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Abstract It is shown that the stochastic dynamics of non- proach population-based EAs with recombination and se-
generational evolutionary algorithms with binary tournament  lection but without mutation was introduced in [9]. It was
selection and gene pool recombination but without mutation is (somewhat vaguely) argued that the dynamics of such EAs
closely approximated by a stochastic process consisting of sev-resemble the dynamics of a specific random walk. Here, we
eral de-coupled random walks, provided the fitness function is seize this suggestion again with the objective of underpin-
separable in a certain sense. This approach leads to a lower ning this approach with a sound theoretical argumentation
bound on the population size such that the evolutionary algo- for the class of separable fitness functions and the class of
rithm converges to a uniform population with globally optimal ~ non-generational evolutionary algorithms with binary tour-
individuals for a given confidence level. nament selection and gene pool recombination.

For this purpose, we first present a brief introduction to ran-
dom walks in Section 2 before entering the theoretical analy-
sis given in Section 3. Some auxiliary results and their proofs

Evolutionary algorithms (EAs) with finite search sets cafi'® deferred to thg append.|x in order to exempt the argumen-
be exactly modeled by means of finite state Markov Chain@tlon _from t_echnlcal details. Our concluding remarks are
Although the derivation of the transition matrices does ndi'venin Section 4.

pose an essential problem, it is rarely possible to obtain an-

alytical expressions for the state distribution, limit distrib-

ution, absorption or first passage times et cetera, since tHe Random Walks with Absorbing Barriers

required symbolic mathematical operations with these matri-

ces quickly become intractably complex. Exceptional casdhe basic definitions and results of this section are extracted
require more or less strong assumptions regarding the pogdtem [10, p. 344f]. Let the sef0,1,...,n} with n < oo
lation size, the participating evolutionary operators, and thgenote the set of states that may be visited by some stochastic
problem under consideration. Those assumptions usuafyocess. Lepj be the probability of a transition from state
reduce the state space and therefore the size of the transio statei + 1, p; be the probability of a transition from
tion matrices considerably and/or turn the transition matrigtate; to statei — 1, andp? be the probability of a transition
into a sparse matrix with special properties. This is a confrom statei to statei. If p; > 0, p? > 0, andp;” > 0 such
mon approach in the analysis of randomized algorithms [1jhatp; + p? + p7 = 1fori = 1,...,n — 1 while p; =

In case of evolutionary algorithms this method led to uppqxr:r = 0andp? = 1fori € {0,n} then the stochastic process
bounds of the expected absorption time for simple EAs (siwith state spac€0, 1,...,n} is called arandom walk with

gle parent, only mutation and selection) and selected prohbsorbing barriers The state® andn are termed absorbing
lem classes [2, 3, 4]. Further results on simple EAs can lvehereas the remaining ones are termed transient.

found in [5, 6] and the references therein. First analyses akta;y anda;, denote the probabilities that the random walk
population-based EAs with crossover and mutation were presll be absorbed by stat@resp.n provided it was started at
sented in [7, 8]. statei. In general, the relationshipy,, = 1 — a9 is valid for

The presence of mutation is an essential ingredience in th#i = 0,1,..., n. If the transition probabilities are indepen-
theoretical work mentioned so far. The idea of how to apdent from the states, i.ep; = p~, p? = p° andp; = p*

[. Introduction
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foralli=1,...,n— 1, then (A1) Finite population size: < co.
1—wt it £ 1 (A2) Non-generational binary tournament selection.
Qi = L-wr (1) (A3) Gene-pool recombination.
% ifw=1 (A4) No mutation.

