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Abstract—This paper investigates function approximation been published (see, for example, [4], [10], [19], [28], and
on discrete input spaces by both neural networks and neural- [29]-[31]); more recently these results have been extended
fuzzy systems. Rather than use existing neural networks for g hierarchical and hybrid systems (see, for example, [8],

function approximation on continuous input spaces, this paper [22], [25], [26], [33] and [34]). In addition to research on
proposes, based on a hierarchical systematic perspective, four ! | ' ,k ; d i ) , . )
simplified approximation schemes:simplified neural networks, neural networks’ an uzzy systems’ approximation

extended simplified neural networks, simple hierarchical neural- c@pability, the approximation capabilities of wavelets and
fuzzy systemsand hierarchical neural-fuzzy systemsEach support vector machines (SVM) have been investigated (see,
scheme is proven to be a universal approximator (i.e., each can for example, [6] and [9]). However, almost all these
approximate any function on discrete input spaces t0 any ayajlable results focus on function approximation on
degree of accuracy). The results provide both several new and continuous input spaces with few results available for

simpler approximation schemes for function approximation on . . . . -
discrete spaces and show that there exist simpler and more fUnction approximation on discrete spaces. This may be
effective methods for function approximation on discrete because function approximation on discrete input spaces can
spaces compared with continuous spaces. be viewed as a special case of function approximation on
continuous spaces as any function on discrete spaces can be
Keywords Neural Networks, Fuzzy Systems, Neural-Fuzzyexpanded to be a continuous function [27] that interpolates
Systems, Hierarchical systems. the given discrete function, and then the existing results in
function approximation on continuous spaces imply that
neural networks and fuzzy systems are universal

[. Introduction approximators for functions defined on discrete spaces.

Approximation or representation capabilities of neuraI'A‘lthoungf such a vk;e\;v IS bOtrf] va[[[d and corregt, 'tt. 'gnores
networks and fuzzy systems have attracted consideralgmee ierence ~ between —function —approximation - on

research in the last 15 years. In neural networks, followin ntinuous: and discrete. spaces, especially the potential to
from the proof of their universal approximation propert evelop simpler approximation schemes based on neural

(Cybenko [5], Hecht-Nielsen[11], and Carroll andnetworks and fuzzy systems for function approximation on

Dickinson [3], Horik, Stinchcombe, and White[12]), it hasliScrete input spaces. . .
this paper, motivated by this potential, the

been proved that various neural networks are universalm

approximators and that the various results on approximati proximation fcaaabmyes of negral petworl;; and neural-
accuracy are also available (see, for example, [1], [13]-[1 zzy systems for function approximation on discrete spaces

[17], [18], [20], [21], and [23]). In fuzzy systems, the work re investigated by focusing on the distinguishing features

on their approximation capabilities (Buckley [2], Kosko[16]Of discrete input spaces. Several new simplified

and Wang [24]) has shown that fuzzy systems are alggprox!mat!on SCh.e mes designed specially for function
universal approximators. Since then, a number of resuﬂ)proxmatlon on discrete spaces are proposed:

related to approximation capabilities and accuracy have 1. Simplified Neural Networks (SNNs)
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2. Extended Simplified Neural Networks (ESNNSs) Given the standard NN given in (3), the total

3. Simple  Hierarchical  Neural-Fuzzy  Systemgymber  of parameters  [ie., ¢ OR,a [ R",
(SHNFSs) )

4. Hierarchical Neural-Fuzzy Ssystems (HNFSs) b OR(i=12,...,N) andc, OR]is (n+2)N +1. For

The universal approximation property (i.e., the capability taonlinear complex function approximation, a larbjeis
approximate any function on discrete input spaces to angeded and often N will grow exponentially with the
degree of accuracy) of these approximation schemes alienension of N[1]. As a result, a large number of
then proved. In other words, for function approximation oparameters are needed in order to achieve good
discrete input spaces, the proposed approximation scheragproximation accuracy.
are simpler and more effective whilst remaining as general To overcome this difficultya simplified neural network
as those approximation schemes in the literature for neuf@NN)is proposed for function approximation on discrete
networks and fuzzy systems. spaces as follows:

The paper is structured as follows: Section Il proposes the N
four simplified approximation schemes for function Y=SNNX)=Y cola,(a'X+pB)+B]+c, 4)
approximation on discrete input spaces and analyzes their =
utility; Section 11l analyzes the approximation capabilities ofvhereC, R, ¢ OR, a, OR, B, OR
the proposed approximation schemes and presents thgir_ n
universal approximation properties; finally conclusions ar =12,..,N) anda UR", BUR.
presented in Section IV, and the proofs of all theoremsL-€t

presented are given in the Appendix. z=L(X)=a'X+p (5)
and

[I. Simplified Neural Networks and N

Hierarchical Neural-Fuzzy Systems y=NN,(2) =) co(a; z+ ) +¢, 6)

