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Abstract—This paper investigates function approximation 
on discrete input spaces by both neural networks and neural-
fuzzy systems. Rather than use existing neural networks for 
function approximation on continuous input spaces, this paper 
proposes, based on a hierarchical systematic perspective, four 
simplified approximation schemes: simplified neural networks, 
extended simplified neural networks, simple hierarchical neural-
fuzzy systems and hierarchical neural-fuzzy systems. Each 
scheme is proven to be a universal approximator (i.e., each can 
approximate any function on discrete input spaces to any 
degree of accuracy). The results provide both several new and 
simpler approximation schemes for function approximation on 
discrete spaces and show that there exist simpler and more 
effective methods for function approximation on discrete 
spaces compared with continuous spaces.  
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I. Introduction 
Approximation or representation capabilities of neural 
networks and fuzzy systems have attracted considerable 
research in the last 15 years. In neural networks, following 
from the proof of their universal approximation property 
(Cybenko [5], Hecht-Nielsen[11], and Carroll and 
Dickinson [3],  Hornik, Stinchcombe, and White[12]), it has 
been proved that various neural networks are universal 
approximators and that the various results on approximation 
accuracy are also available (see, for example, [1], [13]-[15], 
[17], [18], [20], [21], and [23]). In fuzzy systems, the work 
on their approximation capabilities (Buckley [2], Kosko[16] 
and Wang [24]) has shown that fuzzy systems are also 
universal approximators. Since then, a number of results 
related to approximation capabilities and accuracy have 

been published (see, for example, [4], [10], [19], [28], and 
[29]-[31]); more recently these results have been extended 
to hierarchical and hybrid systems (see, for example, [8], 
[22], [25], [26], [33] and [34]). In addition to research on 
neural networks’ and fuzzy systems’ approximation 
capability, the approximation capabilities of wavelets and 
support vector machines (SVM) have been investigated (see, 
for example, [6] and [9]). However, almost all these 
available results focus on function approximation on 
continuous input spaces with few results available for 
function approximation on discrete spaces. This may be 
because function approximation on discrete input spaces can 
be viewed as a special case of function approximation on 
continuous spaces as any function on discrete spaces can be 
expanded to be a continuous function [27] that interpolates 
the given discrete function, and then the existing results in 
function approximation on continuous spaces imply that 
neural networks and fuzzy systems are universal 
approximators for functions defined on discrete spaces. 
Although such a view is both valid and correct, it ignores 
the difference between function approximation on 
continuous and discrete spaces, especially the potential to 
develop simpler approximation schemes based on neural 
networks and fuzzy systems for function approximation on 
discrete input spaces.  

In this paper, motivated by this potential, the 
approximation capabilities of neural networks and neural-
fuzzy systems for function approximation on discrete spaces 
are investigated by focusing on the distinguishing features 
of discrete input spaces. Several new simplified 
approximation schemes designed specially for function 
approximation on discrete spaces are proposed: 

1. Simplified Neural Networks (SNNs) 
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2. Extended Simplified Neural Networks (ESNNs) 
3. Simple Hierarchical Neural-Fuzzy Systems 

(SHNFSs) 
4. Hierarchical Neural-Fuzzy Ssystems (HNFSs) 

The universal approximation property (i.e., the capability to 
approximate any function on discrete input spaces to any 
degree of accuracy) of these approximation schemes are 
then proved. In other words, for function approximation on 
discrete input spaces, the proposed approximation schemes 
are simpler and more effective whilst remaining as general 
as those approximation schemes in the literature for neural 
networks and fuzzy systems. 

The paper is structured as follows: Section II proposes the 
four simplified approximation schemes for function 
approximation on discrete input spaces and analyzes their 
utility; Section III analyzes the approximation capabilities of 
the proposed approximation schemes and presents their 
universal approximation properties; finally conclusions are 
presented in Section IV, and the proofs of all theorems 
presented are given in the Appendix. 

II. Simplified Neural Networks and 
Hierarchical Neural-Fuzzy Systems 

Throughout the rest of the paper, it is assumed that the 
system or function to be modelled or approximated is a 
multi-input single-output (MISO) function defined on a 
discrete space. That is, suppose that the function is given as 
follows: 

),...,,()( 21 nxxxGXGy ==  (1) 

where RVy ⊂∈ is the output variable and 

∈= ),...,,( 21 nxxxX n
n RUUUU ⊂×××= ...21  is 

the input variable vector in which  ii Ux ∈  and 

},...,2,1,|{ ,, ikikii NkRuuU =∈=  (2) 

In other words, input variable ix  takes discrete values. 

In the following, simplified (feedforward) neural 
networks and hierarchical neural-fuzzy systems are 
proposed to approximate functions on discrete spaces, i.e., 
those functions given in (1) and (2).  

A. Simplified Neural Networks (SNNs) 

The standard and most commonly used (feedforward) 
neural networks (NN) can be represented as:  

∑
=

++==
N

i
iii cbXacXNNy

1
0)()( τσ  (3) 

where ),...,,( 21 nxxxX =  are input variables, UX ∈  
n

n RUUU ⊂×××= ...21  which are input space,  

Ry∈  is the output variable, τ is the vector transpose, 

(.)σ  is the activation function and the parameters Rc ∈0 , 

Rci ∈ , n
i Ra ∈ , and Rbi ∈  ( ),...,2,1 Ni = . 