Itis clear that an evolutionary algorithm with recombination
and selection but without mutation will necessarily converge
to a uniform population (i.e., all individuals are identical)
with probability one in finite time [11]. Notice that each of
Lemrﬂa 1 0 n L o n the ¢ uniform populations may be attained with some non-
Letp; > 0,p; > 0, andp;” > Owith p;” +p7 +p;7 =1 o, probability provided that the initial population is drawn

_be the transition probabilities_ of agndom_walkwith absorbét random. In [9] it was measured how many subfunctions
ing stated) andn. If the quotientyy~ = p; /(1 — pY) and

-) have attained their global optimum as soon as the pop-
pt = pi/(1 — p?) are independent from indexfor all 90) g P Pop

i hen the ab . babili ulation has become uniform, or equivalently, how many cor-
v e {.1’ -, — 1} then the a s~0_rpt~|on probability to state g ¢ building blocks have been collected by an individual of
n is given by Eqgn. (1) where = p~ /p™.

a uniform population. We show that this measure indeed de-
Proof: Assume that the random walk has jUSt entered Sonl%nds on the absorption probability of a single specific ran-
transient state. If pj > 0 for the transient states of the ran-gdom walk. Moreover, this quantity also can be used to obtain
dom walk, then the random walk stays on averagé —p?)  lower bounds on or at least a good approximation of the prob-
time units at state prior to a transition either to state- 1 apility that the uniform population finally attained consists of
or to statei + 1. As long as the random walk stays at statgjlobally optimal individuals. A rearrangement of the result-
1 the prObabi”ties of a transition to the left or rlght remaining inequa"ty y|e|ds a bound for the popu|ation size required

unaltered for each step. Since we are only interested in tgg obtain a globally optimal uniform population for a given
absorption probabilities (and not in the number of steps untiignfidence level.

absorption takes place) we may skip the period of staying at
state:, provided that the transition probabilities are approprig. Representation of the Evolutionary Algorithm

ately adjusted. Notice that the probability of finally moving ) ] o

to statei + 1 conditioned by the event that statéas been Regardless of the choice of the selection and variation op-
leftis 57 = p /(1 — p?), andp; = p; /(1 — p?) in case of erators, the population of an evolutionary algorithm may be
a transition to state— 1. Sincep;” +p; = 1 andp? = 0 for represented by the matrix

the transient states the originally aperiodic random walk

wherew = p~/p*. Evidently, the absorption probabilities
are not affected by the value pf. This observation leads to
the result shown next.

. . aip aiz2 - Qid
has been converted to a periodic random walk possessing the Qo1 Qo -+ Gog
same absorption probabilities but a smaller absorption time. A=
Now insist thatp;" is identical for all transient states Un- : :
der this additional assumption we may use Eqn. (1) in order Gnl  Qn2 ***  Qnd

to calculate the absorption probabilities of the new randor\1,1vhere the row vectot;e — (air a; 4) € S repre-
walk. Since these absorption probabilities are identical to de = \Gi1@a2 .- - Qid b

those of the original random walk the proof is completed. sents theth individual ¢ = 1,...,n) whereas the column

vectora.; = (a1jagj ... ay;) represents thgene poolbof
. . componeng =1,...,d.
lll. Evolutionary ~ Algorithms as Random In a usual evolutionary algorithm witlene pool recombina-
Walks tion an offspringb would be assembled by choosing a gene at
) random with uniform probabilityl /n from each gene pool.
A. Assumptions and Goals Equivalently, this might be also achieved as follows: Cal-
Letz ¢ S¢ be an element of thé—dimensional search spaceculate the relative frequenciés (s) of elementss € S in
57 wheresS is a non-empty finite set with cardinality The ~©ach gene pogl = 1,...,d. An offspringb is assembled
objective functionf : S¢ — R is representable via by drawing componerti; from the discrete probability dis-

tribution with P{b; = s} = h;(s) for s € S. Thus, the
population is now equivalently represented by the probabil-
fl@) =) g(x:) ity distributionsh, (-), .. ., ha(-) which might be gathered in

‘ ad x ¢ matrix (actually, al x (¢ — 1) matrix would suffice
whereg : S — R is a real-valued function. Without loss of since the probabilities must add to unity).

