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Abstract: It is shown that the stochastic dynamics of non-
generational evolutionary algorithms with binary tournament
selection and gene pool recombination but without mutation is
closely approximated by a stochastic process consisting of sev-
eral de-coupled random walks, provided the fitness function is
separable in a certain sense. This approach leads to a lower
bound on the population size such that the evolutionary algo-
rithm converges to a uniform population with globally optimal
individuals for a given confidence level.

I. Introduction

Evolutionary algorithms (EAs) with finite search sets can
be exactly modeled by means of finite state Markov chains.
Although the derivation of the transition matrices does not
pose an essential problem, it is rarely possible to obtain an-
alytical expressions for the state distribution, limit distrib-
ution, absorption or first passage times et cetera, since the
required symbolic mathematical operations with these matri-
ces quickly become intractably complex. Exceptional cases
require more or less strong assumptions regarding the popu-
lation size, the participating evolutionary operators, and the
problem under consideration. Those assumptions usually
reduce the state space and therefore the size of the transi-
tion matrices considerably and/or turn the transition matrix
into a sparse matrix with special properties. This is a com-
mon approach in the analysis of randomized algorithms [1].
In case of evolutionary algorithms this method led to upper
bounds of the expected absorption time for simple EAs (sin-
gle parent, only mutation and selection) and selected prob-
lem classes [2, 3, 4]. Further results on simple EAs can be
found in [5, 6] and the references therein. First analyses of
population-based EAs with crossover and mutation were pre-
sented in [7, 8].
The presence of mutation is an essential ingredience in the
theoretical work mentioned so far. The idea of how to ap-

proach population-based EAs with recombination and se-
lection but without mutation was introduced in [9]. It was
(somewhat vaguely) argued that the dynamics of such EAs
resemble the dynamics of a specific random walk. Here, we
seize this suggestion again with the objective of underpin-
ning this approach with a sound theoretical argumentation
for the class of separable fitness functions and the class of
non-generational evolutionary algorithms with binary tour-
nament selection and gene pool recombination.
For this purpose, we first present a brief introduction to ran-
dom walks in Section 2 before entering the theoretical analy-
sis given in Section 3. Some auxiliary results and their proofs
are deferred to the appendix in order to exempt the argumen-
tation from technical details. Our concluding remarks are
given in Section 4.

II. Random Walks with Absorbing Barriers

The basic definitions and results of this section are extracted
from [10, p. 344f.]. Let the set{0, 1, . . . , n} with n < ∞
denote the set of states that may be visited by some stochastic
process. Letp+

i be the probability of a transition from state
i to statei + 1, p−i be the probability of a transition from
statei to statei− 1, andp0

i be the probability of a transition
from statei to statei. If p−i > 0, p0

i ≥ 0, andp+
i > 0 such

that p−i + p0
i + p+

i = 1 for i = 1, . . . , n − 1 while p−i =
p+

i = 0 andp0
i = 1 for i ∈ {0, n} then the stochastic process

with state space{0, 1, . . . , n} is called arandom walk with
absorbing barriers. The states0 andn are termed absorbing
whereas the remaining ones are termed transient.
Let ai0 andain denote the probabilities that the random walk
will be absorbed by state0 resp.n provided it was started at
statei. In general, the relationshipain = 1− ai0 is valid for
all i = 0, 1, . . . , n. If the transition probabilities are indepen-
dent from the states, i.e.,p−i = p−, p0

i = p0 andp+
i = p+
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for all i = 1, . . . , n− 1, then

ain =





1− ωi

1− ωn
if ω 6= 1

i

n
if ω = 1

(1)

whereω = p−/p+. Evidently, the absorption probabilities
are not affected by the value ofp0. This observation leads to
the result shown next.
Lemma 1
Let p−i > 0, p0

i > 0, andp+
i > 0 with p−i + p0

i + p+
i = 1

be the transition probabilities of a random walk with absorb-
ing states0 andn. If the quotients̃p− = p−i /(1 − p0

i ) and
p̃+ = p+

i /(1 − p0
i ) are independent from indexi for all

i ∈ {1, . . . , n − 1} then the absorption probability to state
n is given by Eqn. (1) whereω = p̃−/p̃+.