 Given the standard NN given in (3), the total 

number of parameters [i.e., Rci ∈ , n
i Ra ∈ , 

Rbi ∈ ( ),...,2,1 Ni =  and Rc ∈0 ] is 1)2( ++ Nn . For 

nonlinear complex function approximation, a large N is 
needed and often N will grow exponentially with the 
dimension of n [1]. As a result, a large number of 
parameters are needed in order to achieve good 
approximation accuracy.  

To overcome this difficulty, a simplified neural network 
(SNN) is proposed for function approximation on discrete 
spaces as follows:  

   ∑
=

+++==
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i
iii cXcXSNNy

1
0])([)( ββαασ τ       (4) 

where Rc ∈0 , Rci ∈ , Ri ∈α , Ri ∈β  

( ),...,2,1 Ni =  and nR∈α , R∈β .  

Let 

βα τ +== XXLz )(     (5) 

and  

∑
=

++==
N

i
iii czczNNy

1
01 )()( βασ  (6) 

Then the proposed SFNN given in (4) can be rewritten as 
follows: 

)]([)( 1 XLNNXSNNy ==  (7) 

In other words, the proposed SNN can be presented as a 
composition of a linear function )(XL given in (5) and a 

one-dimensional standard NN )(1 zNN given in (6).  

For the SNN given in (4), the total number of parameters 
is 23 ++ nN . Therefore, in many cases fewer parameters 
are needed for SNNs in comparison to the number needed 
for standard NNs. Another advantage of SNNs is that they 
are more effective in overcoming the model over-fitting 
which often happens in NN modeling. This is because: in 
the standard NNs, adding a new neuron [i.e., add an 

item )( iii bXac +τσ in(3)] means adding 2+n  

parameters. As a result, in NN modeling it often happens 
that adding one more neuron causes model overfitting 
whereas not adding such a new neuron may result in 
underfitting, especially in the case where n  is large but 
only limited training data is available. However, in SNNs, 

adding a new neuron means adding an item )( iii zc βασ +  

which only adds three parameters. As a result, SNNs allow 
the addition of finer-grained parameters to overcome model 
overfiting and underfitting, especially in the high dimension 
(i.e., large n ) case. Another potential advantage is that 
simpler learning algorithms can be developed. For example, 
in some cases multi-dimensional NN learning problems can 
be transformed to a one-dimensional NN learning problem 
and thus the corresponding learning algorithms can be much 
simpler (see Section III for more detailed discussion on 
this).  
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To approximate a function )(XG  given in (1) on 

discrete space ∏
=

=
n

i
iUU

1

given in (2), the basic idea in 

using  the SNNs is that, firstly a linear function )(xL is 

constructed to transform n  dimensional variables 

),...,,( 21 nxxxX = into a one-dimensional variable z  

and then a one-dimensional standard NN )(1 zNN is 

constructed to form the final SNN 

)]([)( 1 XLNNXSNN =  to approximate the given 

function )(XG . A major focus of this paper is to prove 

that SNNs have the same universal approximation property 
(i.e., they are able to approximate any function to any 
degree of accuracy) as standard NNs, that is, to prove the 
feasibility and general applicability of SNNs as a new and 
simpler NNs for function approximation on discrete spaces.  

There are two possible views on the SNN given in (4). 
Firstly, it can be viewed as a special case of the standard 
three layered feedforward NN given in (3) in which the 

parameters take the particular form of αα iia = and 

iiiib ββα +=  ),...,2,1( Ni = . Secondly, it can be 

viewed as a hierarchical hybrid NN system in which the 
lower level sub-system is a linear function given in (5) and 
the higher level sub-system is a one-dimensional NN given 
in (6) which takes the output variable of the lower sub-
system as its input variable. The combination of the two 
sub-systems forms the hierarchical hybrid system given in 
(7) which is the proposed SNN. Although both views 
produce the same SNNs given in (4) in this instance, the 
second view is more general and flexible. The extended 
SNNs and the hierarchical neural-fuzzy systems proposed 
later in the paper result from this view. It should be noted 
that hierarchical neural-fuzzy systems can only be obtained 
from the second hierarchical hybrid systems view as they 
are no longer a special case of standard NNs.  

An extended SNN (ESNN) differs from a SNN in that, 
rather than using one linear function to transform n  

dimensional variables ),...,,( 21 nxxxX = into a one-

dimensional variable z , it uses )( nm <  sub-linear 

functions as the lower level sub-systems to transform n  

dimensional variables ),...,,( 21 nxxxX =  into m  

dimensional variables ),...,,( 21 mzzzZ =  and then use a 

mdimensional standard NN (which takes the output 
variables of the lower sub-systems as its input variables) as 
the higher level sub-system. The detailed mathematical 
formula of an ESNN is as follows:  

Let jG ),...,2,1( mj = be a disjoint grouping of the 

input variables },...,,{ 21 nxxx  as follows:  

mjxxxG j
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jj iiij ,...,2,1,...,, )()(
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where 

='jj GG �  ∅  mjjjj ,...,2,1',,' =≠   (9) 
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and nn
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j
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.  Let ),...,,( )()(
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)(
1

j
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jj iiij xxxX =  denote the 

input variables of group jG ),...,2,1( mj = , and then the 

lower level sub-systems are linear functions given by 

jjjjjj XXLz ϕφτ +== )(        mj ,...,2,1=      (11) 

where jn

j R∈φ , Rj ∈ϕ  and 

j

k

j

j
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i

n

k
Gj RUUX ⊂×=∈

=1
. Further the higher level sub-

system is a m  dimensional standard NN which takes the 
output variables of the lower level sub-systems as its input 
variables and is given by 
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with Rc ∈0 , Rci ∈ , m
imiii R∈= ταααα ],...,,[ 21 , 