Throughout the rest of the paper, it is assumed that tﬁlﬁen the proposed SFNN given in (4) can be rewritten as

system or function to be modelled or approximated is Bllows:

multi-input single-output (MISO) function defined on a ‘

discrete space. That is, suppose that the function is given ¥s~ SNN(X) = NN]_[L(X)] (7)
follows: In other words, the proposed SNN can be presented as a
Y =G(X) =G (X, X, X,) (1) composition of a linear functior.(X) given in (5) and a

where YOV [ORis the output variable and one-dimensional standard NNN, (Z) given in (6).
X = (X1 X x )OU =U,xU,x..xU_ OR" s For the SNN given in (4), the total number of parameters
R ! 2 " isSBN + n+ 2. Therefore, in many cases fewer parameters

the input variable vector in whictx U and are needed for SNNs in comparison to the number needed

U ={u,|u,ORk=12,..,N} ) for standard NNs. Another advantage of SNNs is that they
: bk ik ' B are more effective in overcoming the model over-fitting

In other words, input variabl¥; takes discrete values. which often happens in NN modeling. This is because: in

In the following, simplified (feedforward) neural the standard NNs, adding a new neuron [i.e,, add an
networks and hierarchical neural-fuzzy systems aﬂeemcld(afx +b)in(3)] means  adding n+2

proposed to approximate functions on discrete spaces, i-8arameters. As a result, in NN modeling it often happens
those functions given in (1) and (2). that adding one more neuron causes model overfitting
A. Simplified Neural Networks (SNNs) whereas not adding such a new neuron may result in
Hjﬂderfitting, especially in the case where is large but
only limited training data is available. However, in SNNs,

adding a new neuron means adding an i@ai(a, z+ ;)

N
y =NN(X) = Z co(@ X +h)+c, (3)  which only adds three parameters. As a result, SNNs allow

=1 the addition of finer-grained parameters to overcome model
where X = (Xl, XZ,...,Xn) are input variables JU overfiting and underfitting, especially in the high dimension
_ n i i (i.e., large Nn) case. Another potential advantage is that
=U,xU, x..xU, JR" which are input space, simpler learning algorithms can be developed. For example,
yUR is the output variableT is the vector transpose, in some cases multi-dimensional NN learning problems can
be transformed to a one-dimensional NN learning problem
and thus the corresponding learning algorithms can be much
¢ OR,a 0R", andb OR (i=12,...,N). sri]r_ng)ler (see Section Il for more detailed discussion on

this).

The standard and most commonly used (feedforwar
neural networks (NN) can be represented as:

o(.) is the activation function and the parametggs | R,
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To approximate a functionG(X) given in (1) on Where
G NG, =0 iZi3% 0, 1'=12,...m (9)

discrete spacdJ = I:JUi given in (2), the basic idea in G,UG,U...UG, ={X, %X} (10)

using the SNNs is that, firstly a linear functidn(X) is
constructed to transform N dimensional variables

m

and an =n. LetX, :()('{j”)(léj”"")(léf’) denote the
J:

X :(Xl,xz,...,xn)into a one-dimensional variablez

input variables of grougs; (j =12,...,m), and then the
and then a one-dimensional standard NNN,(2)is |ower level sub-systems are linear functions given by

constructed to form the final SNN z, = |_j (xj) = (0ij +¢j j=12,....m (11)
SNN(X)=NN,[L(X)] to approximate the given N
J
function G(X). A major focus of this paper is to proveWhere ¢ URY, ¢, R and
that SNNs have the same universal approximation proper N n )
(i.e., they are able to approximate any function to any®j DUGJ- —kfluik [0 R™. Further the higher level sub-
degree of accuracy) as standard NNs, that is, to prove %&‘ﬁs
fga5|b|llty and ge”e“'?" appllcab]llty .Of SNN‘?’ as a new an utput variables of the lower level sub-systems as its input
simpler NNs for function approximation on discrete spaces, . . ‘e
. . . . variables and is given by
There are two possible views on the SNN given in (4). NN (Z) = NN
Firstly, it can be viewed as a special case of the standardY = m( )= m(zl""'zm)
three layered feedforward NN given in (3) in which the N (12)

—_ T
parameters take the particular form & =a,aand ~ Zcia(ai Z+B)+¢

. . 1=

b=ap+p (@(=12..N). Secondly, it can be with ¢, OR, ¢ OR,a =[dy,q.ynd. ]" OR™,
viewed as a hierarchical hybrid NN system in which the . ) ]
lower level sub-system is a linear function given in (5) and® U R (i =12,...,N). Finally the ESNN is the
the higher level sub-system is a one-dimensional NN giveollowing hierarchical system formed by combining the
in (6) which takes the output variable of the lower subabove sub-systems as
system as its input variable. The combination of the twoy, = ESNN X) = NN X.),....L (X
sub-systems forms the hierarchical hybrid system given iny NX) nlLa(Xa) n(Xu)l
(7) which is the proposed SNN. Althgh both views N m 0
produce the same SNNs given in (4) in this instance, the = ZQUD a; L (X)) +B ¢ (13)
second view is more general and flexible. The extended = = 0
SNNs and the hierarchical neural-fuzzy systems proposed N m m
later in the paper result from this view. It should be no_ted =Y co q ((pjij +¢j) + B+ ¢,
that hierarchical neural-fuzzy systems can only be obtained & £ 0
from the second hierarchical hybrid systems view as they
are no longer a special case of standard NNs. where the parametersc, UR, ¢ UR, B UR,