Proof: Assume that the random walk has just entered some
transient statei. If p0

i > 0 for the transient states of the ran-
dom walk, then the random walk stays on average1/(1−p0

i )
time units at statei prior to a transition either to statei − 1
or to statei + 1. As long as the random walk stays at state
i the probabilities of a transition to the left or right remain
unaltered for each step. Since we are only interested in the
absorption probabilities (and not in the number of steps until
absorption takes place) we may skip the period of staying at
statei, provided that the transition probabilities are appropri-
ately adjusted. Notice that the probability of finally moving
to statei + 1 conditioned by the event that statei has been
left is p̃+

i = p+
i /(1− p0

i ), andp̃−i = p−i /(1− p0
i ) in case of

a transition to statei− 1. Sincep̃+
i + p̃−i = 1 andp̃0

i = 0 for
the transient statesi, the originally aperiodic random walk
has been converted to a periodic random walk possessing the
same absorption probabilities but a smaller absorption time.
Now insist thatp̃+

i is identical for all transient statesi. Un-
der this additional assumption we may use Eqn. (1) in order
to calculate the absorption probabilities of the new random
walk. Since these absorption probabilities are identical to
those of the original random walk the proof is completed.ut

III. Evolutionary Algorithms as Random
Walks

A. Assumptions and Goals

Let x ∈ Sd be an element of thed–dimensional search space
Sd whereS is a non-empty finite set with cardinalityc. The
objective functionf : Sd → R is representable via

f(x) =
d∑

i=1

g(xi)

whereg : S → R is a real-valued function. Without loss of
generality it is assumed thatf(·) is to be maximized. The
evolutionary algorithm under consideration is characterized
as follows:

(A1) Finite population sizen < ∞.

(A2) Non-generational binary tournament selection.

(A3) Gene-pool recombination.

(A4) No mutation.

It is clear that an evolutionary algorithm with recombination
and selection but without mutation will necessarily converge
to a uniform population (i.e., all individuals are identical)
with probability one in finite time [11]. Notice that each of
thecn uniform populations may be attained with some non-
zero probability provided that the initial population is drawn
at random. In [9] it was measured how many subfunctions
g(·) have attained their global optimum as soon as the pop-
ulation has become uniform, or equivalently, how many cor-
rect building blocks have been collected by an individual of
a uniform population. We show that this measure indeed de-
pends on the absorption probability of a single specific ran-
dom walk. Moreover, this quantity also can be used to obtain
lower bounds on or at least a good approximation of the prob-
ability that the uniform population finally attained consists of
globally optimal individuals. A rearrangement of the result-
ing inequality yields a bound for the population size required
to obtain a globally optimal uniform population for a given
confidence level.

B. Representation of the Evolutionary Algorithm

Regardless of the choice of the selection and variation op-
erators, the population of an evolutionary algorithm may be
represented by the matrix

A =




a11 a12 · · · a1d

a21 a22 · · · a2d

...
...

...
an1 an2 · · · and




where the row vectorai• = (ai1 ai2 . . . aid) ∈ Sd repre-
sents theith individual (i = 1, . . . , n) whereas the column
vectora•j = (a1j a2j . . . anj)′ represents thegene poolof
componentj = 1, . . . , d.
In a usual evolutionary algorithm withgene pool recombina-
tion an offspringb would be assembled by choosing a gene at
random with uniform probability1/n from each gene pool.
Equivalently, this might be also achieved as follows: Cal-
culate the relative frequencieshj(s) of elementss ∈ S in
each gene poolj = 1, . . . , d. An offspring b is assembled
by drawing componentbj from the discrete probability dis-
tribution with P{ bj = s } = hj(s) for s ∈ S. Thus, the
population is now equivalently represented by the probabil-
ity distributionsh1(·), . . . , hd(·) which might be gathered in
a d × c matrix (actually, ad × (c − 1) matrix would suffice
since the probabilities must add to unity).
Since the binary tournament selection method is used in a
non–generational manner the update rule for the probabil-
ity distributionshj(·) is very simple. LetX andY be two
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offspring independently drawn via gene pool recombination
from the probability distributionshj(·). The new proba-
bility distributions h′j(·) for j = 1, . . . , d are obtained by
h′j(Xj) = hj(Xj) + ∆j/n andh′j(Yj) = hj(Yj) − ∆j/n
where

∆j =





1 if Xj 6= Yj ∧ f(X) ≥ f(Y )
0 if Xj = Yj

−1 if Xj 6= Yj ∧ f(X) < f(Y ) .

