may be
because function approximation on discrete input spaces can
be viewed as a special case of function approximation on
continuous spaces as any function on discrete spaces can be
expanded to be a continuous function [27] that interpolates
the given discrete function, and then the existing results in
function approximation on continuous spaces imply that
neural networks and fuzzy systems are universal
approximators for functions defined on discrete spaces.
Although such a view is both valid and correct, it ignores
the difference between function approximation on
continuous and discrete spaces, especially the potential to
develop simpler approximation schemes based on neural
networks and fuzzy systems for function approximation on
discrete input spaces.

In this paper, motivated by this potential, the
approximation capabilities of neural networks and neural-
fuzzy systems for function approximation on discrete spaces
are investigated by focusing on the distinguishing features
of discrete input spaces. Several new simplified
approximation schemes designed specially for function
approximation on discrete spaces are proposed:

1. Simplified Neural Networks (SNNs)

30 Xiao-Jun Zeng et. al

2. Extended Simplified Neural Networks (ESNNs)
3. Simple Hierarchical Neural-Fuzzy Systems

(SHNFSs)
4. Hierarchical Neural-Fuzzy Ssystems (HNFSs)

The universal approximation property (i.e., the capability to
approximate any function on discrete input spaces to any
degree of accuracy) of these approximation schemes are
then proved. In other words, for function approximation on
discrete input spaces, the proposed approximation schemes
are simpler and more effective whilst remaining as general
as those approximation schemes in the literature for neural
networks and fuzzy systems.

The paper is structured as follows: Section II proposes the
four simplified approximation schemes for function
approximation on discrete input spaces and analyzes their
utility; Section III analyzes the approximation capabilities of
the proposed approximation schemes and presents their
universal approximation properties; finally conclusions are
presented in Section IV, and the proofs of all theorems
presented are given in the Appendix.

II. Simplified Neural Networks and
Hierarchical Neural-Fuzzy Systems

Throughout the rest of the paper, it is assumed that the
system or function to be modelled or approximated is a
multi-input single-output (MISO) function defined on a
discrete space. That is, suppose that the function is given as
follows:

),...,,()(21 nxxxGXGy == (1)

where RVy ⊂∈ is the output variable and

∈=),...,,(21 nxxxX n
n RUUUU ⊂×××= ...21 is

the input variable vector in which ii Ux ∈ and

},...,2,1,|{ ,, ikikii NkRuuU =∈= (2)

In other words, input variable ix takes discrete values.

In the following, simplified (feedforward) neural
networks and hierarchical neural-fuzzy systems are
proposed to approximate functions on discrete spaces, i.e.,
those functions given in (1) and (2).

A. Simplified Neural Networks (SNNs)

The standard and most commonly used (feedforward)
neural networks (NN) can be represented as:

∑
=

++==
N

i
iii cbXacXNNy

1
0)()(τσ (3)

where),...,,(21 nxxxX = are input variables, UX ∈
n

n RUUU ⊂×××= ...21 which are input space,

Ry∈ is the output variable, τ is the vector transpose,

(.)σ is the activation function and the parameters Rc ∈0 ,

Rci ∈ , n
i Ra ∈ , and Rbi ∈ (),...,2,1 Ni = .

 Given the standard NN given in (3), the total

number of parameters [i.e., Rci ∈ , n
i Ra ∈ ,

Rbi ∈ (),...,2,1 Ni = and Rc ∈0] is 1)2(++ Nn . For

nonlinear complex function approximation, a large N is
needed and often N will grow exponentially with the
dimension of n [1]. As a result, a large number of
parameters are needed in order to achieve good
approximation accuracy.

To overcome this difficulty, a simplified neural network
(SNN) is proposed for function approximation on discrete
spaces as follows:

 ∑
=

+++==
N

i
iii cXcXSNNy

1
0])([)(ββαασ τ (4)

where Rc ∈0 , Rci ∈ , Ri ∈α , Ri ∈β

(),...,2,1 Ni = and nR∈α , R∈β .

Let

βα τ +== XXLz)((5)

and

∑
=

++==
N

i
iii czczNNy

1
01)()(βασ (6)

Then the proposed SFNN given in (4) can be rewritten as
follows:

)]([)(1 XLNNXSNNy == (7)

In other words, the proposed SNN can be presented as a
composition of a linear function)(XL given in (5) and a

one-dimensional standard NN)(1 zNN given in (6).

For the SNN given in (4), the total number of parameters
is 23 ++ nN . Therefore, in many cases fewer parameters
are needed for SNNs in comparison to the number needed
for standard NNs. Another advantage of SNNs is that they
are more effective in overcoming the model over-fitting
which often happens in NN modeling. This is because: in
the standard NNs, adding a new neuron [i.e., add an

item)(iii bXac +τσ in(3)] means adding 2+n

parameters. As a result, in NN modeling it often happens
that adding one more neuron causes model overfitting
whereas not adding such a new neuron may result in
underfitting, especially in the case where n is large but
only limited training data is available. However, in SNNs,

adding a new neuron means adding an item)(iii zc βασ +

which only adds three parameters. As a result, SNNs allow
the addition of finer-grained parameters to overcome model
overfiting and underfitting, especially in the high dimension
(i.e., large n) case. Another potential advantage is that
simpler learning algorithms can be developed. For example,
in some cases multi-dimensional NN learning problems can
be transformed to a one-dimensional NN learning problem
and thus the corresponding learning algorithms can be much
simpler (see Section III for more detailed discussion on
this).

Approximation Capabilities of Hierarchical Neural-Fuzzy Systems 31

To approximate a function)(XG given in (1) on

discrete space ∏
=

=
n

i
iUU

1

given in (2), the basic idea in

using the SNNs is that, firstly a linear function)(xL is

constructed to transform n dimensional variables

),...,,(21 nxxxX = into a one-dimensional variable z

and then a one-dimensional standard NN)(1 zNN is

constructed to form the final SNN

)]([)(1 XLNNXSNN = to approximate the given

function)(XG . A major focus of this paper is to prove

that SNNs have the same universal approximation property
(i.e., they are able to approximate any function to any
degree of accuracy) as standard NNs, that is, to prove the
feasibility and general applicability of SNNs as a new and
simpler NNs for function approximation on discrete spaces.

There are two possible views on the SNN given in (4).
Firstly, it can be viewed as a special case of the standard
three layered feedforward NN given in (3) in which the

parameters take the particular form of αα iia = and

iiiib ββα +=),...,2,1(Ni = . Secondly, it can be

viewed as a hierarchical hybrid NN system in which the
lower level sub-system is a linear function given in (5) and
the higher level sub-system is a one-dimensional NN given
in (6) which takes the output variable of the lower sub-
system as its input variable. The combination of the two
sub-systems forms the hierarchical hybrid system given in
(7) which is the proposed SNN. Although both views
produce the same SNNs given in (4) in this instance, the
second view is more general and flexible. The extended
SNNs and the hierarchical neural-fuzzy systems proposed
later in the paper result from this view. It should be noted
that hierarchical neural-fuzzy systems can only be obtained
from the second hierarchical hybrid systems view as they
are no longer a special case of standard NNs.

