
International Journal of Computational Intelligence Research.

ISSN 0973-1873 Vol.1, No.1 (2005), pp. 85-97

© Research India Publications http://www.ijcir.info

Learning Best Concept Approximations

from Examples

Mihai Boicu
1
 and Gheorghe Tecuci

2

George Mason University,

Fairfax, VA 22030 USA
1E-mail: mboicu@gmu.edu 2E-mail: tecuci@gmu.edu

Abstract: This paper addresses the problem of learning the

best approximation of a concept from examples, when the

concept cannot be expressed in the learner’s representation

language. It presents a method that determines the version

space of the best approximations and demonstrates that for any

given approximation of the target concept there is a better

approximation in this version space. The method does not

depend on the order of examples and has an almost monotonic

convergence. This method was developed for the Disciple

learning agent that can be taught by a subject matter expert

how to perform complex problem solving tasks.

KeyWords: Machine Learning, Concept Learning from

Examples, Plausible Version Space, Ontology, Expert Systems.

I. Introduction

We are researching a general approach to the development

of learning agents that can be taught directly by subject

matter experts how to solve problems. This research resulted

in the development of the Disciple theory, methodology and

family of learning agent shells [1]-[3]. The expert teaches

the Disciple agent in a way that is similar to how the expert

would teach a person, by demonstrating and explaining the

agent how to solve specific problems, and by supervising,

correcting and explaining agent’s errors.

The Disciple approach has already been applied to

develop knowledge based agents in complex domains such

as course of action critiquing [4], center of gravity

determination [5] and intelligence analysis [6], proving to be

a good solution to the knowledge acquisition bottleneck [7].

The problem-solving engine of a Disciple agent is based

on the general task reduction paradigm [8]. In this paradigm,

a problem solving task is successively reduced to simpler

tasks. The solutions of the simplest tasks are found and then

these solutions are successively combined until they produce

the solution of the initial task. To exhibit such a behavior,

the knowledge base of the Disciple agent is structured into

an object ontology and a set of if-then problem solving rules.

The object ontology is a hierarchical representation of the

objects and types of objects from the application domain. It

represents the different kinds of objects, the properties of

each object, and the relationships existing between objects

([9] and [10]). A fragment of the ontology of an agent that

assists a student to select a PhD advisor is presented in

Fig.1.

The if-then problem solving rules are learned from the

expert’s problem solving examples by using the object

ontology as a generalization hierarchy ([11] and [12]).

To illustrate the rule learning process consider how an

expert may teach a Disciple agent how to help a student

select a PhD advisor. The expert formulates an initial

problem solving task, such as “Determine a PhD advisor for

Task: Determine whether John Smith can be a PhD advisor for
Tom Evan in Artificial Intelligence.

Subtask: Determine whether John Smith would be a good PhD

advisor for Tom Evan in Artificial Intelligence.

Question: Is John Smith likely to stay on the faculty of George

Mason University for the duration of Tom Evan’s dissertation?
Answer: Yes, because John Smith has a tenured position.

Figure 2. Task reduction example.

John Smith

Ph.D. student

Mark White

faculty

member

staff

member

professor

student
university employee

person

Tom Even

instance_of

subclass_of

instance_of

instance_of

subclass_of

subclass_of

subclass_of

subclass_of

M.S. student

B.S. student

instructor
graduate

student

undergraduate
student

full

professor

associate

professor

assistant

professor

subclass_of

instance_of

subclass_of

Joan Dean

instance_of

PhD_advisor

subclass_of

has_as_employerGeorge Mason
University

university

Figure 1. Ontology fragment.

86 Mihai Boicu and Gheorghe Tecuci

Tom Evan.” Then, using the task reduction paradigm, the

expert successively reduces this task to simpler tasks, guided

by questions and answers, as illustrated by the task reduction

step from Fig. 2.