An extended.SNN (ES!\INI)ﬁers frqm a SNN in that, a =[a,.q,,..a. ] OR, i=12... N, and
rather than using one linear function to transforn

m

dimensional variables X = (X, X,,...,X,)into a one- 9 OR", ¢, 0OR, j=12...m. As an =N, then
dimensional variable Z, it uses M(<n) sub-linear E
functions as the lower level sub-systems to transfgym the total number of parameters of the ESNN is

- . - . m
dimensional variables X = (X, X,,...,X,) into m 1+(m+2)N +an +m=(m+2)N+n+m+1. As
dimensional variablesZ =(Zz,,2,,...,Z,,) and then use a I=L

Mdimensional standard NN (which takes the outp

variables of the lower sub-systems as its input variables)

the higher level sub-system. The detailed mathematical

formula of an ESNN is as follows: as "

Let G, (j =12,...m)be a disjoint grouping of the a =[a,@,...a,.@,] and b = Zauq&j +p
=1

input variableg X, X,,...,X,} as follows:

tem is am dimensional standard NN which takes the

<n, therefore, the ESNN can use fewer parameters in
ég]ction approximation.
On the one hand, the ESNN given above can be viewed
a special case of the standard NN in which

(1=12,...,n). On the other hand, the SNN given in (4) can

Gj = %(ijun--ﬁ((nﬁ j=12,...m (8) be viewed as the special case of the ESNN when m=1, and
ek " the standard NN given in (3) can be viewed as the special
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case of the ESNN wherm=n and ¢ =1 ¢, =0 y = SHNFSX) = NN,[F (X)]

(J =12,...,n). In other words, ESNNs are very flexible &
with regard to model complexity, lying somewhere between Z cola; F(X)+B]+¢ (16)
SNNSs and standard NNs respectively. =

From an application viewpoint, the main reason to N O Ok o o
introduce ESNNs is their flexibility as the number of input ~ Z GOy, § B (X)y, H+ B O+
variable groups and the input variables in each group can be '= O = 0
chosen based on the need and desire of each application. Jyhere c, U R, o OR, a, OR, ﬁi OR
example, in applications of high dimensional complicated. _ 2 N
system modeling, it is often desired to classify the larg =12,...,N).
number of input variables into different groups and then Compared with SNNs introduced above, SHNFSs have
identify the impact of each input variable group on th&everal features which could be useful in applications.
system output. ESNNs can achieve this by using each lowffstly, as the lower level sub-system is a nonlinear fuzzy
level sub-system to transform each group of input variabf@/stem, such SHNFSs have better representation power
into its single output variable into the higher level subwhilst still being relatively simple and transparent due to the
system and the impact of each group to the system outpute representation and interpretability of fuzzy systems.
can be seen by the corresponding input-output relationshijis improved representation power in the lower level
at the higher level sub-system. In addition, théllows the higher level NN sub-system to be simpler which
representation accuracy of float numbers may make SNK8n lead to fewer parameters and less training data being
difficult to use in some high dimensional cases and thdigeded in the higher level NN sub-system modeling.
ESNNs are needed (see Section Il for more detailegecondly, it enables the combination of human (knowledge

discussion about this point). and experience) and machine intelligence (learning from
. . data) in system modeling. That is, the fuzzy systems method
B. Hierarchical Neural-Fuzzy Systems (HNFSs) can utilize human intelligence to form the lower level fuzzy

Taking the hierarchical hybrid view of SNNs mentioned irsub-system and then the learning algorithms of neural
the last subsection by replacing the linear functionetworks can be applied to identify the higher level NN
L(X)by a fuzzy systerr(X), a Simple Hierarchical model from the available numerical training data. This is

Neural-Fuzzy system (SHNF@n be obtained as follows: V€Y useful in applications where there is only limited
The lower level sub-system is a fuzzy systerﬁraimng data but relevant human knowledge is available.
F (X)whose rule base is given as: As with the ESNN discussion, in applications of high

dimensional complicated system modeling, it is often

R': IFX is A and ... an, is A, |, desired to classify the large number of input variables into
. different groups and then identify the impact of each input
THEN z is G 1=12,..L (14)  variable group on the system output. In addition, in the high
and its mathematical formula is represented by dimensional situation, utilizing human knowledge by one
L single fuzzy system is often infeasible as it will result in a
z=F(X)= Z B (X)y, (15) few thousands or more rules to collect human knowledge.
= For example, for the simplest fuzzy systems in which each
where Y, is the centroid of the output fuzzy 98}, input variable has only two possible fuzzy values, the total

A (X) number of rules i2" when there aré input variables. As
Bl(X) R — a result, for high dimensional function approximation or
A(X) system modeling, a more feasible and flexible hierarchical

Z structure is needed. The following genetsierarchical

&leuraI-Fuzzy Systems (HNFB) proposed to meet these
requirements.

n
membership functions [7]) and} (X) = I_ll A, (x) are Firstly, divide the input variableg X;, X,,...,X,} into
. m disjoint groupsG; (j =1,2,...,m) as given in (8)—(10)

are fuzzy basis functions [32] (also called normalize

the membership functiofb=1,2,...,L) .