An extended SNN (ESNN) differs from a SNN in that,
rather than using one linear function to transform n

dimensional variables),...,,(21 nxxxX = into a one-

dimensional variable z , it uses)(nm < sub-linear

functions as the lower level sub-systems to transform n

dimensional variables),...,,(21 nxxxX = into m

dimensional variables),...,,(21 mzzzZ = and then use a

mdimensional standard NN (which takes the output
variables of the lower sub-systems as its input variables) as
the higher level sub-system. The detailed mathematical
formula of an ESNN is as follows:

Let jG),...,2,1(mj = be a disjoint grouping of the

input variables },...,,{ 21 nxxx as follows:

mjxxxG j
jn

jj iiij ,...,2,1,...,,)()(
2

)(
1

=

= (8)

where

='jj GG � ∅ mjjjj ,...,2,1',,' =≠ (9)

},...,,{.... 2121 nm xxxGGG =*** (10)

and nn
m

j
j =∑

=1

. Let),...,,()()(
2

)(
1

j
jn

jj iiij xxxX = denote the

input variables of group jG),...,2,1(mj = , and then the

lower level sub-systems are linear functions given by

jjjjjj XXLz ϕφτ +==)(mj ,...,2,1= (11)

where jn

j R∈φ , Rj ∈ϕ and

j

k

j

j

n

i

n

k
Gj RUUX ⊂×=∈

=1
. Further the higher level sub-

system is a m dimensional standard NN which takes the
output variables of the lower level sub-systems as its input
variables and is given by

∑
=

++=

==
N

i
iii

mmm

cZc

zzNNZNNy

1
0

1

)(

),...,()(

βασ τ (12)

with Rc ∈0 , Rci ∈ , m
imiii R∈= ταααα],...,,[21 ,

Ri ∈β (),...,2,1 Ni = . Finally the ESNN is the

following hierarchical system formed by combining the
above sub-systems as

∑ ∑

∑ ∑

= =

= =

+

++=

+

+=

==

N

i
ij

m

j
jjiji

N

i
i

m

j
jjiji

mmm

cXc

cXLc

XLXLNNXESNNy

1
0

1

1
0

1

11

)(

)(

)](),...,([)(

βϕφασ

βασ

τ

 (13)

where the parameters Rc ∈0 , Rci ∈ , Ri ∈β ,
m

imiii R∈= ταααα],...,,[21 , Ni ,...,2,1= , and

jn

j R∈φ , Rj ∈ϕ , mj ,...,2,1= . As nn
m

j
j =∑

=1

, then

the total number of parameters of the ESNN is

1)2()2(1
1

++++=++++ ∑
=

mnNmmnNm
m

j
j . As

nm< , therefore, the ESNN can use fewer parameters in
function approximation.

On the one hand, the ESNN given above can be viewed
as a special case of the standard NN in which

],...,[11 mimiia φαφα= and i

m

j
jijib βϕα += ∑

=1

(ni ,...,2,1=). On the other hand, the SNN given in (4) can

be viewed as the special case of the ESNN when m=1, and
the standard NN given in (3) can be viewed as the special

32 Xiao-Jun Zeng et. al

case of the ESNN when nm= and 0,1 == jj ϕφ

(nj ,...,2,1=). In other words, ESNNs are very flexible

with regard to model complexity, lying somewhere between
SNNs and standard NNs respectively.

From an application viewpoint, the main reason to
introduce ESNNs is their flexibility as the number of input
variable groups and the input variables in each group can be
chosen based on the need and desire of each application. For
example, in applications of high dimensional complicated
system modeling, it is often desired to classify the large
number of input variables into different groups and then
identify the impact of each input variable group on the
system output. ESNNs can achieve this by using each lower
level sub-system to transform each group of input variable
into its single output variable into the higher level sub-
system and the impact of each group to the system output
can be seen by the corresponding input-output relationship
at the higher level sub-system. In addition, the
representation accuracy of float numbers may make SNNs
difficult to use in some high dimensional cases and then
ESNNs are needed (see Section III for more detailed
discussion about this point).

B. Hierarchical Neural-Fuzzy Systems (HNFSs)

Taking the hierarchical hybrid view of SNNs mentioned in
the last subsection by replacing the linear function

)(XL by a fuzzy system)(XF , a Simple Hierarchical

Neural-Fuzzy system (SHNFS) can be obtained as follows:
The lower level sub-system is a fuzzy system

)(XF whose rule base is given as:
lR : IF lAisx ,11 and … and lnn Aisx , ,

THEN lCisz Ll ,...,2,1= (14)

and its mathematical formula is represented by

l

L

l
l yXBXFz ∑

=

==
1

)()((15)

where ly is the centroid of the output fuzzy set lC ,

∑
=

=
L

l
l

l
l

XA

XA
XB

1

)(

)(
)(

are fuzzy basis functions [32] (also called normalized

membership functions [7]) and ∏
=

=
n

i
ilil xAXA

1
,)()(are

the membership functions),...,2,1(Ll = .

The higher level sub-system is a one-dimensional
standard NN given in (6) and then the final SHNFS is given
by

∑ ∑

∑

= =

=

+

+

=

++=

==

N

i
i

L

l
llii

N

i
iii

cyXBc

cXFc

XFNNXSHNFSy

1
0

1

1
0

1

)(

])([

)]([)(

βασ

βασ (16)

where Rc ∈0 , Rci ∈ , Ri ∈α , Ri ∈β

(),...,2,1 Ni = .

Compared with SNNs introduced above, SHNFSs have
several features which could be useful in applications.
Firstly, as the lower level sub-system is a nonlinear fuzzy
system, such SHNFSs have better representation power
whilst still being relatively simple and transparent due to the
rule representation and interpretability of fuzzy systems.
This improved representation power in the lower level
allows the higher level NN sub-system to be simpler which
can lead to fewer parameters and less training data being
needed in the higher level NN sub-system modeling.
Secondly, it enables the combination of human (knowledge
and experience) and machine intelligence (learning from
data) in system modeling. That is, the fuzzy systems method
can utilize human intelligence to form the lower level fuzzy
sub-system and then the learning algorithms of neural
networks can be applied to identify the higher level NN
model from the available numerical training data. This is
very useful in applications where there is only limited
training data but relevant human knowledge is available.

As with the ESNN discussion, in applications of high
dimensional complicated system modeling, it is often
desired to classify the large number of input variables into
different groups and then identify the impact of each input
variable group on the system output. In addition, in the high
dimensional situation, utilizing human knowledge by one
single fuzzy system is often infeasible as it will result in a
few thousands or more rules to collect human knowledge.
For example, for the simplest fuzzy systems in which each
input variable has only two possible fuzzy values, the total

number of rules is n2 when there are n input variables. As
a result, for high dimensional function approximation or
system modeling, a more feasible and flexible hierarchical
structure is needed. The following general Hierarchical
Neural-Fuzzy Systems (HNFS) is proposed to meet these
requirements.