From each such task reduction step, Disciple learns a

general task reduction rule. The learned rules are used by

Disciple in the task reduction process, and the critiques

received from the expert guides their refinement. For

instance, the rule learned from the above example is applied

to “Determine whether Mark White can be a PhD advisor for

Tom Evan in Artificial Intelligence.” However, the

corresponding reduction is rejected by the expert because

“Mark White is likely to move to Stanford University.”

Consequently, Disciple adds an except-when condition to the

rule which takes the form shown in Fig. 3. As illustrated in

this figure, the rules learned by Disciple have an IF-THEN

part that preserves the expert’s language from the example, a

main applicability condition and, optionally, several except-

when conditions (which should not be satisfied to apply the

rule). The conditions are partially learned, containing

plausible upper and lower bounds for the acceptable values

of the rule’s variables. Rule’s representative examples are

also kept to help in its further refinement [13].

The applicability conditions of the learned rules aim to

capture the complex concepts used by the subject matter

expert. Often, these concepts are not expressible in the

agent’s representation language where the correct instance of

a variable (e.g. ?O1 in Fig. 3) is specified as being an

instance of a concept from the object ontology (e.g. PhD

advisor in Fig.1 and Fig.3), and having certain features (e.g.

has-as-employer ?O4, and has-as-position ?O5).

In this paper we describe an approach to capturing and

representing the subtle and complex concepts of a subject

matter expert. One idea of this approach is to significantly

extend the generalization hierarchy and, implicitly, the

representation language. Another idea is to develop methods

for learning approximations of the concepts that cannot be

expressed even in the extended representation language.

The rest of this paper is organized as follows. Section 2

defines the learning problem. Section 3 presents a

refinement of the generalization hierarchy. Section 4

presents the best approximation of a target concept,

including “the target’s best approximation theorem.” Then

section 5 presents a method for learning the upper and lower

approximations of a target concept, and demonstrates several

convergence theorems. Section 6 discusses related research

and future directions.

II. Learning Concept Approximations from

Examples

The learning problem discussed in this paper is presented

in Table 1. This learning problem is a basic component of

the complex problem of learning problem solving rules (such

as the one from Fig.3) from specific examples of problem

solving steps (such as the one from Fig.2).

Table 1. Learning Concept Approximations From

Examples.

This problem is a generalization of the classical problem

of incremental concept learning from examples [14], and

reduces to it if the target concept C is included in the

generalization hierarchy GH. However, the classical learning

problem will fail when the target concept C is not part of

GH. In such a case, the learning problem from Table 1 does

not require the learning of the exact concept C, but its best

approximations.To illustrate this learning problem, let us

consider the generalization hierarchy from the top of Fig. 4.

The sequence of positive and negative examples of the target

concept is: I1(+), I2(+), I3(-), and I4 (+). None of the

concepts from the generalization hierarchy in Fig. 4 covers

all the positive examples, I1, I2, and I4, without covering the

negative example I3. The bottom part of Fig. 4 shows two

possible views of the same hierarchy, where the concepts are

Given:

• A sequence of positive and negative examples

(instances) of a target concept C.

• A generalization hierarchy of concepts GH which may

or may not include the target concept C.

Determine:

• Either the target concept C, which covers all the

positive examples and none of the negative examples,

if C is a concept from GH.

• Or the best approximations of the target concept C,

expressed with concepts from GH, if C is not included

in GH.

MAIN CONDITION

?O1 is PUB (PhD_advisor) PLB (PhD_advisor)
has_as_employer ?O4
has_as_position ?O5

?O2 is PUB (person) PLB (PhD_student)

?O3 is PUB (research_area) PLB (Artificial_Intelligence)
?O4 is PUB (employer) PLB (university)
?O5 is PUB (position) PLB (tenured_position)

EXCEPT WHEN CONDITION

?O1 is PUB (person) PLB (PhD_advisor)

is_likely_to_move_to ?O6
?O6 is PUB (employer) PLB (university)