Ri ∈β  ( ),...,2,1 Ni = . Finally the ESNN is the 

following hierarchical system formed by combining the 
above sub-systems as 
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∑ ∑

= =

= =

+







++=

+







+=

==

N

i
ij

m

j
jjiji

N

i
i

m

j
jjiji

mmm

cXc

cXLc

XLXLNNXESNNy

1
0

1

1
0

1

11

)(

)(

)](),...,([)(

βϕφασ

βασ

τ

       (13) 

where the parameters Rc ∈0 , Rci ∈ , Ri ∈β , 
m

imiii R∈= ταααα ],...,,[ 21 , Ni ,...,2,1= , and 

jn

j R∈φ , Rj ∈ϕ , mj ,...,2,1= . As nn
m

j
j =∑

=1

, then 

the total number of parameters of the ESNN is 

1)2()2(1
1

++++=++++ ∑
=

mnNmmnNm
m

j
j . As 

nm< , therefore, the ESNN can use fewer parameters in 
function approximation.   

On the one hand, the ESNN given above can be viewed 
as a special case of the standard NN in which 

],...,[ 11 mimiia φαφα=  and i

m

j
jijib βϕα += ∑

=1

 

( ni ,...,2,1= ). On the other hand, the SNN given in (4) can 

be viewed as the special case of the ESNN when m=1, and 
the standard NN given in (3) can be viewed as the special 
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case of the ESNN when nm=  and 0,1 == jj ϕφ  

( nj ,...,2,1= ). In other words, ESNNs are very flexible 

with regard to model complexity, lying somewhere between 
SNNs and standard NNs respectively. 

From an application viewpoint, the main reason to 
introduce ESNNs is their flexibility as the number of input 
variable groups and the input variables in each group can be 
chosen based on the need and desire of each application. For 
example, in applications of high dimensional complicated 
system modeling, it is often desired to classify the large 
number of input variables into different groups and then 
identify the impact of each input variable group on the 
system output. ESNNs can achieve this by using each lower 
level sub-system to transform each group of input variable 
into its single output variable into the higher level sub-
system and the impact of each group to the system output 
can be seen by the corresponding input-output relationship 
at the higher level sub-system. In addition, the 
representation accuracy of float numbers may make SNNs 
difficult to use in some high dimensional cases and then 
ESNNs are needed (see Section III for more detailed 
discussion about this point).  

B. Hierarchical Neural-Fuzzy Systems (HNFSs) 

Taking the hierarchical hybrid view of SNNs mentioned in 
the last subsection by replacing the linear function 

)(XL by a fuzzy system )(XF , a Simple Hierarchical 

Neural-Fuzzy system (SHNFS) can be obtained as follows:  
The lower level sub-system is a fuzzy system 

)(XF whose rule base is given as:  
lR :  IF lAisx ,11 and … and lnn Aisx , ,  

THEN lCisz  Ll ,...,2,1=        (14) 

and its mathematical formula is represented by  

l

L

l
l yXBXFz ∑

=

==
1
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where ly is the centroid of the output fuzzy set lC ,  
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are fuzzy basis functions [32] (also called normalized 

membership functions [7]) and ∏
=
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i
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1
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the membership functions ),...,2,1( Ll = . 

The higher level sub-system is a one-dimensional 
standard NN given in (6) and then the final SHNFS is given 
by  
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where Rc ∈0 , Rci ∈ , Ri ∈α , Ri ∈β  

( ),...,2,1 Ni = . 

Compared with SNNs introduced above, SHNFSs have 
several features which could be useful in applications. 
Firstly, as the lower level sub-system is a nonlinear fuzzy 
system, such SHNFSs have better representation power 
whilst still being relatively simple and transparent due to the 
rule representation and interpretability of fuzzy systems. 
This improved representation power in the lower level 
allows the higher level NN sub-system to be simpler which 
can lead to fewer parameters and less training data being 
needed in the higher level NN sub-system modeling. 
Secondly, it enables the combination of human (knowledge 
and experience) and machine intelligence (learning from 
data) in system modeling. That is, the fuzzy systems method 
can utilize human intelligence to form the lower level fuzzy 
sub-system and then the learning algorithms of neural 
networks can be applied to identify the higher level NN 
model from the available numerical training data. This is 
very useful in applications where there is only limited 
training data but relevant human knowledge is available.  

As with the ESNN discussion, in applications of high 
dimensional complicated system modeling, it is often 
desired to classify the large number of input variables into 
different groups and then identify the impact of each input 
variable group on the system output. In addition, in the high 
dimensional situation, utilizing human knowledge by one 
single fuzzy system is often infeasible as it will result in a 
few thousands or more rules to collect human knowledge. 
For example, for the simplest fuzzy systems in which each 
input variable has only two possible fuzzy values, the total 

number of rules is n2  when there are n  input variables. As 
a result, for high dimensional function approximation or 
system modeling, a more feasible and flexible hierarchical 
structure is needed. The following general Hierarchical 
Neural-Fuzzy Systems (HNFS) is proposed to meet these 
requirements. 