generality it is assumed thdt-) is to be maximized. The Since the binary tournament selection method is used in a
evolutionary algorithm under consideration is characterizeson—generational manner the update rule for the probabil-
as follows: ity distributionsh;(-) is very simple. LetX andY be two
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offspring independently drawn via gene pool recombinationp;, = P{X,=1,Y, =0, f(X)> f(Y)}+
from the probability distributions:;(-). The new proba- P{X,=0Y,=1f(X) < f(Y)}
bility distributions h,(-) for j = 1,...,d are obtained by — P{Xp =1,V =0,Dup > -1} +
Pi(X5) = hi(X;) + Aj/nandh)(Y;) = hi(Y;) — Aj/n B BT TR Tk =
where P{Xy=0Y,=1,Dqr <1}

= P{Xp=1}-P{Yy=0}-P{Dgr>-1}+

DR E YA 2 ) P{Xy =0} P{Ye = 1}-P{Dap < 1}

A= 0 IfX; =Y
—1 ifX; £ YA f(X) < f(Y). = p (1 =px) [P{Day > =1} +P{ Dy < 1}]
_ _ _ = 2pp (1 —pr) a )
Thus, the frequencies of the alleles of the winner are in-
creased whereas those of the looser are decreased for each pp = 1—p)—p

gene pool. This formulation of the evolutionary algorithm

does not facilitate the analysier se The update probabil- = 2 =pe) [2= (P{Dap = —1}+

ity of each gene pool is of course still dependent on the fre- P{Daxr <1})]

guency distributions of the other gene pools. But the point of = 2pr(1—pr) (1 —agr). (4)
view developed so far opens the door to a simpler yet not ex-

act analysis that leads to surprising accurate results under capere d

tain circumstances. A demonstration of this fact is given in Day = Z(Xi -Y)

the next subsection before proceeding with the general case i—1
in the subsequent subsection. 7k

andaM = (P{ Dd,k > -1 } + P{ Dd,k <1 })/2

Suppose there exists ansuch thatx, ¢ > o > 0 for all

k =1,...,d. Inthis case one obtaing” > 2p; (1 — p;) «
LetS = {0,1},d > 1 andg(s) = as +bwherea #0and andp, < 2p; (1 — pi) (1 — «) for everygene poolk =

b € R. Since binary tournament selection is an ordinal set, .. ., d regardless of the true state of the other gene pools.
lection method it suffices to consider the césgh) = (1,0).  As a consequence, the entire stochastic process ovet the

C. The Random Walk Model: Instructive Example

The maximization of the resulting objective function nonlinearly coupled gene pools may be seediasependent
random walks. Notice that the transition probabilitj&s
d p;, andp,, are state—dependent even if we asand regard
fla) = Z Ti the inequalities as equalities. But Lemma 1 offers a remedy:
=1 Since
is also known as the “counting ones problem.” Since the car- L P
dinality of S is ¢ = |S| = 2 the population is representable Pe = 7 0 g 2 @
by a single vectop = (ps,...,pqs) Wherep; = h;(1) and _
1 —p; = h;(0)forj =1,...,d. Let X andY be the two P = pko =l-agx <l-a
offspring generated by gene pool recombination. The update L —py
rule reduces to the absorption probabilities of the state—dependent random
) ~y walk are identical to those of the associated simple random
p=p+ o (X-Y) walk without state—dependent transition probabilities. Con-
sequentlyw < @ = (1 —a)/a < 1if @ > 1/2. In this case
where Lemma 2 ensures that the probability of absorption at state
_ { 1 if f(X) > f(Y), is lower bounded by
7= -1 otherwise. .
o 11—
Letp;" be the probability that gene poblwill be increased Gin = 1 " gn -

L/n, py, the probability that it will be decreased liyn and | et 5+ pe the random variable representing the number of
pj, the probability that it remains unaltered. These probabilingependent random walks starting at stagsd finally be-

ties are given by ing absorbed at state. Evidently, B* is the sum ofi inde-
pendent Bernoulli random variables with success probability