Firstly, divide the input variables },...,,{ 21 nxxx into

m disjoint groups jG),...,2,1(mj = as given in (8)–(10)

and let),...,,()()(
2

)(
1

j
jn

jj iiij xxxX = denote the input

variables of group jG),...,2,1(mj = . Then the lower

level sub-systems of a HNFS are fuzzy systems

),...,2,1()(mjXF jj = whose rule base is given as:

Approximation Capabilities of Hierarchical Neural-Fuzzy Systems 33

j
lR : IF)(

,1
)(

1

j

i l
j Aisx and … and)(

,
)(

j

i ljn
j
jn

Aisx ,

THEN)(j

l
Cisz jLl ,...,2,1= (17)

and its mathematical formula is represented by

)(

1

)()()(j
l

L

l
j

j
jjj yXBXFz

j

l∑
=

== (18)

where)(j

l
y is the centroid of the output fuzzy set)(j

l
C ,

∑
=

= L

l
j

j

j
j

j
j

XA

XA
XB

l

l

l

1

)(

)(
)(

)(

)(
)(

are fuzzy basis functions, and ∏
=

=
n

k
i

j
j

j
l j

klk
xAXA

1

)()()()()(
,

are the membership functions),...,2,1(jLl = .

The higher level sub-system is a m dimensional
standard NN given in (12) and then the final HNFS is given
by:

∑ ∑ ∑

∑

= = =

=

+

+

=

++=

==

N

i
i

m

j

L

l

jj
iji

N

i
iii

m

cyXBc

cXFc

XFNNXHNFSy

j

ll
1

0
1 1

)()(

1
0

)(

])([

)]([)(

βασ

βασ τ (19)

where τ)](),...,([)(1 XFXFXF m= , Rc ∈0 , Rci ∈ ,

Ri ∈β , m
imiii R∈= ταααα],...,,[21 , Ni ,...,2,1= .

III. Approximation capabilities of SNNs and
HNFSs
In this section, the approximation capability of SNNs is
analyzed first. As has been explained, SNNs require fewer
parameters for function approximation than standard NNs.
However, an important question is whether such SNNs are
general enough to approximate any function on discrete
spaces, that is, whether SNNs preserve the universal
approximation capabilities of standard NNs. The
approximation capability analysis presented in this section
provides a positive answer to this question.

In order to analyze the approximation capabilities of
SNNs, a theorem is introduced first.

Theorem 1. Let nUUUU ×××= ...21 be a discrete

space in which },...,2,1,|{ ,, ikikii NkRuuU =∈=

),...,2,1(ni = .Then there exists a real value linear

function),...,,()(21 nxxxLXLy == defined on U such

that RUL →: is a one-to-one mapping [i.e., if 'XX ≠ ,

then)'()(XLXL ≠].

Proof of this theorem first appeared in [35]. As this

theorem is fundamentally important to the later analysis
here, it is also included in the Appendix.

The above theorem shows that, for a discrete space

)2(≥⊂ nRU n as given in (2), there exist some simple

functions such as linear functions which form one-to-one
mappings from U to R . This is a property which holds
only on discrete spaces but not on continuous spaces. This is
because no one-to-one mapping from a multi-dimensional

continuous space],[
1 ii

n

i
U βα

=
×=)2(≥n to R can be

continuous [35]. As no continuous function can be found to
form a one-to-one mapping from a multi-dimensional
continuous space toR , it is impossible to find a simple
function which is a one-to-one mapping from a multi-
dimensional continuous space U to R . In other words,
multi-dimensional information on discrete spaces can be
coded into one dimension by using simple functions such as
linear functions without loss of information but this cannot
be achieved on continuous space. This is the main reason
why function approximation on discrete spaces can be
achieved by simpler approximation schemes than for
continuous spaces, and it forms the basis for the results in
this paper.

Based on Theorem 1, to approximate a multi-dimensional
function)(XG given in (1) on a discrete space U given in

(2) can be done by two steps: firstly, use a simple one-to-
one mapping)(XMz = such as a linear function to

transform the multi-dimensional discrete input space U into

a one dimension discrete space V . As)(XMz = is a

one-to-one mapping from U to V , then its inverse function

)(1 zMX −= exists (notice here (.)1−M is a vector value

function rather than a normal real value function). Then
)(XG can be represented as

)]([)(1 zMGXG −=

As)]([)(1 zMGzg −= is a one-dimensional function on a

discrete space V , then the original multi-dimensional
function approximation problem becomes a one-
dimensional approximation problem and a one-dimensional
standard NN can be used to approximate)(zg to achieve

any desired approximation accuracy due to the universal
approximation property of NNs. The following universal
approximation theorem for SNNs is obtained based on this
idea, with the detailed proof of the theorem given in the
Appendix.

 Theorem 2 (Universal Approximation Property of SNNs).
Let)(XG be a function on a discrete space

34 Xiao-Jun Zeng et. al

nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=

},...,2,1 iNk =),...,2,1(ni = . Then for any given

0>ε , there exists a SNN)(XSNN given in (4) such that

 ε<−=−
∈∞ |)()(|max|||| XSNNXGSNNG

UX
 (20)

Theorem 2 shows that SNNs can approximate any
function on a discrete space to any degree of accuracy. In
other words, SNNs, despite their simplified formula,
preserve the universal approximation property of standard
NNs and therefore are generally applicable for function
approximation on discrete spaces. In the following, suppose
that the available training data are given

as },...,2,1|),{(NtyX tt = , then two possible algorithms

to find a SNN approximator for a given function are briefly
discussed:

The first algorithm is based on the proof of Theorem 2
which includes two steps: the first step is to find a one-to-
one linear mapping)(XL from U to Rand then a one-

dimensional function)]([)(1 zLGzg −= or

)()]([XGXLg = can be defined; the second step is to

use the available data },...,2,1|),{(NtyX tt = to get a

set of training data for function)(zg as

},...,2,1),(|),{(NtXLzyz tttt == and then, for

)(zg , apply the learning algorithms of standard NN to find

a one-dimensional NN approximator)(1 zNN with the

required approximation accuracy. Finally, the SNN
approximator can be obtained by

)]([)(1 XLNNXSNN = . Theoretically speaking, this is

a very simple method as by using the one-to-one linear
mapping)(XL , the original approximation problem is

transformed to a simple learning problem of a single
variable NN. In the case where the number of input
variables and the possible values of each input variables are
small, then this is a good algorithm in practice due to its
simplicity. However, this method is not suitable for high
dimensions (i.e., many input variables or n is large) with

each input variable having many possible values (i.e., jN is

large). The reason is as follows: as the total number of all

possible values of input vector),...,,(21 nxxxX = are

∏
=

n

i
iN

1

, the total number of the possible function values of

a one-to-one mapping)(XLz = is ∏
=

n

i
iN

1

. When n and

iN),...,2,1(ni = are large, this is impossible as all

possible values are beyond the representation accuracy of
float numbers. Therefore, in the case when n and

),...,2,1(niNi = are large, the implementation of this

algorithm, as explained in the last section, requires use of
ESNNs. More details about how to use ESNNs to handle
such a situation are discussed later.