Firstly, divide the input variables },...,,{ 21 nxxx  into 

m  disjoint groups jG ),...,2,1( mj = as given in (8)–(10) 

and let  ),...,,( )()(
2

)(
1

j
jn

jj iiij xxxX =  denote the input 

variables of group jG ),...,2,1( mj = . Then the lower 

level sub-systems of a HNFS are fuzzy systems 

),...,2,1()( mjXF jj = whose rule base is given as:  
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are the membership functions ),...,2,1( jLl = . 

The higher level sub-system is a m  dimensional 
standard NN given in (12) and then the final HNFS is given 
by:  
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where τ)](),...,([)( 1 XFXFXF m= , Rc ∈0 , Rci ∈ , 

Ri ∈β , m
imiii R∈= ταααα ],...,,[ 21 , Ni ,...,2,1= . 

 

III. Approximation capabilities of SNNs and 
HNFSs 
In this section, the approximation capability of SNNs is 
analyzed first. As has been explained, SNNs require fewer 
parameters for function approximation than standard NNs. 
However, an important question is whether such SNNs are 
general enough to approximate any function on discrete 
spaces, that is, whether SNNs preserve the universal 
approximation capabilities of standard NNs. The 
approximation capability analysis presented in this section 
provides a positive answer to this question.  

In order to analyze the approximation capabilities of 
SNNs, a theorem is introduced first.  

 

Theorem 1. Let nUUUU ×××= ...21 be a discrete 

space in which },...,2,1,|{ ,, ikikii NkRuuU =∈=  

),...,2,1( ni = .Then there exists a real value linear 

function ),...,,()( 21 nxxxLXLy ==  defined on U such 

that RUL →:  is a one-to-one mapping [i.e., if 'XX ≠ , 

then )'()( XLXL ≠ ].  

 
Proof of this theorem first appeared in [35]. As this 

theorem is fundamentally important to the later analysis 
here, it is also included in the Appendix. 

The above theorem shows that, for a discrete space 

)2( ≥⊂ nRU n as given in (2), there exist some simple 

functions such as linear functions which form one-to-one 
mappings  from U to R . This is a property which holds 
only on discrete spaces but not on continuous spaces. This is 
because no one-to-one mapping from a multi-dimensional 

continuous space ],[
1 ii

n

i
U βα

=
×=  )2( ≥n to R  can be 

continuous [35]. As no continuous function can be found to 
form a one-to-one mapping from a multi-dimensional 
continuous space toR , it is impossible to find a simple 
function which is a one-to-one mapping from a multi-
dimensional continuous space U to R . In other words, 
multi-dimensional information on discrete spaces can be 
coded into one dimension by using simple functions such as 
linear functions without loss of information but this cannot 
be achieved on continuous space.  This is the main reason 
why function approximation on discrete spaces can be 
achieved by simpler approximation schemes than for 
continuous spaces, and it forms the basis for the results in 
this paper. 

Based on Theorem 1, to approximate a multi-dimensional 
function )(XG given in (1) on a discrete space U given in 

(2) can be done by two steps: firstly, use a simple one-to-
one mapping )(XMz =  such as a linear function to 

transform the multi-dimensional discrete input space U into 

a one dimension discrete space V .  As )(XMz = is a 

one-to-one mapping from U to V , then its inverse function 

)(1 zMX −= exists (notice here (.)1−M is a vector value 

function rather than a normal  real  value function). Then 
)(XG can be represented as  

)]([)( 1 zMGXG −=  

As )]([)( 1 zMGzg −=  is a one-dimensional function on a 

discrete space V , then the original multi-dimensional 
function approximation problem becomes a one-
dimensional approximation problem and a one-dimensional 
standard NN can be used to approximate )(zg  to achieve 

any desired approximation accuracy due to the universal 
approximation property of NNs. The following universal 
approximation theorem for SNNs is obtained based on this 
idea, with the detailed proof of the theorem given in the 
Appendix. 
 

 Theorem 2 (Universal Approximation Property of SNNs). 
Let )(XG  be a function on a discrete space 
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nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=  

},...,2,1 iNk = ),...,2,1( ni = . Then for any given 

0>ε , there exists a SNN )(XSNN given in (4) such that 

    ε<−=−
∈∞ |)()(|max|||| XSNNXGSNNG

UX
     (20) 

Theorem 2 shows that SNNs can approximate any 
function on a discrete space to any degree of accuracy. In 
other words, SNNs, despite their simplified formula, 
preserve the universal approximation property of standard 
NNs and therefore are generally applicable for function 
approximation on discrete spaces. In the following, suppose 
that the available training data are given 

as },...,2,1|),{( NtyX tt = , then two possible algorithms 

to find a SNN approximator for a given function are briefly 
discussed: 

The first algorithm is based on the proof of Theorem 2 
which includes two steps: the first step is to find a one-to-
one linear mapping )(XL from U to Rand then a one-

dimensional function )]([)( 1 zLGzg −=  or 

)()]([ XGXLg = can be defined; the second step is to 

use the available data },...,2,1|),{( NtyX tt =  to get a 

set of training data for function )(zg  as 

},...,2,1),(|),{( NtXLzyz tttt == and then, for 

)(zg ,  apply the learning algorithms of standard NN to find 

a one-dimensional NN approximator )(1 zNN with the 

required approximation accuracy. Finally, the SNN 
approximator can be obtained by 