Thus, the frequencies of the alleles of the winner are in-
creased whereas those of the looser are decreased for each
gene pool. This formulation of the evolutionary algorithm
does not facilitate the analysisper se. The update probabil-
ity of each gene pool is of course still dependent on the fre-
quency distributions of the other gene pools. But the point of
view developed so far opens the door to a simpler yet not ex-
act analysis that leads to surprising accurate results under cer-
tain circumstances. A demonstration of this fact is given in
the next subsection before proceeding with the general case
in the subsequent subsection.

C. The Random Walk Model: Instructive Example

Let S = {0, 1}, d ≥ 1 andg(s) = a s + b wherea 6= 0 and
b ∈ R. Since binary tournament selection is an ordinal se-
lection method it suffices to consider the case(a, b) = (1, 0).
The maximization of the resulting objective function

f(x) =
d∑

i=1

xi

is also known as the “counting ones problem.” Since the car-
dinality of S is c = |S| = 2 the population is representable
by a single vectorp = (p1, . . . , pd) wherepj = hj(1) and
1 − pj = hj(0) for j = 1, . . . , d. Let X andY be the two
offspring generated by gene pool recombination. The update
rule reduces to

p′ = p +
γ

n
(X − Y )

where

γ =
{

1 if f(X) ≥ f(Y ),
−1 otherwise.

Let p+
k be the probability that gene poolk will be increased

1/n, p−k the probability that it will be decreased by1/n and
p0

k the probability that it remains unaltered. These probabili-
ties are given by

p0
k = P{Xk = 1, Yk = 1 }+ P{Xk = 0, Yk = 0 }

= P{Xk = 1 } · P{Yk = 1 }+
P{Xk = 0 } · P{Yk = 0 }

= p2
k + (1− pk)2

= 1− 2 pk (1− pk), (2)

p+
k = P{Xk = 1, Yk = 0, f(X) ≥ f(Y ) }+

P{Xk = 0, Yk = 1, f(X) < f(Y ) }
= P{Xk = 1, Yk = 0, Dd,k ≥ −1 }+

P{Xk = 0, Yk = 1, Dd,k < 1 }
= P{Xk = 1 } · P{Yk = 0 } · P{Dd,k ≥ −1 }+

P{Xk = 0 } · P{Yk = 1 } · P{Dd,k < 1 }
= pk (1− pk) [ P{Dd,k ≥ −1 }+ P{Dd,k < 1 } ]
= 2 pk (1− pk)αd,k (3)

p−k = 1− p0
k − p+

k

= pk (1− pk) [ 2− (P{Dd,k ≥ −1 }+
P{Dd,k < 1 }) ]

= 2 pk (1− pk) (1− αd,k). (4)

where

Dd,k =
d∑

i=1
i 6=k

(Xi − Yi)

andαd,k = (P{Dd,k ≥ −1 }+ P{Dd,k < 1 })/2.
Suppose there exists anα such thatαk,d ≥ α > 0 for all
k = 1, . . . , d. In this case one obtainsp+

k ≥ 2 pk (1 − pk)α
andp−k ≤ 2 pk (1 − pk) (1 − α) for everygene poolk =
1, . . . , d regardless of the true state of the other gene pools.
As a consequence, the entire stochastic process over thed
nonlinearly coupled gene pools may be seen asd independent
random walks. Notice that the transition probabilitiesp0

k,
p+

k , andp−k are state–dependent even if we useα and regard
the inequalities as equalities. But Lemma 1 offers a remedy:
Since

p̃+
k =

p+
k

1− p0
k

= αd,k ≥ α

p̃−k =
p−k

1− p0
k

= 1− αd,k ≤ 1− α

the absorption probabilities of the state–dependent random
walk are identical to those of the associated simple random
walk without state–dependent transition probabilities. Con-
sequently,ω ≤ ω̃ = (1− α)/α < 1 if α > 1/2. In this case
Lemma 2 ensures that the probability of absorption at staten
is lower bounded by

ain ≥ 1− ω̃i

1− ω̃n
.