The second algorithm is to apply the gradient descent
optimisation algorithms to minimise

[]∑
=

−=
T

t
tt XSNNyE

1

2)(
2
1

where)(XSNN is given in (4) with the parameters

},...,2,1|,,,,,{ 0 Nicc iii =βαβα to be identified. In this

algorithm, it is not required that βατ +== XXLz)(is

a one-to-one mapping (note that a one-to-one mapping is a
sufficient but not a necessary condition), rather
parametersα and β are tuned by the learning algorithm to

meet the approximation requirement. This algorithm is more
complicated than the first one but should be able to handle
the higher dimensional modeling situation. In order to
realize the potential of SNNs and apply them to
applications, implementation and comparison of these two
methods is needed.

The above discussion illustrates that the proposed SNN
approximation scheme is realizable and applicable.
However, as the main focus of this paper is the analysis of
approximation capabilities rather than the development of
algorithms to implement the proposed SNN approximation
scheme, algorithm development is not discussed further.

The next step is to investigate the approximation
capability of ESNNs. Similar to the earlier analysis of
SNNs, the basic idea is as follows:

Based on Theorem 1, approximation of a ndimensional

function)(XG in a discrete space U by an ESNN can be

achieved by two steps: firstly, use of several one-to-one

mappings)(jj XMz =),...,2,1(mj = such as one-to-

one linear functions to transform the ndimensional discrete

input space
jG

m

j
i

n

i
UUU

11 ==
×=×= [where

k

j

j i

n

k
G UU

1=
×=

(mj ,...,2,1=)] into m dimension discrete space

j

m

j
VV

1=
×= . That is, each)(jj XMz = is a one-to-one

mapping from
jGU to),...,2,1(mjVj = . Then

)(XG can be represented as

)](),...,([)(1
1

1
1 mzMzMGXG m

−−=

As)](),...,([),...,()(1
1

1
1 1 mm zMzMGzzgZg m

−−== is

a m dimensional function on a discrete space V , then a
mdimensional standard NN can be used to approximate

)(Zg to achieve any desired approximation accuracy.

Based on such an idea, the following theorem about the
approximation capability of ESNNs can be obtained.

Approximation Capabilities of Hierarchical Neural-Fuzzy Systems 35

Theorem 3 (Universal Approximation Property of ESNNs).
Let)(XG be a function on a discrete space

nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=

},...,2,1 iNk =),...,2,1(ni = . Then for any given 0>ε

and for any disjoint grouping of the input variables

},...,,{ 21 nxxx into m groups jG),...,2,1(mj =

satisfying (8)–(10), there exists an ESNN
)(XESNN given in (13) such that

 ε<−=−
∈∞ |)()(|max|||| XESNNXGESNNG
UX

 (21)

The main advantage of the above theorem is that, for any

disjoint grouping of the input variables },...,,{ 21 nxxx

(i.e., the user can choose the number of groups and which
input variables are in which group), an ESNN with such an
input variable grouping can be found to approximate the
given function to any degree of accuracy. This is a useful
property in applications as it means that an ESNN can be
designed based on the required different impact of different
groups of input variables on the system output. In other
words, the ESNN both allows the required approximation
accuracy and enables better understanding of system
behavior.

The two possible algorithms proposed for SNNs are also
applicable here. The only differences are as follows: in the
first algorithm, mone-to-one linear mappings are needed

from the sub-input-spaces
jGU to),...,2,1(mjVj = rather

than only one one-to-one linear mapping needed, and the
higher level sub-system to be trained is a mdimensional
NN rather than a one-dimensional NN. For function
approximation in high dimensional input spaces, the whole
input space can be divided into several disjoint sub-spaces
such that a one-to-one linear mapping on each sub-space is
possible within the representation accuracy of float
numbers. In other words, high dimensional function
approximation and modeling can be handled by proper
ESNNs. Although the learning of the higher level sub-
system is a more complicated mdimensional NN, it can
still be much simpler than training a standard NN with
ndimensions. Consider an example where 25=n .
Assume we design 5 one-to-one linear functions in which
each linear function takes 5 variables (today’s computers are
likely to be able to represent a 5-dimension one-to-one
mapping), then the training of a 25-dimension standard NN
in the existing NN learning methods can be transformed into
the training of a 5-dimension NN by using the proposed
ESNN method. In other words, ESNNs can handle the high
dimensional modeling problem and can be much simpler
than standard NNs in many cases.

Now the above results of SNNs and ESNNs are extended
to SHNFSs and HNFSs. Such an extension is possible
because fuzzy systems can realize any linear and many
nonlinear functions [32]. That is, by choosing the commonly
used triangle membership functions and proper system

parameters, fuzzy systems can exactly represent any linear
function. Based on Theorem 1, that there are one-to-one
linear mappings from a multi-dimensional discrete space to
a one-dimensional discrete space, it can be implied that
there are fuzzy systems which can form one-to-one
mappings from a multi-dimensional discrete space to a one-
dimensional discrete space. Based on this and following the
same idea as the approximation capability analysis of SNNs,
the following theorem related to the approximation
capability of SHNFSs can be proved as given in the
Appendix.

Theorem 4 (Universal Approximation Property of

SHNFSs). Let)(XG be a function on discrete space

nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=

},...,2,1 iNk =),...,2,1(ni = . Then for any given

0>ε , there exists a SHNFS)(XSHNFS given in (16)

such that
ε<−=−

∈∞ |)()(|max|||| XSHNFSXGSHNFSG
UX

 (22)

Similarly, based on the fact mentioned above that there
are one-to-one fuzzy systems on a multi-dimensional
discrete space and following the same idea as the
approximation capability analysis of ESNNs, the following
theorem of the approximation capability of HNFSs can be
proved as given in the Appendix.

Theorem 5 (Universal Approximation Property of

HNFSs). Let)(XG be a function on discrete space

nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=

},...,2,1 iNk =),...,2,1(ni = . Then for any given 0>ε

and for any disjoint grouping of the input variables

},...,,{ 21 nxxx into m groups jG

),...,2,1(mj = satisfying (8)–(10), there exists a HNFS

)(XHNFS given in (19) such that

ε<−=−
∈∞ |)()(|max|||| XHNFSXGHNFSG
UX

 (24)

The two algorithms proposed for SNNs and ESNNs can
be extended to identify SHNFSs and HNFSs. The main
ideas are the same but there are several differences.