The higher level sub-system is a one-dimensiongand let X, = (>(|1(,-),>(|£,-),---,>(I(D) denote the input
standard NN given in (6) and then the final SHNFS is given . K
by variables of groufs; (j =12,...,m). Then the lower

level sub-systems of a HNFS are fuzzy systems
F,(X;) (j =12,...,m) whose rule base is given as:



Approximation Capabilities of Hierarchical Neural-Fuzzy Systems 33

Ri; IFX,, is Aand ... ank,, is AV that L:U — R is a one-to-one mapping [i.e.. X # X',
I 11 Ini nj.l .
_ . ’ ‘ then L(X) 2 L(X")].
THEN z is C! =12, (17)
and its mathematical formula is represented by Proof of this theorem first appeared in [35]. As this
L theorem is fundamentally important to the later analysis
z. =F (X)=Y BY(X. )y|(j) (18) here, itis also included in the Appendix.
) S 23 : The above theorem shows that, for a discrete space
where yI(J) is the centroid of the output fuzzy s@}“), U OR"(n=2)as given in (2), there exist some simple
A (X functions such as linear functions which form one-to-one
B(j)(X.) — . ( J) mappings fromU to R. This is a property which holds
' ! L () only on discrete spaces but not on continuous spaces. This is
Z AI (Xj) because no one-to-one mapping from a multi-dimensional

n
. noo continuous spacdJ = X[a., (. n=2)to R can be
are fuzzy basis functions, anA“)(Xj) = H AE:)(XM) P i=1[ Bl )

4 K continuous [35]. As no continuous function can be found to
are the membershipfunctior(ls:l,Z,...,Lj). form a one-to-one mapping from a multi-dimensional
continuous space f&, it is impossible to find a simple
function which is a one-to-one mapping from a multi-

Qimensional continuous spadd to R. In other words,

The higher level sub-system is &1 dimensional
standard NN given in (12) and then the final HNFS is give

by: - . . . )
_ _ multi-dimensional information on discrete spaces can be
y = HNF(X) = NNm[F(X)] coded into one dimension by using simple functions such as
N linear functions without loss of information but this cannot
= Z colalF(X)+B]+c, (19) be achieved on continuous space. This is the main reason
= why function approximation on discrete spaces can be
N m L 0 Q achieved by simpler approximation schemes than for
= (0 ) continuous spaces, and it forms the basis for the results in
—angzlaijia X)y" ot B O+ ¢ . P :
& IE S ] Q this paper.

Based on Theorem 1, to approximate a multi-dimensional
where F (X) =[F,(X),....F,(X)]", ¢, OR, ¢ OR,  function G(X)given in (1) on a discrete spaké given in
B OR, a, =[a,,q0,,,.,0,]" OR",i=12..,N. (2) can be done by two steps: firstly, use a simple one-to-
one mappingZ=M (X) such as a linear function to
transform the multi-dimensional discrete input spkkénto
[ll. Approximation capabilities of SNNs and a one dimension discrete spave. As z=M(X)is a

HNFSs one-to-one mapping fror to V , then its inverse function

In this section, the approximation capability of SNNs isX =M ™(z)exists (notice herdVl *(.)is a vector value

analyzed first. As ha_s been explam_ed, SNNs require feWl‘?fnction rather than a normal real value function). Then
parameters for function approximation than standard NN

However, an important question is whether such SNNs a
general enough to approximate any function on discrete G(X) :G[M‘l(z)]

spaces, that is, whether SNNs preserve the universal a i ) ) _
approximation capabilites of standard NNs. Thés 9(2) =G[M ~(2)] is a one-dimensional function on a

approximation capability analysis presented in this sectiaflscrete spaceV , then the original multi-dimensional

(X) can be represented as

provides a positive answer to this question. ~ function approximation problem becomes a one-
In order to analyze the approximation capabilities ofimensional approximation problem and a one-dimensional
SNNs, a theorem is introduced first. standard NN can be used to approximgi€z) to achieve

_ . any desired approximation accuracy due to the universal
Theorem 1.let U =U,; xU, X...xU be a discrete 55r0ximation property of NNs. The following universal
space in whichU;, ={u,, |u,, OR k=12...,N;} approximation theorem for SNNs is obtained based on this

) ) ~idea, with the detailed proof of the theorem given in the
(i=12,...,n).Then there exists a real value linearappendix.

function y = L(X) = L(X;, X,,...,X,) defined onU such . o
Theorem 2 (Universal Approximation Property of SNNs).

Let G(X) be a function on a discrete space
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U =U,xU, x..xU_in which U, ={u, ) lu, OR, algorithm, as explained in the last section, requires use of
_ n ! bt ESNNs. More details about how to use ESNNs to handle
k=12,..N} (i=12..,n). Then for any given such a situation are discussed later.