)]([)( 1 XLNNXSNN = . Theoretically speaking, this is 

a very simple method as by using the one-to-one linear 
mapping )(XL , the original approximation problem is 

transformed to a simple learning problem of a single 
variable NN. In the case where the number of input 
variables and the possible values of each input variables are 
small, then this is a good algorithm in practice due to its 
simplicity. However, this method is not suitable for high 
dimensions (i.e., many input variables or n is large) with 

each input variable having many possible values (i.e., jN is 

large). The reason is as follows: as the total number of all 

possible values of input vector ),...,,( 21 nxxxX = are 

∏
=

n

i
iN

1

, the total number of the possible function values of 

a one-to-one mapping )(XLz = is ∏
=

n

i
iN

1

. When n  and 

iN  ),...,2,1( ni = are large, this is impossible as all 

possible values are beyond the representation accuracy of 
float numbers. Therefore, in the case when  n  and 

),...,2,1( niNi = are large, the implementation of this 

algorithm, as explained in the last section, requires use of 
ESNNs. More details about how to use ESNNs to handle 
such a situation are discussed later.  

The second algorithm is to apply the gradient descent 
optimisation algorithms to minimise 

[ ]∑
=

−=
T

t
tt XSNNyE

1

2)(
2
1

 

where )(XSNN is given in (4) with the parameters 

},...,2,1|,,,,,{ 0 Nicc iii =βαβα to be identified. In this 

algorithm, it is not required that βατ +== XXLz )( is 

a one-to-one mapping (note that a one-to-one mapping is a 
sufficient but not a necessary condition), rather 
parametersα and β are tuned by the learning algorithm to 

meet the approximation requirement. This algorithm is more 
complicated than the first one but should be able to handle 
the higher dimensional modeling situation. In order to 
realize the potential of SNNs and apply them to 
applications, implementation and comparison of these two 
methods is needed.   

The above discussion illustrates that the proposed SNN 
approximation scheme is realizable and applicable. 
However, as the main focus of this paper is the analysis of 
approximation capabilities rather than the development of 
algorithms to implement the proposed SNN approximation 
scheme, algorithm development is not discussed further. 

The next step is to investigate the approximation 
capability of ESNNs. Similar to the earlier analysis of 
SNNs, the basic idea is as follows: 

Based on Theorem 1, approximation of a ndimensional 

function )(XG in a discrete space U by an ESNN can be 

achieved by two steps: firstly, use of several one-to-one 

mappings )( jj XMz = ),...,2,1( mj = such as one-to-

one linear functions to transform the ndimensional discrete 

input space 
jG

m

j
i

n

i
UUU

11 ==
×=×=  [where 

k

j

j i

n

k
G UU

1=
×=  

( mj ,...,2,1= ) ] into m  dimension discrete space 

j

m

j
VV

1=
×= . That is, each )( jj XMz = is a one-to-one 

mapping from 
jGU to ),...,2,1( mjVj = . Then 

)(XG can be represented as  

)](),...,([)( 1
1

1
1 mzMzMGXG m

−−=   

As )](),...,([),...,()( 1
1

1
1 1 mm zMzMGzzgZg m

−−==  is 

a m  dimensional function on a discrete space V , then a 
mdimensional standard NN can be used to approximate 

)(Zg  to achieve any desired approximation accuracy. 

Based on such an idea, the following theorem about the 
approximation capability of ESNNs can be obtained. 
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Theorem 3 (Universal Approximation Property of ESNNs). 
Let )(XG  be a function on a discrete space 

nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=  

},...,2,1 iNk = ),...,2,1( ni = . Then for any given 0>ε  

and for any disjoint grouping of the input variables 

},...,,{ 21 nxxx  into m  groups jG  ),...,2,1( mj =  

satisfying (8)–(10), there exists an ESNN 
)(XESNN given in (13) such that 

 ε<−=−
∈∞ |)()(|max|||| XESNNXGESNNG
UX

  (21) 

 
The main advantage of the above theorem is that, for any 

disjoint grouping of the input variables },...,,{ 21 nxxx  

(i.e., the user can choose the number of groups and which 
input variables are in which group), an ESNN with such an 
input variable grouping can be found to approximate the 
given function to any degree of accuracy. This is a useful 
property in applications as it means that an ESNN can be 
designed based on the required different impact of different 
groups of input variables on the system output. In other 
words, the ESNN both allows the required approximation 
accuracy and enables better understanding of system 
behavior.  

The two possible algorithms proposed for SNNs are also 
applicable here. The only differences are as follows:  in the 
first algorithm, mone-to-one linear mappings are needed 

from the sub-input-spaces 
jGU to ),...,2,1( mjVj = rather 

than only one one-to-one linear mapping needed, and the 
higher level sub-system to be trained is a mdimensional 
NN rather than a one-dimensional NN. For function 
approximation in high dimensional input spaces, the whole 
input space can be divided into several disjoint sub-spaces 
such that a one-to-one linear mapping on each sub-space is 
possible within the representation accuracy of float 
numbers. In other words, high dimensional function 
approximation and modeling can be handled by proper 
ESNNs. Although the learning of the higher level sub-
system is a more complicated mdimensional NN, it can 
still be much simpler than training a standard NN with 
ndimensions. Consider an example where 25=n . 
Assume we design 5 one-to-one linear functions in which 
each linear function takes 5 variables (today’s computers are 
likely to be able to represent a 5-dimension one-to-one 
mapping), then the training of a 25-dimension standard NN 
in the existing NN learning methods can be transformed into 
the training of a 5-dimension NN by using the proposed 
ESNN method. In other words, ESNNs can handle the high 
dimensional modeling problem and can be much simpler 
than standard NNs in many cases.  