0 _ _ _ _ _
P = P{Xp=1Ye =1} +P{Xp=0,Y, =0} ain. Therefore the expectation &+ is given by
= P{X,=1}-P{Y,=1}+ 15t
P{X,=0}-P{Y,=0} E[B"] = dan 2 d-7—=
= pi+ (1 —px)? ai — (1-a)

— 1-2p(1-py), @ BT S TS
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Notice that random variabl&* represents the number of for larged. Thus, if the dimensiod of the problem increases
optimized subfunctiong(-) within a converged population, the population size should be set to
or equivalently, the number of correctly compiled building
blocks. The bound on the expectation/sif only depends on n— @ (logd — loglog B~1) + O(d~'/?)
the absorption probability,,, of a specific random walk and 2
the number! of random walks executed in parallel. This parin order to guarantee that the EA will converge to the optimal
tially explains the close match between the theoretical copopulation at least with probabilitg > 0.
siderations and numerical experiments presented in [9].
Needless to say, it remains to guarantee that such an D. The Random Walk Model: General Case
1/2 actually exists. Lemma 4 in conjunction with Lemma 5
yi/elds the t?/ght lower bound J Lgt S| =c=2andV = {g(z) : x € S} :.{vl’ oo Um
with 2 < m < ¢ be the set of values attainable by means
L1 /2d=1\, 4 1 2d\ 4 of the subfunctiory(-). Again, the random vectorX andY’
a=5+5 ( d > 4 =5 ( d ) 47" (8  denote individuals that are independently generated via gene
pool recombination. Here, random varialdlg ;. is defined
revealing thaty > 1/2 as required. Since Stirlings’s formula as

(see entry 6.1.38 in [12]) leads to d

1 2d ] Da = ;(Q(Xi) —9(¥3)).
r(( ) < () < on(h)

Let pﬁ denote the probability that the relative frequency of
equation (6) may be replaced by the more convenient but rthe best building block* € S with g(s*) = v,,, of gene pool

markably accurate bound k is increased by /n. This probability can be bounded by
1 1 1 1 F= P{g(Xk) = vm, 9(V} s [(X) > f(YV
a>+exp(_) a2 L L gy P {9(Xk) = v, 9(Yk) # v, f(X) = f(Y) } +
2 6d 2 Vrd P{g(Xk) # vm, (Vi) = vm, f(X) < f(Y) }
m—1
If the evolutionary algorithm is initialized uniformly at ran- _ L >
dom then the initial state of each random walk is [n/2]. N Z; PLO(Xk) = vm, 9(Vi) = vi, f(X) = F(¥) } +
As a consequence, we obtain ;;1
o P{g(Xx) = v1, g(Vi) = vm, f(X) < f(V) }
An /2,0 = m . i=1
If each random walk is absorbed in stat¢hen the popula- m—1
tion converges to a uniform population with optimal individ- = P{g(Xk) =vm } xP{g(Ys) =v; }
uals. The probability of this event is at least i=1

XP{ Dy > vi—vm}+

d
d N () > m—1
Unjan =\ T3 gnz ) = p Z P{g(Xy) =v; } x P{g(Yx) =vm }
where s € (0,1) is the desired minimum probability of =

. . . XP{Dgr <vm—v;
convergence to the optimal uniform population. Elementary {Da m = vi}

m—1
transformations of the rightmost inequality above lead to
g auatly > 3" P{g(Xk) = vm } x P{g(Yi) = v }
1— ﬁl/d 1—a i=1
n2210g(61/d>/log< - ) XP{ Dy > vm-1—vm}+
m—1
Sincea depends on the dimensiarit is possible to develop Z P{g(Xr) =v; } xP{g(Yx) =vm }
an asymptotic expression for the population sizeTaking i=1
into account equation (7) we obtain XP{Dgr < Um — Um-1}
= P{g(Xp)=vm } x (1 =P{g(Ys) =vn
e (1) g (L2 B
g o g 1+2/Vrd (ﬂ.d)l/Q dk =