€ >0, there exists a SNNENN(X) given in (4) such that The second algorithm is to apply the gradient descent
optimisation algorithms to minimise
IG = SNNJ|.=max|G(X)-SNN(X)|<e  (20)
XU

_1g 2
Theorem 2 shows that SNNs can approximate any _EZ[Yt SNI\KXt)]
function on a discrete space to any degree of accuracy. In . N . .
other words, SNNs, despite their simplified formula,Where SNN(X)is given in (4) with the parameters
preserve the universal approximation property of standafet.,a;, B,,a, B3,¢C, |i =12,...,N} to be identified. In this
NNs and therefore are generally applicable for function o ) _ . )
approximation on discrete spaces. In the following, suppogégorithm, it is not required thaz = L(X) =a* X + s

that the available training data are givera one-to-one mapping (note that a one-to-one mapping is a
ag{( X,,¥,)[t=12,...,N}, then two possible algorithms sufficient but not a necessary condition), rather

to find a SNN approximator for a given function are brieﬂ)parameterev and.ﬁ alre tuned. by the Iea.rnlng aI.gor|tr.1m 0
discussed: meet the approximation requirement. This algorithm is more

The first algorithm is based on the proof of Theorem gomplicated than the first one but should be able to handle
which includes two steps: the first step is to find a one-tdbe higher dimensional modeling situation. In order to

one linear mappingL(X)from U to Rand then a one- realize the potential of SNNs and apply them to
applications, implementation and comparison of these two

dimensional functon  g(2) =G[L™(2)] or methods is needed.

g[L(X)] =G(X) can be defined; the second step is to The above discussion illustrates that the proposed SNN
approximation scheme is realizable and applicable.

use the available datf( X,,Y;)[t=12,...,N} to get a However, as the main focus of this paper is the analysis of

set of training data for function g(z) as approximation capabilities rather than the development of
algorithms to implement the proposed SNN approximation

{(z,y) 1z =L(X,),t=12...,N}and then, for scheme, algorithm development is not discussed further.

g(2), apply the learning algorithms of standard NN to find The next step is to investigate the approximation

. ) ] . capability of ESNNs. Similar to the earlier analysis of
a one-dimensional NN approximafdiN, (z) with the gNNs, the basic idea is as follows:

require_d approximation accuracy. Finally, the SNN Based on Theorem 1, approximation ofaimensional
approximator can be obtained by function G(X)in a discrete spack) by an ESNN can be
SNN(X) = NN,[L(X)]. Theoretically speaking, this is achieved by two steps: firstly, use of several one-to-one
a very simple method as by using the one-to-one linegfappings z. =M (X ) (j =12,...,m) such as one-to-

. .. . . . J J e
mapping L(X)’ the. original approxmatlon problem_ IS one linear functions to transform thedimensional discrete
transformed to a simple learning problem of a single

ny
variable NN. In the case where the number of inpthut spaceU = ;U- = QUG [where U, = >iu,
= i ik &

variables and the possible values of each input variables are ji=1

small, then this is a good algorithm in practice due to it@j =12,...,m) ] into M dimension discrete space

simplicity. However, this method is not suitable for high m

dimensions (i.e., many input variables Bbris large) with \/ = x\/  That is. eachz. =M (X.)is a one-to-one
g 17 ! I I

each input variable having many possible values (N%.js = _

large). The reason is as follows: as the total number of fjapping  from UG,- to VJ (J=12...m). Then

possible values of input vectoX = (X, X,,...,X,)are  G(X)can be represented as

n - -1 -1
I_ll N. , the total number of the possible function values of G(X)=GIM, (Zl)':'l"M ) (Zm)]_l
E As 9(Z2) = 9(z,...,.z,) =G[M.*(2),...M . (z,)] is

n
a one-to-one mappirg= L(X)is N. . Whenn and @ M dimensional function on a discrete spaée then a
I|_=1I ! Mdimensional standard NN can be used to approximate

N.  (i=12...,n)are large, this is impossible as all 9(Z) to achieve any desired approximation accuracy.

I
; ; Based on such an idea, the following theorem about the
I I h o Lo .
possible values are beyond the representation accuracyacgfsroxma“on capability of ESNNs can be obtained.

float numbers. Therefore, in the case whem and
N, (i=12,...,n)are large, the implementation of this
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Theorem 3 (Universal Approximation Property of ESNNsparameters, fuzzy systems can exactly represent any linear
Let G(X) be a function on a discrete spacdunction. Based on Theorem 1, that there are one-to-one
_ i i _ linear mappings from a multi-dimensional discrete space to
U =U; xU, x..xUin which U; ={u;, [u, OR, 5 one-dimensional discrete space, it can be implied that
k=12,...,N} (i =1,2,...,n). Then for any givere >0 there are fuzzy systems which can form one-to-one
A . . . mappings from a multi-dimensional discrete space to a one-
and for any disjoint grouping of the. input Var'ablesdimensional discrete space. Based on this and following the
{X,;X;,....%,} into M groups Gj (j=12...m)  same idea as the approximation capability analysis of SNNs,
satisfying  (8)—(10), there exists an ESNNthe following theorem related to the approximation
ESNN X) given in (13) such that capability of SHNFSs can be proved as given in the

Appendix.
||G —ESNN]||,=max|G(X)-ESNNX) ke (21)
X Theorem 4 (Universal Approximation Property of

The main advantage of the above theorem is that, for aﬁsI,-INFSs).Let G(X) be a function on discrete space

disjoint grouping of the input variable§X,,X,,...,.x.} U =U;xU,x..xU in which U; ={u,, |u;, OR,