Now the above results of SNNs and ESNNs are extended 
to SHNFSs and HNFSs. Such an extension is possible 
because fuzzy systems can realize any linear and many 
nonlinear functions [32]. That is, by choosing the commonly 
used triangle membership functions and proper system 

parameters, fuzzy systems can exactly represent any linear 
function. Based on Theorem 1,  that there are one-to-one 
linear mappings from a multi-dimensional discrete space to 
a one-dimensional discrete space, it can be implied that 
there are fuzzy systems which can form one-to-one 
mappings from a multi-dimensional discrete space to a one-
dimensional discrete space. Based on this and following the 
same idea as the approximation capability analysis of SNNs, 
the following theorem related to the approximation 
capability of SHNFSs can be proved as given in the 
Appendix.  

 
Theorem 4 (Universal Approximation Property of 

SHNFSs). Let )(XG  be a function on discrete space 

nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=  

},...,2,1 iNk = ),...,2,1( ni = . Then for any given 

0>ε , there exists a SHNFS )(XSHNFS given in (16) 

such that 
ε<−=−

∈∞ |)()(|max|||| XSHNFSXGSHNFSG
UX

    (22) 

Similarly, based on the fact mentioned above that there 
are one-to-one fuzzy systems on a multi-dimensional 
discrete space and following the same idea as the 
approximation capability analysis of ESNNs, the following 
theorem of the approximation capability of HNFSs can be 
proved as given in the Appendix.  

 
Theorem 5 (Universal Approximation Property of 

HNFSs). Let )(XG  be a function on discrete space 

nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=  

},...,2,1 iNk = ),...,2,1( ni = . Then for any given 0>ε  

and for any disjoint grouping of the input variables 

},...,,{ 21 nxxx  into m  groups jG  

),...,2,1( mj = satisfying (8)–(10), there exists a HNFS 

)(XHNFS given in (19) such that 

ε<−=−
∈∞ |)()(|max|||| XHNFSXGHNFSG
UX

  (24) 

The two algorithms proposed for SNNs and ESNNs can 
be extended to identify SHNFSs and HNFSs. The main 
ideas are the same but there are several differences. 

In the first algorithm, the lower level one-to-one linear 
mapping(s) are now replaced by the fuzzy system(s) as the 
lower level sub-system(s). As there are more parameters 
available to construct the one-to-one mapping(s), then it is 
possible that nonlinear one-to-one mappings can be 
constructed to allow the higher level approximation problem 
to become simpler. In addition, human knowledge can be 
utilized during the construction of the lower level fuzzy 
system(s).    

In the second algorithm, rather than use the linear 
function(s) with parameters to be identified by the gradient 
descent optimisation algorithms, it is possible to construct 
fuzzy systems by using available human knowledge which 
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may lead to faster convergence during the training phase.  
In addition to the above, a third possible algorithm which 

is especially suitable for situations with high dimension and 
limited available data is as follows:  
1. Construct one or several lower one-to-one fuzzy 

systems based on human knowledge to aggregate the 
impact of different input variable groups on the system 
output into several aggregated group indexes [i.e., 

construct ),...,2,1()( mjXFz jjj ==  by only using 

available human knowledge, and jz  is the aggregated 

index variable of those input variables in group jG ] .  

2. Use the constructed lower level fuzzy system(s) to 
transform the available input-output data 

},...,2,1|),{( NtyX tt = into the index-output data as 

,...,2,1),(),,...,(|),{( ,,,,1 === jXFzzzZyZ tjjtjtmtttt

 },...,2,1, Ntm = .  

3. Use the index-output data ),...,2,1|),{( NtyZ tt =  to 

identify the higher level NN )(ZNNy m=  by using 

the NN learning algorithms.  
A simple example is given to illustrate the meaning of the 

above steps. Suppose we wish to model how student 
performance in examinations is dependent on 9 study factors 
as follows: time spent in study, lecture attendance, 
homework completion, previous examination record, A-
level scores, IQ score, lecture quality, lab facilities, and lab 
availability, based on collected data of a small number of 
students, say 25 (collecting such private information from a 
large group is costly and time consuming, and thus 
impractical). Suppose that the 9 factors are divided into 3 
groups where Group 1 is the effort factors (time spent in 
study, lecture attendance, homework completion), Group 2 
is the academic ability factor (previous examination record, 
A-level scores, IQ score), and Group 3 is the study 
environment factors (lecture quality, lab facilities, and lab 
availability). Then the above three steps can be applied as 
follows:  

Firstly, use human knowledge to build the lower level 
fuzzy subsystems. For example, the sub-system to aggregate 
the effort factors can be formed based on the following 
human knowledge fuzzy rule: if time spent is long, lecture 
attendance is regular, homework completion is good, then 
the effort is very good; such rules can form the effort index 
fuzzy sub-system.  