P{g(Yi) = vm } x (1 = P{g(Xx) = vm })
whereas XP{Dgr <4}
| — i/ B B Pk (1 —pi) (P{Dar > —0}+P{Dgr <d})
log <5l/d ) = —logd+loglog 57" +O(d™") = 2p; (1 —p) Qg 8)
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whered = v,, — v,,—1 > 0 is the smallest difference be- Proof: Atfirstitis verified that the preconditions of Theorem
tween the maximum and any other value of the subfunctioh are fulfilled. LetD; = X; — Y; fori = 1,...,d. Since
g(+), agr = (P{Dgyr > =0} +P{Dgir < 6})/2, and |D;| < C := v, —v1 < oo the first condltlon is verified.

pr = P{g(Xk) = vm } = P{g(Yi) = v, } is the prob- As for the second condition, notice that neither the variance
ability of drawing the optimal building block, i.ep; is the of X; nor the variance of; can exceed the valug,,, =

relative frequency of optimal building blocks in gene pgol (v,, —v;)?/4foralli = 1,...,d. Since all random variables
Analogously, we obtain are mutuaIIy independent one obtains

Pr <2px (1 —pr) (1 —aqp) ) 2 2 d

> k — Pk — Qdk ” * o
and =1 =1 =1
m d (Um - U1)2
< 2dni,, = —" =7 10
222 {ng —Uz} >0. = Mmax 9 ( )

Using this inequality itimmediately follows that< o4/d <
In principle, we consider all non-optimal building blocks asC/(2d)'/? — 0 asd — oc. Thus, the second precondition
being equally bad (no distinction) and assume the worst casé Theorem 1 is also fulfilled. As a consequence, the true
regarding the signal differences, i.e., the smallest value pfobability distribution of the sum of differences may be ap-
vm — v; Wherei # m. As a consequence, we only dis-proximated by a normal distribution. Finally, the inequality
tinguish between optimal and non-optimal building blockgjiven in the proposition follows from inequality (10) and the
whose associated subfunction values@aferesp.v,,—1. In  fact that®(-) is a distribution function of a continuous ran-
other words, we have reduced the general case to the ralom variable. O
dom walk model of the preceding subsection, provided Wﬁ/th X, = o

are able to find amx such thatag, > o > 1/2 for all X;) andY; = g(¥;) we may use Proposition 1

k =1,...,d. The problem of finding tight bounds fer in to obtain
the general case seems intractable. But it is easy to develop  P{Dgr>-0}+P{Dgr<d}
asymptotic expressions via a version of the central limit the- = ¥d:k = 2
orem. 5
~ ¢ < )
Od—1

Theorem 1 ([10], pp. 253-255)
Let (Z;)5°, be a sequence of independent random variables > @[ Ym T Umot 2 —a> 1 )
which need not be identically distributed and set N U, — U1 d—1 2

d d d A Taylor expansion ofb(z) atz = 0 leads to the approxi-

ag=Y» E[Z], bj=) _V[Z], and Sg=)_ Z;.  maton
i i=1 i=1 1 vy —vm_1 1

~ = - 11
“ 2+ U, — U1 w(d—1) (11)

If |Z;] < C < coforalli > 1andbg/d = o(1) then the
random variablé S, — a4)/bg converges in distribution to a which is in a noteworthy accordance with the bound (7) of

standard normal random variableds- oc. O the preceding example wherg, = 1 andv,,,_; = v; = 0.
To proceed we have to calculate the new transition proba-
Proposition 1 bilities of the modified random walk. Taking into account

Let{X,;:i=1,...,d}and{Y;:i=1,...,d} betwo col- inequalities (8) and (9) we obtain

lections of discrete, mutually independent random variables .