Let B∗ be the random variable representing the number of
independent random walks starting at statei and finally be-
ing absorbed at staten. Evidently,B∗ is the sum ofd inde-
pendent Bernoulli random variables with success probability
ain. Therefore the expectation ofB∗ is given by

E[ B∗ ] = d ain ≥ d · 1− ω̃i

1− ω̃n

= dαn−i · αi − (1− α)i

αn − (1− α)n
. (5)
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Notice that random variableB∗ represents the number of
optimized subfunctionsg(·) within a converged population,
or equivalently, the number of correctly compiled building
blocks. The bound on the expectation ofB∗ only depends on
the absorption probabilityain of a specific random walk and
the numberd of random walks executed in parallel. This par-
tially explains the close match between the theoretical con-
siderations and numerical experiments presented in [9].
Needless to say, it remains to guarantee that such anα >
1/2 actually exists. Lemma 4 in conjunction with Lemma 5
yields the tight lower bound

α =
1
2

+
1
2

(
2 d− 1

d

)
4−(d−1) =

1
2

+
(

2 d

d

)
4−d (6)

revealing thatα > 1/2 as required. Since Stirlings’s formula
(see entry 6.1.38 in [12]) leads to

exp
(
− 1

6 d

)
<

(
2 d

d

)
4−d (d π)1/2 < exp

(
1

24 d

)

equation (6) may be replaced by the more convenient but re-
markably accurate bound

α >
1
2

+ exp
(
− 1

6 d

)
(π d)−1/2 ∼ 1

2
+

1√
π d

. (7)

If the evolutionary algorithm is initialized uniformly at ran-
dom then the initial state of each random walk isi = bn/2c.
As a consequence, we obtain

an/2,n =
1

1 + ω̃n/2
.

If each random walk is absorbed in staten then the popula-
tion converges to a uniform population with optimal individ-
uals. The probability of this event is at least

ad
n/2,n ≥

(
1

1 + ω̃n/2

)d

≥ β

where β ∈ (0, 1) is the desired minimum probability of
convergence to the optimal uniform population. Elementary
transformations of the rightmost inequality above lead to

n ≥ 2 log
(

1− β1/d

β1/d

)/
log

(
1− α

α

)
.

Sinceα depends on the dimensiond it is possible to develop
an asymptotic expression for the population sizen. Taking
into account equation (7) we obtain

log
(

1− α

α

)
∼ log

(
1− 2/

√
π d

1 + 2/
√

π d

)
∼ − 4

(π d)1/2

whereas

log
(

1− β1/d

β1/d

)
= − log d + log log β−1 + O(d−1)

for larged. Thus, if the dimensiond of the problem increases
the population size should be set to

n =

√
π d

2
(log d− log log β−1) + O(d−1/2)

in order to guarantee that the EA will converge to the optimal
population at least with probabilityβ > 0.

D. The Random Walk Model: General Case

Let |S| = c ≥ 2 andV = {g(x) : x ∈ S} = {v1, . . . , vm}
with 2 ≤ m ≤ c be the set of values attainable by means
of the subfunctiong(·). Again, the random vectorsX andY
denote individuals that are independently generated via gene
pool recombination. Here, random variableDd,k is defined
as

Dd,k =
d∑

i=1
i 6=k

(g(Xi)− g(Yi)).