In the first algorithm, the lower level one-to-one linear
mapping(s) are now replaced by the fuzzy system(s) as the
lower level sub-system(s). As there are more parameters
available to construct the one-to-one mapping(s), then it is
possible that nonlinear one-to-one mappings can be
constructed to allow the higher level approximation problem
to become simpler. In addition, human knowledge can be
utilized during the construction of the lower level fuzzy
system(s).

In the second algorithm, rather than use the linear
function(s) with parameters to be identified by the gradient
descent optimisation algorithms, it is possible to construct
fuzzy systems by using available human knowledge which

36 Xiao-Jun Zeng et. al

may lead to faster convergence during the training phase.
In addition to the above, a third possible algorithm which

is especially suitable for situations with high dimension and
limited available data is as follows:
1. Construct one or several lower one-to-one fuzzy

systems based on human knowledge to aggregate the
impact of different input variable groups on the system
output into several aggregated group indexes [i.e.,

construct),...,2,1()(mjXFz jjj == by only using

available human knowledge, and jz is the aggregated

index variable of those input variables in group jG] .

2. Use the constructed lower level fuzzy system(s) to
transform the available input-output data

},...,2,1|),{(NtyX tt = into the index-output data as

,...,2,1),(),,...,(|),{(,,,,1 === jXFzzzZyZ tjjtjtmtttt

 },...,2,1, Ntm = .

3. Use the index-output data),...,2,1|),{(NtyZ tt = to

identify the higher level NN)(ZNNy m= by using

the NN learning algorithms.
A simple example is given to illustrate the meaning of the

above steps. Suppose we wish to model how student
performance in examinations is dependent on 9 study factors
as follows: time spent in study, lecture attendance,
homework completion, previous examination record, A-
level scores, IQ score, lecture quality, lab facilities, and lab
availability, based on collected data of a small number of
students, say 25 (collecting such private information from a
large group is costly and time consuming, and thus
impractical). Suppose that the 9 factors are divided into 3
groups where Group 1 is the effort factors (time spent in
study, lecture attendance, homework completion), Group 2
is the academic ability factor (previous examination record,
A-level scores, IQ score), and Group 3 is the study
environment factors (lecture quality, lab facilities, and lab
availability). Then the above three steps can be applied as
follows:

Firstly, use human knowledge to build the lower level
fuzzy subsystems. For example, the sub-system to aggregate
the effort factors can be formed based on the following
human knowledge fuzzy rule: if time spent is long, lecture
attendance is regular, homework completion is good, then
the effort is very good; such rules can form the effort index
fuzzy sub-system.

Secondly, use the above lower level fuzzy systems to
transform the input-output data into index-output data. For
example, an input-output pair in the available data is {[time
spent=long, lecture attendance=regular, homework
completion=good, …, lab availability=always], exam
performance=good}. Then use the lower level fuzzy sub-
systems to transform the input-output pair into the index-
output pair as {[effort=very good, ..., study

condition=good], exam performance=good}. This step is to
transform all input-output data to index-output data;

Thirdly, now the original modeling problem with 9 input
variables and 25 available data has been transformed to a
modeling problem with 3 input variables and 25 available
data which is much easier to identify, thus a reasonable
model is likely to be obtained as the limited training data is
reasonably rich for a 3-dimensional modeling problem.

In summary, by using human knowledge to form the
lower level fuzzy sub-systems and then transforming the
available input-output data into index-output data, the
modeling problem of a SHNFS or HNFS with n input
variables is transformed into a modeling problem of a
standard NN with m input variables. As the latter problem
is one with a lower or much lower dimension, then it can be
identified by using the existing learning algorithms based on
the limited available data. In other words, the above
proposed algorithm shows that SHNFSs and HNFSs have
the potential to combine human (knowledge and experience)
and machine intelligence (learning from data) to model high
dimensional complicated systems with limited input-output
data.

IV. Conclusion
This paper has investigated function approximation on
discrete input spaces using neural networks and neural-
fuzzy systems.

Firstly, from a hierarchical systematic view, this paper
has proposed four new and simpler neural networks and
hierarchical neural-fuzzy systems for function
approximation on discrete spaces: SNNs, ESSNs, SHNFSs
and HNFSs. Compared to standard NNs and fuzzy systems,
the proposed approximation schemes have several
advantages including being simpler (fewer parameters),
useful to overcome model overfitting and underfitting,
flexible, capable of utilizing both human (knowledge and
experience) and machine intelligence (learning from data)
for a difficult modeling situation (such as high dimensions
and limited training data).
 Secondly, the paper has analyzed the approximation
capabilities of the proposed new approximation schemes.
That is, whether the proposed approximation schemes
preserve the universal approximation property of standard
NNs and fuzzy systems. A positive answer to this question
has been obtained, that is, all four proposed approximation
schemes have the universal approximation property. These
results have established a theoretical foundation and show
the feasibility and general applicability of the proposed
approximation schemes to function approximation on
discrete spaces.

Thirdly, several possible algorithms have been proposed
and analyzed to show how the advantages of the proposed
approximation schemes can be realized.
 Further work includes implementation and
experimentation of the proposed algorithms, a comparison
of the results obtained by the proposed algorithms with

Approximation Capabilities of Hierarchical Neural-Fuzzy Systems 37

those obtained by standard NN learning algorithms, and
applying these algorithms in real life applications.

Appendix

Proof of Theorem 1[35]. Given nUUUU ×××= ...21

and },...,2,1,|{ ,, ikikii NkRuuU =∈=

),...,2,1(ni = , Without loss of generality, it is assumed

that
iNiii uuu ,2,1, ...<<<),...,2,1(ni = . Now define

{ }
niuu

uu

iNiNi

kikiNki

ii
,...,1

min

,1,

,1,11 1

=∆+=

−=∆

+

+−≤≤

and a linear function in the following:

−

−
++

−

−
+

−

−
==

++

+

1,1,

1,

1,21,2

1,22
2

1,11,1

1,11
1

...

)(

2

1

nNn

nn
n

N

N

uu

ux
w

uu

ux
w

uu

ux
wXMy

n

 (A.1)

in which the weighting factors iw),...,2,1(ni = are

constructed recursively as follows:

1,...,101
1,1,

11 −=
−

∆<<=
+

+ ni
uu

www
iNi

i
ii

i

For the above construction of the weighting

factors iw),...,2,1(ni = , it is implied that, for any given

ki, and l iNkni ,...,2,1,1,...,2,1(=−=

),...,2,1 1+= iNl

i
iNi

iki
i

iNi

kiki
i

iNi

iki
i

i
iNi

iki
i

w
uu

uu
w

uu

uu
w

uu

uu
w

w
uu

uu
w

i

ii

i

≤
−
−

=

−
−

+
−

−
<

+
−

−

+

+

+

+

+

+
+

1,1,

1,1,

1,1,

,1,

1,1,

1,,

1
1,1,

1,,

 (A.2)

Let and X0 be '
0X any two different elements in U , that

is, ()
nknkk uuuX ,,2,10 ,...,,

21
=

()''
2

'
1 ,,2,1

'
0 ,...,,

n
knkk

uuuX = , and '
00 XX ≠ .If

'
1

1 ,1,1 kk uu ≠ , then, without loss of generality, assume that

'
1

1 ,1,1 kk uu < (this means '
1

1 ,11,1 kk uu ≤+). Now from (A.1)

and (A.2) , it is implied that

)2.(

)2.(

)2.(...