(i.e., the user can choose the number of groups and whigh= 1,2,___,Ni} (i :]_,2,___,n)_ Then for any given
input variables are in which group), an ESNN with such an ) ) )
input variable grouping can be found to approximate thé > 0. there exists a SHNFSHNFJX) given in (16)
given function to any degree of accuracy. This is a usefauch that
property in applications as it means that an ESNN can & — SHNFY| = max|G(X)-SHNFSX) ke (22)
designed based on the required different impact of different | X _
groups of input variables on the system output. In other Similarly, based on the fact mentioned abo_ve_ that _there
words, the ESNN both allows the required approximatioff® ©One-to-one fuzzy systems on a multi-dimensional
accuracy and enables better understanding of systéliicrete space and following the same idea as the
behavior. approximation capability analysis of ESNNs, the following
The two possible algorithms proposed for SNNs are aldgeorem of the approximation capability of HNFSs can be
applicable here. The only differences are as follows: in tfR¥oved as given in the Appendix.

first algorithm, Mone-to-one linear mappings are needed ) L

r ] dd. to V., (j =12.....m) rather Theorem 5 (Universal Approximation Property of
from the sub-input-spaced to V; (] e HNFSs). Let G(X) be a function on discrete space
than only one one-to-one linear mapping needed, and the _ . . _
higher level sub-system to be trained isnadimensional 'E? =U, U, x..xU, in which U, _{u"k |ui'k OR
NN rather than a one-dimensional NN. For functionk =1,2,...,N;} (i =12,...,n). Then for any giver€ >0
approximation in high dimensional input spaces, the Who?nd for any disjoint grouping of the input variables
input space can be divided into several disjoint sub-spaces ,
such that a one-to-one linear mapping on each sub-spacé 1§ Xgree X} into m groups G,
possible within the representation accuracy of floafj =12, .., m)satisfying (8)-(10), there exists a HNFS
numbers. In other words, high dimensional function . .
approximation and modeling can be handled by prope'F'NFS(X)g'Ven in (19) such that
ESNNs. Although the learning of the higher level sub|G—-HNFS|| = max|G(X)-HNFS(X)ke (24)
system is a more complicatedimensional NN, it can Xt

stil be much simpler than training a standard NN with Th€ two algorithms proposed for SNNs and ESNNs can
Ndimensions. Consider an example where= 25 be extended to identify SHNFSs and HNFSs. The main

Assume we design 5 one-to-one linear functions in Whic'ﬁ1eas are 'Fhe same_but there are several differences. .

each linear function takes 5 variables (today's computers are!n the first algorithm, the lower level one-to-one linear
likely to be able to represent a 5-dimension one-to-of@2PPINg(s) are now replaced by the fuzzy system(s) as the
mapping), then the training of a 25-dimension standard NIQWer level sub-system(s). As there are more parameters
in the existing NN learning methods can be transformed infyailable to construct the one-to-one mapping(s), then it is
the training of a 5-dimension NN by using the proposeBossible that nonlinear one-to-one mappings can be
ESNN method. In other words, ESNNs can handle the higi®nstructed to allow the higher level approximation problem
dimensional modeling problem and can be much simplé® become simpler. In addition, human knowledge can be
than standard NNs in many cases. utilized during the construction of the lower level fuzzy

Now the above results of SNNs and ESNNs are extendsgstem(s).

to SHNFSs and HNFSs. Such an extension is possiblein the second algorithm, rather than use the linear
because fuzzy systems can realize any linear and mayction(s) with parameters to be identified by the gradient
nonlinear functions [32]. That is, by choosing the commonlescent optimisation algorithms, it is possible to construct
used triangle membership functions and proper systefilizzy systems by using available human knowledge which
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may lead to faster convergence during the training phase. condition=good], exam performance=gdod his step is to
In addition to the above, a third possible algorithm whictkransform all input-output data to index-output data;
is especially suitable for situations with high dimension and Thirdly, now the original modeling problem with 9 input
limited available data is as follows: variables and 25 available data has been transformed to a
1. Construct one or several lower one-to-one fuzzgodeling problem with 3 input variables and 25 available
systems based on human knowledge to aggregate tfeta which is much easier to identify, thus a reasonable
impact of different input variable groups on the systermodel is likely to be obtained as the limited training data is
output into several aggregated group indexes [i.ereasonably rich for a 3-dimensional modeling problem.
constructz, = F (X,) (j =1,2,...,m) by only using In summary, by using human knowledge to form the
oo lower level fuzzy sub-systems and then transforming the
available human knowledge, arg| is the aggregated available input-output data into index-output data, the
modeling problem of a SHNFS or HNFS withinput
variables is transformed into a modeling problem of a
2. Use the constructed lower level fuzzy system(s) tgandard NN withminput variables. As the latter problem
transform  the  available input-output  datajs gne with a lower or much lower dimension, then it can be
{(X,,y,) [t =12,...,N} into the index-output data as identified by using the existing learning algorithms based on
— — - _ the limited available data. In other words, the above
(2o 2= (2020) 2 = F (X _lz""'proposed algorithm shows that SHNFSs and HNFSs have
m,t=12...,N}. the potential to combine human (knowledge and experience)
3. Use the index-output daf§Z,,y,) [t =1,2,...,N) to a_nd ma_chine intelligence (learning frem (_ja_ta) te model high
dimensional complicated systems with limited input-output
identify the higher level NNy = NN,,(Z) by using data.
the NN learning algorithms.
A simple example is given to illustrate the meaning of th/. Conclusion

above steps. Suppose we wish to model how studeffis paper has investigated function approximation on
performance in examinations is dependent on 9 study fact}gqrete input spaces using neural networks and neural-
as follows: time spent in study, lecture attendanceuzzy systems.