Let p+
k denote the probability that the relative frequency of

the best building blocks∗ ∈ S with g(s∗) = vm of gene pool
k is increased by1/n. This probability can be bounded by

p+
k = P{ g(Xk) = vm, g(Yk) 6= vm, f(X) ≥ f(Y ) }+

P{ g(Xk) 6= vm, g(Yk) = vm, f(X) < f(Y ) }

=
m−1∑

i=1

P{ g(Xk) = vm, g(Yk) = vi, f(X) ≥ f(Y ) }+

m−1∑

i=1

P{ g(Xk) = vi, g(Yk) = vm, f(X) < f(Y ) }

=
m−1∑

i=1

P{ g(Xk) = vm } × P{ g(Yk) = vi }

×P{Dd,k ≥ vi − vm }+
m−1∑

i=1

P{ g(Xk) = vi } × P{ g(Yk) = vm }

×P{Dd,k < vm − vi }

≥
m−1∑

i=1

P{ g(Xk) = vm } × P{ g(Yk) = vi }

×P{Dd,k ≥ vm−1 − vm }+
m−1∑

i=1

P{ g(Xk) = vi } × P{ g(Yk) = vm }

×P{Dd,k < vm − vm−1 }
= P{ g(Xk) = vm } × (1− P{ g(Yk) = vm })

×P{Dd,k ≥ −δ }+
P{ g(Yk) = vm } × (1− P{ g(Xk) = vm })

×P{Dd,k < δ }
= pk (1− pk) (P{Dd,k ≥ −δ }+ P{Dd,k < δ })
= 2 pk (1− pk)αd,k (8)
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whereδ = vm − vm−1 > 0 is the smallest difference be-
tween the maximum and any other value of the subfunction
g(·), αd,k = (P{Dd,k ≥ −δ } + P{Dd,k < δ })/2, and
pk = P{ g(Xk) = vm } = P{ g(Yk) = vm } is the prob-
ability of drawing the optimal building block, i.e.,pk is the
relative frequency of optimal building blocks in gene poolk.
Analogously, we obtain

p−k ≤ 2 pk (1− pk) (1− αd,k) (9)

and

p0
k =

m∑

i=1

P{ g(Xk) = vi }2 > 0 .

In principle, we consider all non-optimal building blocks as
being equally bad (no distinction) and assume the worst case
regarding the signal differences, i.e., the smallest value of
vm − vi where i 6= m. As a consequence, we only dis-
tinguish between optimal and non-optimal building blocks
whose associated subfunction values arevm resp.vm−1. In
other words, we have reduced the general case to the ran-
dom walk model of the preceding subsection, provided we
are able to find anα such thatαd,k ≥ α > 1/2 for all
k = 1, . . . , d. The problem of finding tight bounds forα in
the general case seems intractable. But it is easy to develop
asymptotic expressions via a version of the central limit the-
orem.

Theorem 1 ([10], pp. 253–255)
Let (Zi)∞i=1 be a sequence of independent random variables
which need not be identically distributed and set

ad =
d∑

i=1

E[ Zi ], b2
d =

d∑

i=1

V[ Zi ], and Sd =
d∑

i=1

Zi .

If |Zi| ≤ C < ∞ for all i ≥ 1 andbd/d = o(1) then the
random variable(Sd − ad)/bd converges in distribution to a
standard normal random variable asd →∞. ut

Proposition 1
Let {X̃i : i = 1, . . . , d} and{Ỹi : i = 1, . . . , d} be two col-
lections of discrete, mutually independent random variables
with identical finite support{v1, . . . , vm}. If the distribu-
tions ofX̃i andỸi are identical fori = 1, . . . , d then

P

{
d∑

i=1

(X̃i − Ỹi) ≤ z

}
≈ Φ

(
z

σd

)

≥ Φ

(
z

vm − v1

√
2
d

)

whereσ2
d =

d∑
i=1

V[ X̃i− Ỹi ] andΦ(·) is the distribution func-

tion of the standard normal distribution.

Proof: At first it is verified that the preconditions of Theorem
1 are fulfilled. LetDi = X̃i − Ỹi for i = 1, . . . , d. Since
|Di| ≤ C := vm − v1 < ∞ the first condition is verified.
As for the second condition, notice that neither the variance
of X̃i nor the variance of̃Yi can exceed the valueη2

max =
(vm−v1)2/4 for all i = 1, . . . , d. Since all random variables
are mutually independent one obtains

σ2
d =

d∑

i=1

V[Di ] =
d∑

i=1

V[ X̃i − Ỹi ] = 2
d∑

i=1

V[ X̃i ]

≤ 2 d η2
max =

d (vm − v1)2

2
. (10)