Secondly, use the above lower level fuzzy systems to 
transform the input-output data into index-output data. For 
example, an input-output pair in the available data is {[time 
spent=long, lecture attendance=regular, homework 
completion=good, …, lab availability=always], exam 
performance=good}. Then use the lower level fuzzy sub-
systems to transform the input-output pair into the index-
output pair as {[effort=very good, ..., study 

condition=good], exam performance=good}. This step is to 
transform all input-output data to index-output data; 

Thirdly, now the original modeling problem with 9 input 
variables and 25 available data has been transformed to a 
modeling problem with 3 input variables and 25 available 
data which is much easier to identify, thus a reasonable 
model is likely to be obtained as the limited training data is 
reasonably rich for a 3-dimensional modeling problem. 

In summary, by using human knowledge to form the 
lower level fuzzy sub-systems and then transforming the 
available input-output data into index-output data, the 
modeling problem of a SHNFS or HNFS with n input 
variables is transformed into a modeling problem of a 
standard NN with m input variables. As the latter problem 
is one with a lower or much lower dimension, then it can be 
identified by using the existing learning algorithms based on 
the limited available data. In other words, the above 
proposed algorithm shows that SHNFSs and HNFSs have 
the potential to combine human (knowledge and experience) 
and machine intelligence (learning from data) to model high 
dimensional complicated systems with limited input-output 
data. 

IV. Conclusion 
This paper has investigated function approximation on 
discrete input spaces using neural networks and neural-
fuzzy systems. 

Firstly, from a hierarchical systematic view, this paper 
has proposed four new and simpler neural networks and 
hierarchical neural-fuzzy systems for function 
approximation on discrete spaces: SNNs, ESSNs, SHNFSs 
and HNFSs. Compared to standard NNs and fuzzy systems, 
the proposed approximation schemes have several 
advantages including being simpler (fewer parameters), 
useful to overcome model overfitting and underfitting, 
flexible, capable of utilizing both human (knowledge and 
experience) and machine intelligence (learning from data) 
for a difficult modeling situation (such as high dimensions 
and limited training data).  
    Secondly, the paper has analyzed the approximation 
capabilities of the proposed new approximation schemes. 
That is, whether the proposed approximation schemes 
preserve the universal approximation property of standard 
NNs and fuzzy systems. A positive answer to this question 
has been obtained, that is, all four proposed approximation 
schemes have the universal approximation property. These 
results have established a theoretical foundation and show 
the feasibility and general applicability of the proposed 
approximation schemes to function approximation on 
discrete spaces. 

Thirdly, several possible algorithms have been proposed 
and analyzed to show how the advantages of the proposed 
approximation schemes can be realized.  
    Further work includes implementation and 
experimentation of the proposed algorithms, a comparison 
of the results obtained by the proposed algorithms with 
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those obtained by standard NN learning algorithms, and 
applying these algorithms in real life applications. 
 

Appendix 

Proof of Theorem 1[35].   Given nUUUU ×××= ...21  

and },...,2,1,|{ ,, ikikii NkRuuU =∈=  

),...,2,1( ni = , Without loss of generality,  it is assumed 

that 
iNiii uuu ,2,1, ...<<< ),...,2,1( ni = . Now define  
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in which the weighting factors iw ),...,2,1( ni =  are 

constructed recursively  as follows: 
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For the above construction of the weighting 

factors iw ),...,2,1( ni = , it is implied that, for any given 
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Let and X0  be '
0X  any two different elements in U , that 

is, ( )
nknkk uuuX ,,2,10 ,...,,
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1 ,1,1 kk uu ≠ , then, without loss of generality, assume that 
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1 ,11,1 kk uu ≤+ ). Now from (A.1) 
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That is, )()( '
00 XMXM ≠ . If '

1
1 ,1,1 kk uu = but 0i  is the 

smallest i such that '

0000 ,,
i

i kiki uu ≠ , then similar to the 

above it can be proved that )()( '
00 XMXM ≠ . 

Therefore, if '
00 XX ≠ , then )()( '

00 XMXM ≠ . That 

is, the linear function given in (A.1) is a one-to-one mapping 
from U to R . 

Proof of Theorem 2. For the given input space U , based 
on Theorem 1, there exists a linear function  

∑
=

+==
n

i
ii xwwXLz

1
0)(    (A.3) 

which is a one-to-one mapping from U to R .  For every  

       ( ) i

n

i
knkkkkk UUuuuX

nn 1
,,2,1... ,...,,

2121 =
×=∈=  

 nlNk ii ,...,2,1,...,2,1 ==  

define 
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( )
nn kkkkkk XLz ...... 2121

=  

That is, 
nkkkz ...21

is the function value of )(XL at 

nkkkX ...21
and the set of all such values is denoted as  

{ }niNkyV ilkkk n
,...,2,1,,...,2,1...21

===  

which is the output variable space of function )(XL . As 

)(XL is a one-to-one mapping, then all elements of V are 

different. Therefore, for every Vz∈ , there exists only one 

element X  in U such that )(XLz = . Further, as U is a 

discrete space with finite elements, then V  is a discrete 
space with finite elements.   
 Now define function )(zg on V  as follows: For 

every Uz∈ , let X  be the unique element in U such 

that )(XLz = . Then define the value of g at z as follows: 

)()( XGzg =  

For the function g defined in the above, it can be proved by 

the reverse process that for all UX ∈  

[ ])()( XLgXG =       (A.4) 