homework completion, previous examination record, A- Ejrstly from a hierarchical systematic view, this paper

level scores, 1Q score, lecture quality, lab facilities, and lag,q proposed four new and simpler neural networks and
availability, based on collected data of a small number @ficrarchical neural-fuzzy  systems for  function
students, say 25 (collecting such private information from &pproximation on discrete spaces: SNNs, ESSNs, SHNFSs

large group is costly and time consuming, and thugnq {NFSs. Compared to standard NNs and fuzzy systems,
impractical). Suppose that the 9 factors are divided into &g proposed approximation schemes have several

groups where Group 1 is thefort factors (time spent in g4yantages including being simpler (fewer parameters),
study, lecture attendance, homework completion), Group \&efyl to overcome model overfiting and underfitting,
is theacademic abilityfactor (previous examination record'flexible, capable of utilizing both human (knowledge and

A-level scores, 1Q score), and Group 3 is thed$ eynerience) and machine intelligence (learning from data)
environmentfactors (lecture quality, lab facilities, and labg, 5 gifficult modeling situation (such as high dimensions
availability). Then the above three steps can be applied 35 |imited training data).
follows: _ Secondly, the paper has analyzed the approximation
Firstly, use human knowledge to build the lower levetapapilities of the proposed new approximation schemes.
fuzzy subsystems. For example, the sub-system to aggregfRyt is, whether the proposed approximation schemes
the effort factors can be formed based on the followingreserve the universal approximation property of standard
human knowledge fuzzy ruléf time spent is long, lecture NNs and fuzzy systems. A positive answer to this question
attendance is regular, homework completion is good, thdtas been obtained, that is, all four proposed approximation
the effort is very gogdsuch rules can form the effort index schemes have the universal approximation property. These
fuzzy sub-system. results have established a theoretical foundation and show
Secondly, use the above lower level fuzzy systems tbe feasibility and general applicability of the proposed
transform the input-output data into index-output data. F&pproximation schemes to function approximation on
example, an input-output pair in the available datdtim¢  discrete spaces.
spent=long, lecture attendance=regular, homework Thirdly, several possible algorithms have been proposed
completion=good, ..., lab availability=always], exam and analyzed to show how the advantages of the proposed
performance=gooll Then use the lower level fuzzy sub- @Pproximation schemes can be realized.

systems to transform the input-output pair into the index- Further — work includes  implementation  and
output pair as [effort=very good, .., study €XPperimentation of the proposed algorithms, a comparison

of the results obtained by the proposed algorithms with

index variable of those input variables in grdgp] .
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those_ obtained by _standgrd NN_ Iearnl_ng _algonthms, and _ Hul,kl -u, B.,. Huz,kz ~U,, H
applying these algorithms in real life applications. M(X,) =w, W,
B‘Il,N1+1 —Uy, B B‘IZ,N2+1 —Uy, H
Appendix WnHMH
4—Uu
Proof of Theorem 1[35]. GivenU =U, xU, x...xU _ oot ~Una
and U, ={u;, Ju;, OR k=12,...,N;} <W15 Uy — Uy H_'_Wzﬁuz,kz Uy H
(i =1,2,...,n), Without loss of generality, it is assumed HJLNﬁl _UMH B"Z»Nzﬂ —Uz,lﬁ
thatU,, <U, <...<U (i=12,...,n). Now define b ow Hun—l,kn,1 “Uyog EL_W
. n-1 n
A = mIankle—l{ Uisr ui,k} BJ"‘LNn—ﬁl Bt E
Uina = Uiy, T4, i=1..,n Bulk1 Uy EL_ Buzkz Uy, E
and a linear function in the following: HJl N+ ull B.IZ Ny+1 T~ Uag H
BRILTENG Unor . — Uy,
yEMEO g, H bt T By (A
LN U, (A1) BJn—Z,NHﬂ Uy, H
B —Uy B 1 - ]
+ W, B’I H'I' .t W, B’I : n E < W, ul'k1 U LH W. by (A.Z)
2,N,+1 u21 n,N,+1 unl ! -Uu,, H 2
2 1N+ 11 []
in which the weighting factorsV; (i =1,2,...,n) are G —u. O
constructed recursively as follows: <wW e by (A2)
EJI,N1+1 Uy ]
A o _
w =1 O<w,<w————— i=1..,n-1 sw}ul'ki U N
Uin+ ~ Ui 1EPLNIH —U;; O
For the above construction of the welghtlng< w, } U 7 i+w U, ~Uan E
factorsw, (i =1,2,...,n), it is implied that, for any given "Hib e~ Ui ZHJZ,NZH ~u,, H
i,k and | i=42,...n-1Lk=212,...,N B Uyy
| — 1;2 N ) H_ M (XO)
- yeey NG BJnN a1 an
S Thatis, M (X,) # M (X,) . If U, = U, butig is the
W ik i1, W ) t
"u. -u i+1 smallestl such thatu, , # u , then similar to the
iN;+1 il oK io:Kj,
u, —u u - above it can be proved thd (X,) Z M (X,).
<VVi ik il + : ik+1 ik (A.2) p . ( 0) ( 0) .
Ui N1 ~Uig Uiy —U Therefore, if X, Z X, , thenM (X,) # M (X,) . That
U oy — Uy is, the linear function given in (A.1) is a one-to-one mapping
+
=W "< W fromU to R.
Ui+ ~Uia Proof of Theorem Zor the given input spadd , based
Let andXo be X, any two different elements itJ , that On Theorem 1, there exists a linear function
is, X :(Ul,kl’uz,kz’---’un,kn) z=L(X)=w, +zw>q (A.3)
X, = ) d Xy # X, -
o~ ul,ki’u&k'z ""’un,k'n ; an 0 o'f \which is a one-to-one mapping frdohto R. For every
U, ZU ., then, without loss of generality, assume that — .
1Ky 1k, g y Xk1k2"'kn - (ul,k1 y u2,k2 ,...,Un’kn )DU - i>=<lUi
Uy, < (th|s meansU ,, < 1,k‘1)' Now from (A.1) k =12...N, 1=12...n