Using this inequality it immediately follows that0 ≤ σd/d ≤
C/(2 d)1/2 → 0 asd → ∞. Thus, the second precondition
of Theorem 1 is also fulfilled. As a consequence, the true
probability distribution of the sum of differences may be ap-
proximated by a normal distribution. Finally, the inequality
given in the proposition follows from inequality (10) and the
fact thatΦ(·) is a distribution function of a continuous ran-
dom variable. ut
With X̃i = g(Xi) andỸi = g(Yi) we may use Proposition 1
to obtain

αd,k =
P{Dd,k ≥ −δ }+ P{Dd,k < δ }

2

≈ Φ
(

δ

σd−1

)

≥ Φ

(
vm − vm−1

vm − v1

√
2

d− 1

)
= α >

1
2

.

A Taylor expansion ofΦ(x) at x = 0 leads to the approxi-
mation

α ≈ 1
2

+
vm − vm−1

vm − v1

√
1

π (d− 1)
(11)

which is in a noteworthy accordance with the bound (7) of
the preceding example wherevm = 1 andvm−1 = v1 = 0.
To proceed we have to calculate the new transition proba-
bilities of the modified random walk. Taking into account
inequalities (8) and (9) we obtain

p̃+
k =

p+
k

1− p0
k

=
p+

k

p+
k + p−k

=
(

1 +
p−k
p+

k

)−1

≥
(

1 +
pk (1− pk) (1− αd,k)

pk (1− pk) αd,k

)−1

= αd,k ≥ α

and analogouslỹp−k ≤ 1−α. Thus,ω̃ = (1−α)/α < 1 and
hence

ain ≥ 1− ω̃i

1− ω̃n
> 1− ω̃i (12)

wherei denotes the initial state of the random walk for each
gene pool. Suppose that|S| = c = 2r with r ∈ N and
that the optimal building block is unique. In this case the
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elements of the original search setSd may be encoded by
binary strings of length̀ = d · r. If the population of bit
strings is initialized uniformly at random then there are on
averagen/c = n · 2−r optimal building blocks in each gene
pool. As a consequence, the initial state of each random walk
is i = bn · 2−rc.
Now we are in the position to determine a bound for the min-
imum population size such that the population converges to
the optimal uniform population. Owing to (12) the probabil-
ity of this event is at leastad

in ≥ (1 − ω̃i)d. Since the prob-
ability is required to exceed the confidence levelβ ∈ (0, 1)
we obtain the inequality(1 − ω̃n/c)d ≥ β which can be re-
arranged to

n ≥ r · log(1− β1/d)

log
(

1− α

α

) .

Notice that

log(1− β1/d) = − log d + log log β−1 + O(log(β)/d)

for larged. Taking into account the asymptotic expression
(11) we finally arrive at

n ∼ 2r−2 π1/2 vm − v1

vm − vm−1

√
d− 1 ( log d− log log β−1) .

(13)
An analysis of this expression under aceteris paribussce-
nario yields the following results: The estimated value for
the population size is not affected by an affine transformation
of the fitness values. But the population size should increase

1. exponentially for linearly increasing building block size
r,

2. sublinearly for linearly increasing problem dimension
d, and

3. logarithmically for linearly increasing confidence level
β.

Moreover, it is important to keep in mind that our estimate
(13) is conservative, i.e., we consistently overestimate the ac-
tually required population size.

IV. Concluding Remarks

We are certainly aware of the fact that the usefulness of
this approach in analyzing evolutionary algorithms is lim-
ited. Nevertheless it offers the opportunity of investigating
subclasses of evolutionary algorithms and objective func-
tions whose analysis was intractable previously. Neverthe-
less, there are several directions for an extension of this ap-
proach. For example, the subfunctions and the building block
sizes may differ. Even the introduction of noise [9] or weakly
nonlinear interactions might be accessible by this approach.
The most interesting question, however, is associated with
the phenomenon that the results derived by this approach are

in close accordance with experimental results [9] obtained by
generationalevolutionary algorithms (with uniform instead
of gene pool recombination). We conjecture that the answer
is closely related to the reasons for the similarity of the gen-
erational Wright and non-generational Moran model [13] in
genetics. A treatise of this mainly technical topic, however,
is beyond the scope of this paper.
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Appendix

Lemma 2
Let 0 < i < n with n ≥ 2. If 0 < x < y < 1 then

1− xi

1− xn
>

1− yi

1− yn
.