As )(zg is a function on finite discrete space V which is 

bounded, based on [27] it can extended to be a continuous 

function )(ˆ Xg  on ],[ˆ zzV =  (where 

zzzz VzVz ∈∈ == max,min )  in the sense that  

)()(ˆ XgXg =    Vz∈      (A.5) 

As )(ˆ Xg is a continuous function on V̂ , then it is implied 

immediately from the universal approximation property of 
standard NNs on continuous spaces that there exists a NN 

)(1 zNN  on  Û such that  

ε<−=− ∈∞ |)()(ˆ|max||ˆ|| 1ˆ1 zNNzgNNg
Vz

      (A.6) 

Now define a SNN as )]([)( 1 XLNNXSNN = , then 

(A.4), (A.5) and  (A.6) imply that,  for any UX ∈ ,  

ε<−≤
−≤

−=−

∈

∈

|)()(ˆ|max

)()(max

|)]([)]([||)()(|

1ˆ

1

1

zNNzg

zNNzg

XLNNXLgXSNNXG

Vz

Vz  

which leads to (20) immediately and this completes the 
proof. 

Proof of Theorem 3. For each mj ,...,2,1= , based on 

Theorem 1, there exists a linear function defined on 

k

j

j i

n

k
G UU

1=
×= as follows 
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which is a one-to-one mapping from 
jGU to R .  For every  
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)...( 21 jnkkk
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)...( 21 jn
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X and the set of all such values is denoted as  

{ }jil

kkk

jj nlNkzV
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jn ,...,2,1,,...,2,1
)...( 21 ===  

which is the output variable space of function )( jj XL . As 

)( jj XL is one-to-one mapping, then all elements of jV are 

different. Therefore, for every jj Vz ∈ , there exists only one 

element jX  in 
jGU such that )( jjj XLz = . Further, as 

jGU is a discrete space with finite elements, then jV  is a 

discrete space with finite elements. 

Now define function ),...,,()( 21 mzzzgZg = on 

j

m

j
VV

1=
×=  as follows: for any given VzzZ m ∈= ),...,( 1 , 

as each jj Vz ∈ ),...,2,1( mj = , then there exists a unique 

element jX  in 
jGU such that )( jjj XLz = . Further it can 

be implied from (8)-(10) that all sub-vectors 

jX ),...,2,1( mj =  form a unique vector 

UxxX n ∈= ),...,( 1 .  Now define the value of g at the 

given VzzZ m ∈= ),...,( 1  as the value of G at its unique 

corresponding point UxxX n ∈= ),...,( 1 . That is 

)(),...,()( 1 XGzzgZg m ==  

For the function )(Zg defined in the above, it can be 

proved by the reverse process that for all 

UxxX n ∈= ),...,( 1 , 

[ ])(),...,()( 11 mm XLXLgXG =                  (A.8) 

As )(Zg is a function on a finite discrete space V which 

is bounded, then, from the fact that any function in a 
discrete space can be extended to be a continuous function 
[27],  it is implied that )(Zg can be extended to a 

continuous function )(ˆ Zg  on ],[ˆ
1

jj

m

j
zzV

=
×=     [ 

where jVzj zz
jj∈

= min , 

jVzj zz
jj∈

= max ),...,2,1( mj = ] in the sense that 

)()(ˆ ZgZg =  for any j

m

j
VVZ

1=
×=∈ . As )(ˆ Zg is a 
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continuous function on V̂ , then it is implied immediately 
from the universal approximation property of standard NNs 
on continuous spaces that there exists a NN 

)(ZNNm ),...,( 1 mm zzNN=  on  V̂ such that  

ε<−=− ∈∞ |)()(ˆ|max||ˆ|| ˆ ZNNZgNNg mVZm    (A.9) 

Now define the ESNN as  

)](),...,([)( 11 mmm XLXLNNXESNN =  

  
This, together with (A.8) and (A.9), implies that, for 
any UX ∈ ,  

ε<−≤
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which leads to (21) immediately and this completes the 
proof. 

Proof of Theorem 4. For the given input spaceU , based 
on Theorem 1, there exists a linear function  

∑
=

+==
n

i
ii xwwXLz

1
0)(      (A.3) 

which is a one-to-one mapping from U to R .  For the 

given )(XL , based on Theorem 4 in [32], it can be implied 

that there exists a simplest fuzzy system )(XF  [i.e., there 

are only two memberships in each ),...,2,1( niUi = ] such 

that )()( XLXF = for all UX ∈ . Then it is implied 

that, from the fact that )(XL is one-to-one mapping, the 

fuzzy system )(XF is a one-to-one mapping from U to 

R .  
Based on this one-to-one fuzzy mapping )(XF , the rest 

of the proof is the same as the proof of Theorem 2 except 
for replacing )(XFz = by )(XLz = and therefore the 

details are omitted. 
Proof of Theorem 5. From the proof of Theorem 4, it is 

obtained that, for any given discrete space U as in (2), there 

exists a one-to-one fuzzy system from U to R . Applying 
this result to the input space of each group, i.e., 

k

j

j i

n

k
G UU

1=
×= ),...,2,1( mj = , we can obtain that, for 

each 
jGU ,  there exists a fuzzy sub-systems 

)( jjj XFz = which is a one-to-one mapping from 
jGU to 

R . Based on this, the proof of the theorem is the same as 

the proof of Theorem 3 except for replacing )( jjj XLz =  

by )( jjj XFz =  ),...,2,1( mj = and so the details are 

omitted. 
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