IF: Determine whether ?O1 can be a PhD advisor for ?O2 in ?O3

THEN: Determine whether ?O1 would be a good PhD advisor for
?O2 in ?O3

Question: Is ?O1 likely to stay on the faculty of ?O4 for the
duration of ?O2 's dissertation?
Answer: Yes, because ?O1 has a ?O5

Positive Example: (?O1=John_Smith ?O2=Tom_Evan
?O3=Artificial_Intelligence ?O4=George_Mason_University

?O5=tenured_position)
Negative Example: (?O1=Mark_White ?O2=Tom_Evan
?O3=Artificial_Intelligence ?O4=George_Mason_University
?O5=tenured_position ?O6=Stanford_University)

Figure 3. Partially learned plausible version space rule.

Learning Best Concept Approximations from Examples 87

represented as sets and the instances as points. Because the

target concept cannot be any of the already represented

concepts, it must be a new one, such as those indicated by

dashed lines in the figure. The one from the left hand side is

a target that does not contain any concept from hierarchy.

The one from the right hand side is a target concept that

includes the concepts C and D.

 Fig. 5 shows how the two target concepts from the bottom

of Fig. 4 can be introduced into the generalization hierarchy,

based on their generalization relationships with the other

concepts from the hierarchy. T1 can be introduced under the

root concept as a terminal concept. T2 can be introduced as a

subconcept of R and a superconcept of C and D.

Thus, another result of the learning problem in Table 1 is

the potential extension of the generalization hierarchy with

new concepts, such as T1 or T2.

III. Refinement of a Generalization Hierarchy

A. Generalization hierarchy of concepts

In this section we give a formal definition for the

generalization hierarchy of concepts, as a partially ordered

set, having the generalization relation as the order relation.

Definition: A generalization hierarchy of concepts is a

structure, GHC(Concepts, root-concept, subconcept-of) with

the following properties:

• Concepts is a finite, non-empty set of distinct elements,

named concepts. A concept might be viewed as

representing a set of elements named instances.

Examples of concepts from Fig. 1 are: professor, student,

person.

• root-concept is an element from Concepts. We generally

use the concept named object as the root-concept.

• subconcept-of is a binary, strict partial order relation on

the set Concepts (denoted also by ⊂) having root-

concept as the maximum element (i.e. any other concept

is a subconcept of root-concept). An example is: student

subconcept-of person (see Fig. 1).

Definition: The relation direct-subconcept-of is defined

by: c1 direct-subconcept-of c2 if and only if c1 subconcept-of

c2 and there is no other concept c such that c1 subconcept-of

c and c subconcept-of c2.

B. The concepts' algebra

We will extend the initial set of concepts by using the

operations of union, intersection and negation, defined

similarly with the set theory [3]. This extension will lead to a

much more expressive language.

Definition: The set E(Concepts) denotes the extension of

the set Concepts under the operations: ∪, ∩, and ¬.

Lemma: The extended relation subconcept-of (⊂) is a

partial order relation on E(Concepts) having Root-Concept

as a maximum element and ∅ as the minimum element.

Lemma: LGHC(E(Concepts),∪,∩,⊂) is a complete lattice,

having sup{x, y}= x∪y and inf{x, y}=x∩y.

Lemma: LGHC(E(Concepts),∪,∩,¬, ∅,Root-Concept) is a

Boolean algebra.

Following the Boolean algebra theory [15], a minterm in

the Boolean algebra LGHC is a conjunction of concepts and

negated concepts:

I
ConceptsCCorCist

C

C

t
∈¬ ,

The minterms are the bricks from which all the elements

of E(Concepts) are constructed. Any element from

E(Concepts) can be written as a union of minterms. These

minterms are disjoint. However, because of the existing

partial order relation some of the minterms are always

empty, as for instance, one in which both c1 and ¬c2 appear,

and c1 subconcept-of c2.