Proof:
Let f(x) = (1− xi)/(1− xn). Notice thatf(x) > f(y) for
0 < x < y < 1 if and only if f(·) is strictly monotonous
decreasing on(0, 1), i.e.,f ′(x) < 0 on (0, 1). Since

f ′(x) =
nxn−1 (1− xi)− i xi−1 (1− xn)

(1− xn)2
< 0

⇔ nxn−1 (1− xi) < ixi−1 (1− xn)

⇔ g(x) = xn − n

n− i
xn−i +

i

n− i
> 0

for x ∈ (0, 1) it would suffice to show thatg(·) is strictly
monotonous on(0, 1) and that its infimum is larger than or
equal to zero. Differentiation ofg(·) with respect tox yields

g′(x) = nxn−1−nxn−i−1 = −nxn−i−1 (1−xi) < 0

revealing thatg(·) is strictly monotonous decreasing on
(0, 1). Sinceg(·) is continuous onR the infimum ofg(·)
restricted to(0, 1) is given byg(1) = 0. ut

Lemma 3
If X andY are independent discrete random variables with

support{0, 1, . . . , n} andX
d= Y thenP{X − Y = 0 } >

P{X − Y = 2 }.
Proof: Let pk = P{X = k } = P{Y = k }. SinceX and
Y are independent one obtains

P{X − Y = 0 } =
n∑

k=0

p2
k and

P{X − Y = 2 } =
n−2∑

k=0

pk pk+2 .

Notice that
n∑

k=0

p2
k −

n−2∑

k=0

pk pk+2 =

1
2

n−2∑

k=0

(pk − pk+2)2 +
1
2

(p2
0 + p2

1 + p2
n−1 + p2

n) ≥ 0 (14)

is zero if and only ifpk = 0 for all k = 0, 1, . . . , n. But this
case is excluded since necessarilyp0 +p1 + · · ·+pn = 1. As
a consequence, the expression in eqn. (14) is always larger
than zero and the proof is completed. ut

Lemma 4
Let X1, . . . , Xn and Y1, . . . , Yn be mutually independent
Bernoulli random variables with0 ≤ P{Xk = 1 } = pk =
P{Yk = 1 } ≤ 1 for k = 1, . . . , n and let

Dn =
n∑

k=1

(Xk − Yk) .

The sum of probabilitiesP{Dn = 0 } + P{Dn = 1 } is
minimal if and only ifpk = 1/2 for all k = 1, . . . , n.
Proof: At first notice that the distribution ofDn is symmet-
rical with respect to zero, i.e., for allj = 1, . . . , n holds
P{Dn = −j } = P{Dn = j }. Let Zk = Xk − Yk and

Dn,k =
n∑

i=1
i 6=k

(Xi − Yi)

for an arbitraryk ∈ {1, . . . , n}. It is clear thatDn,k and
Zk are independent,Dn = Dn,k + Zk, and thatP{Zk =
−1 } = P{Zk = 1 } = pk (1− pk) = (1−P{Zk = 0 })/2.
After these preparations it is easily seen that

f(p) = P{Dn = 0 }+ P{Dn = 1 }
= P{Dn,k + Zk = 0 }+ P{Dn,k + Zk = 1 }

=
1∑

i=−1

P{Zk = i } · P{Dn,k = −i }+

1∑

i=−1

P{Zk = i } · P{Dn,k = −i + 1 }

= P{Dn,k = 0 }+ P{Dn,k = 1 } −
P{Zk = 1 } (P{Zn,k = 0 } − P{Zn,k = 2 })

= gk(p)− pk (1− pk)hk(p) (15)

with p = (p1, . . . , pn)′ and where the functionsgk(p) =
P{Dn,k = 0 } + P{Dn,k = 1 } andhk(p) = P{Zn,k =
0 }−P{Zn,k = 2 } do not depend onpk. Notice that Lemma
3 ensures thathk(p) > 0 for everyk ∈ {1, . . . , n}. Partial
differentiation in eqn. (15) with respect topk reveals that

∂f(p)
∂pk

= (2 pk − 1)hk(p) = 0 ⇔ pk =
1
2

.