with identical finite suppor{vy,...,vy,}. If the distribu- pro= P _ Py _ (1 n )
tions of X; andY; are identical fori = 1,...,d then k 1—p) P+ L i
-1
1—p)(1—
‘L . > (1+pk( i) ( ad,k)) — agp > @
P Z(XL -Y) <z ~ () pr (1 — pr) aak
i=1 gd
and analogously, <1—a. Thus,w =(1—a)/a < 1and
> & ( z 2) hence ,
> — 1o 4
Um — 1 V d Qin, 2 R L (12)
1—on

o where: denotes the initial state of the random walk for each
whereo? = Z V[ X;—Y;] and®(.) is the distribution func- gene pool. Suppose tha| — ¢ — 2" with » € N and

tion of the standard normal distribution. that the optimal building block is unique. In this case the
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elements of the original search s¢t may be encoded by in close accordance with experimental results [9] obtained by
binary strings of lengtlf = d - . If the population of bit generationalevolutionary algorithms (with uniform instead
strings is initialized uniformly at random then there are omf gene pool recombination). We conjecture that the answer
averagen/c = n - 2~" optimal building blocks in each gene is closely related to the reasons for the similarity of the gen-
pool. As a consequence, the initial state of each random watkational Wright and non-generational Moran model [13] in
isi=|n-27"]. genetics. A treatise of this mainly technical topic, however,
Now we are in the position to determine a bound for the minis beyond the scope of this paper.

imum population size such that the population converges to
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Appendix
Lemma 2 . D, :Z(Xk _Yk)'
Let0 <i<nwithn >2.If0 <z <y <1then 1
1—at 11—y The sum of probabilite®{ D,, = 0} + P{D,, = 1}is
=z~ 1—y° minimal if and only ifp, = 1/2forallk = 1,...,n.
Proof: At first notice that the distribution ab,, is symmet-
Proof: rical with respect to zero, i.e., for ajl = 1,...,n holds

Let f(z) = (1 —2')/(1 — a™). Notice thatf () > f(y) for P{D, =—j} =P{D, =} LetZ, = X; — Y} and
0 <z <y < lifand only if f(-) is strictly monotonous
decreasing o0, 1), i.e., f'(x) < 0on(0,1). Since

n

Dni =) (Xi-Y)

, na" (1 —a%) —ixt=t (1 —a") i=1
— 0 i#k
['(x) (1—an)? <
o na™ (1 —at) < izt (1 - 2" for an a}rbitraryk € {1,...,n}. Itis clear thatD,,; and
n ‘ ; Zy, are independentD,, = D, + Z;, and thatP{ Z;,, =
& g(m):x"—n_jxn_z—l—n_i >0 —1}=P{Zy=1}=pr (1—px) =(1—-P{Z, =0})/2.

After these preparations it is easily seen that
for z € (0,1) it would suffice to show thay(-) is strictly

monotonous orf0, 1) and that its infimum is larger than or fp) = P{Dy=0}+P{D,=1}
equal to zero. Differentiation af(-) with respect tar yields = P{Dnrx+ 2y =0} +P{Dpp+2Z,=1}

1
g(@) = na"l—na"T = et (1) < 0 = S P(Zi=i} P{Dug= i} +

1=—1

revealing thatg(-) is strictly monotonous decreasing on 1
(0,1). Sinceg(-) is continuous orR the infimum ofg(-) P{Z. =il-P{D . = —i+1
restricted to(0, 1) is given byg(1) = 0. O igl {2 J Pk )
Lemma 3 = P{Dny=0}+P{Dpp=1}-
If X andY are independent discrete random variables with P{Zk=1}(P{Zux =0} —P{Z,x=2})
support{0,1,...,n} andX £ Y thenP{X —-Y =0} > = gk(p) — pe (1 — pk) hi(p) (15)
P{X-Y =2}

. _ , . _

Proof: Letpy — P{X = k} = P{Y = k}. SinceX and with p = (p1,...,pn) and where the functiongy(p) =