and (A.2) , |t is implied that

define
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- kKo Ko
iy, = L(Xklkz...kn) X‘ R (Uil,kl’uiz,kz ,...,Uinj K )DUGJ_
That is, Z is the f i I fL(X
at is, z, , is the function value of L(X)at k=12..N, 1=12..n
Xklkz...kn and the set of all such values is denoted as define
\V/ :{yklkz___kn| k| ::LZ;---’Ni ’i ::LZ,...,n} Z§k1k2...knj) — LJ (kaﬂ(z...knj))
which is the output variable space of functibr{ X) . As Koy ) ]
P P &X) That is, ngl Vis the function value ofL;(X;) at

L(X)is a one-to-one mapping, then all elementd/cére

_ _ (e iy ) .
different. Therefore, for eve®[1V , there exists only one Xj and the set of all such values is denoted as
element X in U such thagz = L(X). Further, adl is a K.k

_ puch thag = L(X) - Furner, act {24 K =128, 1 =12,.0n
discrete space with finite elements, th¥nh is a discrete ! J ! J

space with finite elements. which is the output variable space of functibrj1(Xj) . As
Now define functiong(z)on V as follows: For

L;(X,) is one-to-one mapping, then all elementd/ofare
everyz[JU , let X be the unique element in U such

thatz = L(X). Then define the value dj at Z as follows:

9(2) =G(X) element X, in UGJ_ such thatz; =L, (X;). Further, as
For the functiong defined in the above, it can be proved byUG
the reverse process that for & [JU

different. Therefore, for evei, DV]- , there exists only one

jis a discrete space with finite elements, tl\éjn is a
discrete space with finite elements.

G(X) = g[L(X)] (A.4) Now define function ¢(Z)=9(z,2,...,Z,)on
As g(2)is a function on finite discrete spabewhich is m

bounded, based on [27] it can extended to be a continuoMs™ J.’jlvj as follows: for any gived =(z,...,z,,) 0V,

function ggX) on V=[z7] (where 55 eachz, OV, (j =12,...,m), then there exists a unique

Z=min_, z, Z=max,, z) inthe sense that element X ; in Ug such thatz; = L;(X;). Further it can

9(X) = g(X) zV (A5 pe implied from (8)-(10) that all sub-vectors

As §(X)is a continuous function o¥ , then itis implied X, (j =1,2,...,m) form a  unique  vector

immediately from the universal approximation property ofy — (X1 ..x.)OU . Now define the value ofjat the
standard NNs on continuous spaces that there exists a NN e '

NN, (2) on U such that givenZ =(z,,...,z,,) 0V as the value ofG at its unique
1
16 - NN, .= max_, | (2 -NN(2) ke (A6) corresponding poinK = (X,...,X,) JU . That is
Now define a SNN aSNN(X) = NN,[L(X)], then 9(2) =9(z.....7,) = G(X)
(A.4), (A5) and (A.6) imply that, for an)X U For the function g(Z) defined in the above, it can be
|G(X) ~ SNN(X) || g[L(X)] -~ NN [L(X)] | proved by the reverse process that for all
1

X =(%,....Xx,)0U ,
G(X) = g[L (X, L, (X,)] (A8)

As g(Z)is a function on a finite discrete spadewhich

is bounded, then, from the fact that any function in a

proof. . . ;
Proof of Th 3E hi =12....m. based discrete space can be extended to be a continuous function
roof of Theorem 3ror each] =1.2,...,M, based on [27], it is implied that g(Z)can be extended to a

Theorem 1, there exists a linear function defined on

A m —
n; . . ~ _ .
continuous function §(Z) on V = x[z,,z

Ug :k>flUik as follows a(2) j:l[_, il [

< max,, | g(2) - NN,(2)|
<max_; |9(2) -NN,(2) < €
which leads to (20) immediately and this completes the

wherez, =min,y, Z

nj
z; =L (X)) =W, gwbkxﬂk” (A7) zj =max,q, z; (j =12...m)] in the sense that

j 1

which is a one-to-one mapping fl’dd]Gj to R. For every §(2)=g(2) for any ZOV = .Xle s §(2)is a
J:
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continuous function oV , then it is implied immediately by Z; =F;(X;) (j=12,...,m)and so the details are
from the universal approximation property of standard NNgmitted.
on continuous spaces that there exists a NN
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