Since
∂2f(p)
∂p2

k

= 2 hk(p) > 0 and

∂2f(p)
∂pk ∂pj

∣∣∣∣
pk=1/2

= (2 pk − 1)
∂hk(p)

∂pj

∣∣∣∣
pk=1/2

= 0

for j 6= k it follows that the Hessian matrix∇2f(p) is posi-
tive definite at the stationary pointp∗ = (1/2, . . . , 1/2)′. As
a consequence, the valuef(p∗) is a local minimum off(·)
for p ∈ [ 0, 1]n.
To ensure thatf(p∗) is the global minimum it is necessary
to investigate the values off(p) at the boundary of[ 0, 1]n.



84 Günter Rudolph

Sincef(·) is continuous on the compact set[0, 1]n it is guar-
anteed that the global minimum and maximum will be at-
tained over[0, 1]n. In fact, the global maximum is attained
at p ∈ {0, 1}n with f(p) = 1. As for a proof thatf(p∗) is
indeed the global minimum, first notice that repeated appli-
cation of eqn. (15) leads to

P{Dn = 0 ∨ 1 } = P{Dn−m = 0 ∨ 1 }−

m−1∑

i=0

pn−i (1−pn−i) (P{Dn−i+1 = 0 }−P{Dn−i+1 = 2 })
(16)

for everyp ∈ [ 0, 1]n andm ∈ {1, . . . , n− 1}. Now assume
that the global minimum off(·) will be attained at̂p with
f(p̂) < f(p∗) where w.l.o.g.0 < p̂1, . . . , p̂n−m < 1 and
p̂n−m+1, . . . , p̂n ∈ {0, 1}. To indicate that random variable
Dn is parameterized bŷp or p∗ we shall writeD̂n andD∗

n,
respectively. Owing to eqn. (16) we obtain

P{D∗
n = 0 ∨ 1 } < P{D∗

n−m = 0 ∨ 1 } and

P{ D̂n = 0 ∨ 1 } = P{ D̂n−m = 0 ∨ 1 } .

Since the parameterŝp1, . . . , p̂n−m of random variable
D̂n−m are in the open set(0, 1)n−m it follows that
P{D∗

n−m = 0 ∨ 1 } ≤ P{ D̂n−m = 0 ∨ 1 } and finally

f(p∗) = P{D∗
n = 0 ∨ 1 } < P{D∗

n−m = 0 ∨ 1 }
≤ P{D̂n−m = 0 ∨ 1 }
= P{D̂n = 0 ∨ 1 } = f(p̂)

in contradiction to the assumption thatf(p̂) < f(p∗). As
a consequence, the global minimum off(·) over [ 0, 1]n is
attained atp∗ = (1/2, . . . , 1/2)′. ut

Lemma 5
Let X

d= Y ∼ B(n, 1/2) be independent binomial random
variables. The probability distribution function ofZ = X −
Y is

P{Z = k } =
(

2 n

n + k

)
2−2 n

for k ∈ {−n, . . . , n} and zero otherwise. In particular,

P{Z ≥ −1 }+ P{Z < 1 } = 1 +
(

2 n + 1
n + 1

)
2−2n . (17)

Proof: Notice thatX + Y ∼ B(2n, 1/2). SinceY is sym-

metric one obtainsY − n
d= −Y . Thus,Z = X − Y

d=
X + Y − n which proves the first part of the lemma. As for
the second part, the exploitation of the identity

P{Z = 1 } = P{Z = −1 }

leads to

P{Z ≥ −1 }+ P{Z ≤ 0 }
= P{Z = −1 }+ P{Z = 0 } +

P{Z > 0 }+ P{Z ≤ 0 }︸ ︷︷ ︸
=1

= 1 + P{Z = 0 }+ P{Z = 1 }
= 1 + 2−2 n

[(
2 n

n

)
+

(
2 n

n + 1

)]

= 1 + 2−2 n

(
2 n + 1
n + 1

)

which is the desired result. ut