...

...

)(

1,11,1

1,11,1
1

2
1,11,1

1,1,1
1

1
1,21,2

1,2,2
2

1,21,2

1,2,2
2

1,11,1

1,1,1
1

1,11,1

1,1,1
1

1,21,2

1,2,2
2

1,11,1

1,1,1
1

1,1,

1,,

1,21,2

1,2,2
2

1,11,1

1,1,1
10

1

1

1

1

2

2

2

2

1

1

1

1

2

2

1

1

2

2

1

1

Aby
uu

uu
w

Abyw
uu

uu
w

Abyw
uu

uu
w

uu

uu
w

uu

uu
w

w
uu

uu
w

uu

uu
w

uu

uu
w

uu

uu
w

uu

uu
w

uu

uu
wXM

N

k

N

k

n
nNn

nkn
n

N

k

N

k

n
nNn

nkn
n

N

k

N

k

nNn

nkn
n

N

k

N

k

n

n

n

n

n

n

−
−

<

+

−

−
<

+

−

−
++

−

−
+

−

−
<

+

−

−
++

−

−
+

−

−
<

−

−
++

−

−
+

−

−
=

+

+

+

−
−+−

−−
−

++

−+−

−−
−

++

+

++

−

−

−

−

)(... '
0

1,1,

1,,

1,21,2

1,2,2
2

1,11,1

1,1,1
1

1,11,1

1,1,1
1

'

2

'
2

1

'
1

1

'
1

XM
uu

uu
w

uu

uu
w

uu

uu
w

uu

uu
w

nNn

nkn
n

N

k

N

k

N

k

n

n =

−

−
++

−

−
+

−

−
≤

−

−
≤

+

++

+

That is,)()('
00 XMXM ≠ . If '

1
1 ,1,1 kk uu = but 0i is the

smallest i such that '

0000 ,,
i

i kiki uu ≠ , then similar to the

above it can be proved that)()('
00 XMXM ≠ .

Therefore, if '
00 XX ≠ , then)()('

00 XMXM ≠ . That

is, the linear function given in (A.1) is a one-to-one mapping
from U to R .

Proof of Theorem 2. For the given input space U , based
on Theorem 1, there exists a linear function

∑
=

+==
n

i
ii xwwXLz

1
0)((A.3)

which is a one-to-one mapping from U to R . For every

 () i

n

i
knkkkkk UUuuuX

nn 1
,,2,1... ,...,,

2121 =
×=∈=

 nlNk ii ,...,2,1,...,2,1 ==

define

38 Xiao-Jun Zeng et. al

()
nn kkkkkk XLz 2121

=

That is,
nkkkz ...21

is the function value of)(XL at

nkkkX ...21
and the set of all such values is denoted as

{ }niNkyV ilkkk n
,...,2,1,,...,2,1...21

===

which is the output variable space of function)(XL . As

)(XL is a one-to-one mapping, then all elements of V are

different. Therefore, for every Vz∈ , there exists only one

element X in U such that)(XLz = . Further, as U is a

discrete space with finite elements, then V is a discrete
space with finite elements.
 Now define function)(zg on V as follows: For

every Uz∈ , let X be the unique element in U such

that)(XLz = . Then define the value of g at z as follows:

)()(XGzg =

For the function g defined in the above, it can be proved by

the reverse process that for all UX ∈

[])()(XLgXG = (A.4)

As)(zg is a function on finite discrete space V which is

bounded, based on [27] it can extended to be a continuous

function)(ˆ Xg on],[ˆ zzV = (where

zzzz VzVz ∈∈ == max,min) in the sense that

)()(ˆ XgXg = Vz∈ (A.5)

As)(ˆ Xg is a continuous function on V̂ , then it is implied

immediately from the universal approximation property of
standard NNs on continuous spaces that there exists a NN

)(1 zNN on Û such that

ε<−=− ∈∞ |)()(ˆ|max||ˆ|| 1ˆ1 zNNzgNNg
Vz

 (A.6)

Now define a SNN as)]([)(1 XLNNXSNN = , then

(A.4), (A.5) and (A.6) imply that, for any UX ∈ ,

ε<−≤
−≤

−=−

∈

∈

|)()(ˆ|max

)()(max

|)]([)]([||)()(|

1ˆ

1

1

zNNzg

zNNzg

XLNNXLgXSNNXG

Vz

Vz

which leads to (20) immediately and this completes the
proof.

Proof of Theorem 3. For each mj ,...,2,1= , based on

Theorem 1, there exists a linear function defined on

k

j

j i

n

k
G UU

1=
×= as follows

∑
=

+==
j

j
k

n

k
ikjjjjj xwwXLz

1
,0,)()((A.7)

which is a one-to-one mapping from
jGU to R . For every

()
jjnjn

jn

j Gkikiki

kkk
UuuuX ∈= ,,,

)...(
,...,,

2211

21

jil nlNk
l

,...,2,1,...,2,1 ==

define

())...()...(2121 jnjn kkk

jj

kkk

j XLz =

That is,
)...(21 jnkkk

jz is the function value of)(jj XL at

)...(21 jn

j

kkk
X and the set of all such values is denoted as

{ }jil

kkk

jj nlNkzV
l

jn ,...,2,1,,...,2,1
)...(21 ===

which is the output variable space of function)(jj XL . As

)(jj XL is one-to-one mapping, then all elements of jV are

different. Therefore, for every jj Vz ∈ , there exists only one

element jX in
jGU such that)(jjj XLz = . Further, as

jGU is a discrete space with finite elements, then jV is a

discrete space with finite elements.