Y are independent one obtains P{Dnp =0} +P{Dyi =1} andhy(p) = P{ Zy s =
0}—P{Z, =2} donotdepend op,. Notice that Lemma

n 3 ensures that,(p) > 0 for everyk € {1,...,n}. Partial
P{X-Y=0}= Z p: and differentiation in egn. (15) with respect tq reveals that
k=0
0 1
n—2 éf;f) :(2pk—l)hk(p)=0 =4 pk=§.
P{X—YZQ}ZZPk-pmz- '
k=0 Since o2
Notice that ) af(Qp) =2hi(p) >0 and
n n— pk
2
Zpk—Zpkpk+2 = 2
k=0 k=0 0" (p) — @2pe—1) Ohi(p) —0

Opr, Op; Pe=1/2 Op; pe=1/2

12 1
5 > ok — prr2)® + 3 (B5 +pi +pi_1+107) 20 (14)  for j £ k it follows that the Hessian matri¥’2 f(p) is posi-
k=0 tive definite at the stationary poipt = (1/2,...,1/2)". As
is zero if and only ifp, = 0 forall k = 0,1,...,n. Butthis a consequence, the valy¢p*) is a local minimum off(-)
case is excluded since necessapijyt-p1 +- - - +p, = 1. As  forp € [0,1]".
a consequence, the expression in eqn. (14) is always larder ensure thaf (p*) is the global minimum it is necessary
than zero and the proof is completed. O to investigate the values gf(p) at the boundary of0, 1]™.
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Sincef(-) is continuous on the compact $@t1]™ itis guar- leads to

anteed that the global minimum and maximum will be at-
tained over0, 1]™. In fact, the global maximum is attained
atp € {0,1}" with f(p) = 1. As for a proof thatf(p*) is
indeed the global minimum, first notice that repeated appli-
cation of eqn. (15) leads to

P{D,=0V1} = P{Dy_p, =0V1}—

m—1

Glinter Rudolph

P{Z>-1}+P{Z<0}
P{Z=-1}+P{Z=0} +
P{Z>0}+P{Z<0}

1+P{Z::S}+P{Z:1}

e () ()]

Z Pn—i (lfpn—i) (P{ Dn—i+1 = O}*P{ Dn—i+1 =2 }) = 14+ 272n 2n+1
i=0 n+1
(16)
for everyp € [0,1]" andm € {1,...,n — 1}. Now assume which is the desired result. O

that the global minimum off (-) will be attained a with
f(®) < f(p*) where w.l.o.g0 < p1,...,Pn—m < 1 and
Dr—m+1s---,Dn € {0,1}. To indicate that random variable
D,, is parameterized by or p* we shall writeD,, and Dy,
respectively. Owing to eqn. (16) we obtain

P{D;=0v1} < P{D;_,,=0v1} and
P{D,=0v1} = P{Dp_,,=0V1}.
Since the parametergs,...,p,—,, of random variable

D, _,, are in the open sef0,1)" ™ it follows that
P{D;_,,=0Vv1}<P{D,_, =0V1}andfinally

f(p")

P{D;=0Vv1}<P{D;_, =0V1}
P{Dp_m=0V1}
P{D,=0V1} = f(p)

IN

in contradiction to the assumption thAfp) < f(p*). As
a consequence, the global minimum ff) over [0, 1]™ is
attained ap* = (1/2,...,1/2)". O

Lemma 5
letx £Y ~ B(n,1/2) be independent binomial random
variables. The probability distribution function gf= X —

Yis
P(Z=k}=( 2" 22"
S \n+k

for k € {—n,...,n} and zero otherwise. In particular,

2n+1
n+1

P{Z2—1}+P{Z<1}:1+( )2—2".(17)
Proof: Notice thatX +Y ~ B(2n,1/2). SinceY is sym-

metric one obtaind — n < —Y. Thus,Z = X - Y 4
X +Y — n which proves the first part of the lemma. As for
the second part, the exploitation of the identity

P{Z=1}=P{Z=-1}