Now define function),...,,()(21 mzzzgZg = on

j

m

j
VV

1=
×= as follows: for any given VzzZ m ∈=),...,(1 ,

as each jj Vz ∈),...,2,1(mj = , then there exists a unique

element jX in
jGU such that)(jjj XLz = . Further it can

be implied from (8)-(10) that all sub-vectors

jX),...,2,1(mj = form a unique vector

UxxX n ∈=),...,(1 . Now define the value of g at the

given VzzZ m ∈=),...,(1 as the value of G at its unique

corresponding point UxxX n ∈=),...,(1 . That is

)(),...,()(1 XGzzgZg m ==

For the function)(Zg defined in the above, it can be

proved by the reverse process that for all

UxxX n ∈=),...,(1 ,

[])(),...,()(11 mm XLXLgXG = (A.8)

As)(Zg is a function on a finite discrete space V which

is bounded, then, from the fact that any function in a
discrete space can be extended to be a continuous function
[27], it is implied that)(Zg can be extended to a

continuous function)(ˆ Zg on],[ˆ
1

jj

m

j
zzV

=
×= [

where jVzj zz
jj∈

= min ,

jVzj zz
jj∈

= max),...,2,1(mj =] in the sense that

)()(ˆ ZgZg = for any j

m

j
VVZ

1=
×=∈ . As)(ˆ Zg is a

Approximation Capabilities of Hierarchical Neural-Fuzzy Systems 39

continuous function on V̂ , then it is implied immediately
from the universal approximation property of standard NNs
on continuous spaces that there exists a NN

)(ZNNm),...,(1 mm zzNN= on V̂ such that

ε<−=− ∈∞ |)()(ˆ|max||ˆ|| ˆ ZNNZgNNg mVZm (A.9)

Now define the ESNN as

)](),...,([)(11 mmm XLXLNNXESNN =

This, together with (A.8) and (A.9), implies that, for
any UX ∈ ,

ε<−≤
−=

−≤
−=

−

∈

∈

∈

|)()(ˆ|max

)()(max

),...,(),...,(max

|)](),...,([)](),...,([|

|)()(|

ˆ

11),...,(

1111

1

ZNNZg

ZNNZg

zzNNzzg

XLXLNNXLXLg

XESNNXG

mVz

mVZ

mmmVzz

mmmmm

m

which leads to (21) immediately and this completes the
proof.

Proof of Theorem 4. For the given input spaceU , based
on Theorem 1, there exists a linear function

∑
=

+==
n

i
ii xwwXLz

1
0)((A.3)

which is a one-to-one mapping from U to R . For the

given)(XL , based on Theorem 4 in [32], it can be implied

that there exists a simplest fuzzy system)(XF [i.e., there

are only two memberships in each),...,2,1(niUi =] such

that)()(XLXF = for all UX ∈ . Then it is implied

that, from the fact that)(XL is one-to-one mapping, the

fuzzy system)(XF is a one-to-one mapping from U to

R .
Based on this one-to-one fuzzy mapping)(XF , the rest

of the proof is the same as the proof of Theorem 2 except
for replacing)(XFz = by)(XLz = and therefore the

details are omitted.
Proof of Theorem 5. From the proof of Theorem 4, it is

obtained that, for any given discrete space U as in (2), there

exists a one-to-one fuzzy system from U to R . Applying
this result to the input space of each group, i.e.,

k

j

j i

n

k
G UU

1=
×=),...,2,1(mj = , we can obtain that, for

each
jGU , there exists a fuzzy sub-systems

)(jjj XFz = which is a one-to-one mapping from
jGU to

R . Based on this, the proof of the theorem is the same as

the proof of Theorem 3 except for replacing)(jjj XLz =

by)(jjj XFz =),...,2,1(mj = and so the details are

omitted.

References
[1] A. R. Barron, “Universal approximation bounds for

superpositions of a sigmoidal function,” IEEE Trans.
Inform. Theory, vol. 39, pp. 930–945, 1993.

[2] J.J. Buckley, “Universal fuzzy controllers,” Automatica,
Vol. 28, pp. 1245-1248, 1992.

[3] S. Carroll, and B. Dickinson, “Construction of neural
networks using the Radon transform,” in IEEE
International Conference on Neural Networks, vol. 1.
Washington, DC: IEEE, pp. 607–611, 1989.

[4] J.L. Castro, “Fuzzy logic controllers are universal
approximators,” IEEE Trans. Syst., Man, Cybern., Vol.
25, pp. 629-635, 1995.

[5] G. Cybenko, “Approximation by superpositions of a
sigmoidal function,” Mathematics of Control, Signals,
and Systems, Vol. 3, pp. 303–314, 1989.

[6] B. Delyon, A. Juditsky, and A. Benveniste, “Accuracy
analysis for wavelet approximations,” IEEE Trans.
Neural Networks, Vol. 6, pp. 332-348, 1995.

[7] G. Feng, “Controller Synthesis of Fuzzy Dynamic
Systems Based on Piecewise Lyapunov Functions”,
IEEE Trans. Fuzzy Syst., Vol. 11, pp. 605–612, 2003.

[8] S. Ferrari, M. Maggioni, and N. A. Borghese,
“Multiscale approximation with hierarchical radial basis
functions networks,” IEEE Trans. Neural Networks,
Vol. 15, pp. 178-188, 2004

[9] B. Hammer and Kai Gersmann, “A Note on the
universal approximation capability of support vector
machines,” Neural Processing Letters, Vol. 17, pp. 43–
53, 2003.

[10] R. Hassine, F. Karray, A. M. Alimi , and M. Selmi,
“Approximation properties of fuzzy systems for smooth
functions and their first-order derivative,” IEEE Trans.
Syst., Man, Cybern.-Part A, Vol. 33, pp. 160-168, 2003.

[11] R. Hecht-Nielsen, “Kolmogorov’s mapping neural
network existence theorem,” In IEEE International
Conference on Neural Networks, vol. 3. Washington,
DC: IEEE, pp. 11–14, 1989.

[12] K. Hornik, M. Stinchcombe, and H. White, “Multilayer
feedforward networks are universal approximators,
Neural Networks,” Neural Networks, Vol. 2, pp. 359–
366, 1989.

[13] K. Hornik, “Some results on neural network
approximation,” Neural Networks, Vol. 6, pp. 1069–
1072, 1993.

[14] B. Igelnik and N. Parikh, “Kolmogorov’s Spline
Network,”, IEEE Trans. Neural Networks, Vol. 14, pp.
725-733, 2003

[15] Y. Ito, “Approximation of functions on a compact set
by finite sums of sigmoid function without scaling,”
Neural Networks, Vol. 4, pp. 817–826.

[16] B. Kosko, “Fuzzy systems as universal approximators,”
in Proc. of IEEE int. conf. on Fuzzy Systems, San
Diego, CA, pp. 1153—1162, 1992..

40 Xiao-Jun Zeng et. al

[17] V. Kreinovich, “Arbitrary nonlinearity is sufficient to
represent all functions by neural networks: a theorem,”
Neural Networks, Vol. 4, pp. 381–383, 1991.

[18] V. Kurkova, “Kolmogorov’s theorem and multilayer
neural Networks,” Neural Networks, Vol. 5, pp. 501–
506, 1992.

[19] A. Mencattini, M. Salmeri, and A. Salsano, “Sufficient
conditions to impose derivative constraints on MISO
Takagi–Sugeno fuzzy logic systems,” IEEE Trans.
Fuzzy Syst., vol. 13, pp. 454–467, Aug. 2005.

[20] T. Poggio and F. Girosi, “Networks for approximation
and learning,” Proc. of IEEE, Vol. 78, pp. 1481-1497,
Sept. 1990.

[21] F. Scarselli and A. C. Tsoi, “Universal approximation
using feedforward neural networks: A survey of some
existing methods and some new results,” Neural
Networks, vol. 11, pp. 15–37, 1998.

[22] V. Torra, “A Review of the construction of hierarchical
fuzzy systems,” Int. J. Intelligent Systems, Vol. 17, pp.
531-543, 2002.

[23] L. Vecci, F. Piazza, and A Uncini, “Learning and
approximation capabilities of adaptive spline activation
function neural networks”, Neural Networks, vol. 11,
pp. 259–270, 1998.

[24] L.-X. Wang, “Fuzzy systems are universal
approximators,” in Proc. of IEEE int. conf. on Fuzzy
Systems, San Diego, CA, pp. 1163-1170, 1992.

[25] L.-X. Wang, “Universal approximation by hierarchical
fuzzy systems,” Fuzzy Sets and Systems, Vol. 93, pp.
223-230, 1998.

[26] L.-X. Wang, “Analysis and design of hierarchical fuzzy
systems,” IEEE Trans. Fuzzy Systems, Vol.7, pp. 617-
624, 1999.

[27] G. A. Watson, Approximation Theory and Numerical
Methods, New York:John Wiley and Sons, 1980.

[28] H. Ying, “Sufficient conditions on general fuzzy
systems as function approximations,” Automatica, Vol.
30, pp. 521-525, Mar. 1994.

[29] X.-J. Zeng and M.G. Singh, “Approximation theory of
fuzzy systems---SISO case,” IEEE Trans. Fuzzy
Systems, Vol. 2, pp. 162-176, May 1994.

[30] X.-J. Zeng and M.G. Singh, “Approximation theory of
fuzzy systems---MIMO case,” IEEE Trans. Fuzzy
Systems, Vol. 3, pp. 219-235, May 1995.

[31] X.-J. Zeng and M.G. Singh, “Approximation accuracy
analysis of fuzzy systems as function approximators,”
IEEE Trans. Fuzzy Systems, Vol. 4, pp. 44-63, Feb.
1996.

[32] X.-J. Zeng and M.G. Singh, “Decomposition property
of fuzzy systems and its applications,” IEEE Trans.
Fuzzy Systems, Vol. 4, pp. 149-165, Apr. 1996.

[33] X.-J. Zeng and J.A. Keane, “Approximation capabilities
of hierarchical fuzzy systems,” IEEE Trans. Fuzzy
Systems, to be published.

[34] X.-J. Zeng and J.A. Keane, “Approximation capabilities
of hierarchical hybrid systems,” IEEE Trans. Syst.,
Man, Cybern.-Part A, to be published

[35] X.-J. Zeng, J.A. Keane, John Yannis Goulermas, and
Panos Liatsis, “Hierarchical fuzzy systems for function
approximation on discrete input spaces ,” submitted for
publication.

Author Biographies

Xiao-Jun Zeng received the B.Sc. degree in mathematics and the M.Sc.
degree in computer and systems sciences from Xiamen University, Xiamen,
China. He received the Ph.D. degree in computation from the University of
Manchester Institute of Science and Technology (UMIST), Manchester,
U.K.

He is currently a lecturer in the School of Informatics, University of
Manchester. From 1996 to 2002, he was with the Knowledge Support
Systems Ltd., Manchester, U.K., where he was a scientific developer,
senior scientific developer, and head of research. From 1985 to 1992, he
was with the Department of Computer and Systems Sciences, Xiamen
University, where he was a lecturer and an associate professor. His current
research interests include fuzzy systems, neural networks, decision support
systems, intelligent systems, and data mining.

Dr. Zeng is an Associate Editor of the IEEE Transactions on Fuzzy
Systems and is a member of the editorial board of the International Journal
of Computational Intelligence Research.

John Yannis Goulermas was born in Greece in 1970. He received the
B.Sc. degree (Hons, Class I) in computation from the University of
Manchester (UMIST), Manchester, U.K., in 1994. In 1996 and 2000, he
received the M.Sc. degree by research and the Ph.D. degree from the
Control Systems Centre, Department of Electrical Engineering and
Electronics (EE&E) at UMIST working in the area of Machine Vision.

He has worked for two years in industry in the area of financial/pricing
modelling and optimization, and for three years in the Centre for Virtual
Environments and the Centre for Rehabilitation and Human Performance
Research of the University of Salford, as a Senior Research Fellow in the
area of biomechanics and intelligent gait analysis. He is currently a lecturer
in the EE&E department at the University of Liverpool, U.K. His main
research interests include pattern recognition, neural networks, data
analysis, artificial intelligence, machine vision and optimization.

John A. Keane received the B.Sc. and MSc degrees in computation and
computer science respectively.

He holds the M.G. Singh Chair in Computing Science in the School of
Informatics at the University of Manchester, UK, where he leads the Data
and Decision Engineering research group. He has worked in industry with
the Trustees Savings Bank, Philips Data Systems and ICL. His research
activity is in the areas of data intensive systems, data mining, and parallel
systems.

Professor Keane is Deputy Director of the UK National Centre for Text
Mining which is led by the Universities of Manchester, Liverpool and
Salford, and involves internationally self-funded partners University
College, Berkeley, University of Geneva, University of Tokyo, and the San
Diego Supercomputer Centre.

Professor Keane is an Associate Editor of the IEEE Transactions on
Systems, Man and Cybernetics Part C, a member of the editorial board of
Simulation Modelling, and is a member of the EPSRC Peer Review
College.

Panos Liatsis received the Dipl.Eng. degree (first-class hons.) in electrical
engineering from the University of Thrace, Thrace, Greece and the Ph.D.
degree from the Control Systems Centre, University of Manchester Institute
of Science and Technology (UMIST), Manchester, U.K.

After working as a Lecturer in the Control Systems Centre, UMIST, he
moved to the School of Engineering and Mathematical Sciences at City
University, London, U.K., where he is currently a Senior Lecturer and
Director of the Information and Biomedical Engineering Centre (IBEC).
His main research interests are neural networks, genetic algorithms,
computer vision and pattern recognition. He has worked in the areas of
intelligent automotive sensors for object tracking, collision warning, lane
support and traffic sign recognition, feature/area-based stereo matching
using co-evolutionary computing, polynomial neural networks architectures

Approximation Capabilities of Hierarchical Neural-Fuzzy Systems 41

for predictive image coding and time series forecasting, kernel-based
discriminant analysis for chemometrics in biomedical signal processing,
among many others. He has published over 80 scientific papers in
international journals and conferences and edited two international
conference proceedings.

Dr Liatsis is a member of the EPSRC Peer Review College, the IEE, the
Technical Chamber of Greece (TEE), and a European Engineer (Eur Ing).