Fig. 6 shows all the minterms for a small hierarchy. Most

of the minterms are empty, only 8 out of 32 having a

meaningful interpretation, as the right hand side of the figure

R

A

I1+ I2+

B

C D E F

I3-I4+

T1

R

A

I1+ I2+

B

C D F

I3- I4+

T2

E

Figure 5. The generalization hierarchy with the target

concept.

R

A

I1+ I2+

B

C D E F

I3- I4+

R

A

I1+ I2+

B

C D E F

I3- I4+

R

C
D

F
++

+

E
A

B

-
Target 1

R

C
D

F
++

+

E
A

B

-
Target 2

Figure 4. Two potential target concepts.

R

A

C D

B R
B

A
D

C

R∩¬∩¬∩¬∩¬A ∩¬∩¬∩¬∩¬B ∩¬∩¬∩¬∩¬C ∩¬∩¬∩¬∩¬D

R∩∩∩∩A ∩¬∩¬∩¬∩¬B ∩¬∩¬∩¬∩¬C∩¬∩¬∩¬∩¬D

R∩∩∩∩A ∩¬∩¬∩¬∩¬B ∩∩∩∩C ∩¬∩¬∩¬∩¬D

R∩¬∩¬∩¬∩¬A ∩∩∩∩B ∩¬∩¬∩¬∩¬C ∩¬∩¬∩¬∩¬D

R∩∩∩∩A ∩∩∩∩B ∩¬∩¬∩¬∩¬C ∩¬∩¬∩¬∩¬D

R∩∩∩∩A ∩∩∩∩B ∩¬∩¬∩¬∩¬C ∩∩∩∩D

∅∅∅∅

R∩∩∩∩A ∩∩∩∩B ∩∩∩∩C ∩∩∩∩D

R∩∩∩∩A ∩∩∩∩B∩∩∩∩C ∩¬∩¬∩¬∩¬D

Figure 6. The minterms for a small hierarchy.

88 Mihai Boicu and Gheorghe Tecuci

shows. Each minterm will represent one of the disjoint areas

in the figure. If a concept appears in a non empty minterm

non-negated, all its superconcepts must also appear non-

negated. Therefore we may write D∩¬C instead of

R∩A∩B∩¬C∩D. Moreover, we may denote this minterm

with minterm(D), or mt(D) with the convention that D and

all its superconcepts appear in the minterm non-negated, and

all the other concepts appear negated.

Definition: For a list of concepts c1, c2... cn that are not

hierarchically connected (i.e. none of them is a subconcept

of another) we denote with mt(c1, c2... cn) the minterm for

which these concepts and all their superconcepts appear non-

negated, and all the other concepts appear negated.

With this convention the minterms from Fig. 6 may be

rewritten as in Fig. 7.

The semantics of concepts may further reduce the number

of non-empty minterms. Consider, for example, assistant-

professor, associate-professor∈ Concepts. Based on their

semantics we know that assistant-professor ∩ associate-

professor = ∅. All the minterms containing both assistant-

professor and associate-professor not negated will be empty.

Fig. 8 shows how the generalization hierarchy from the

bottom-left side is extended to a significantly larger

hierarchy. This hierarchy contains all the expressions from

E(Concepts). Notice that it offers more expressiveness than

the initial hierarchy, while still using the same initial

concepts. The learning method presented in this paper is

based on this extended hierarchy.

C. Generalization hierarchy of objects

A generalization hierarchy of objects contains, in addition

to a generalization hierarchy of concepts, some of the

concepts’ instances and their hierarchical relations.

Definition: A generalization hierarchy of objects is a

structure GH(Concepts, root-concept, subconcept-of,

Instances, instance-of), that satisfies the following

properties:

• GH(Concepts, Root-Concept, subconcept-of) is a

generalization hierarchy of concepts.

• Instances is the set of all known instances in the

hierarchy. Examples of instances from Fig. 1 are Mark-

White and George-Mason-University.

• instance-of is a relation over Instances x Concepts, that

has the following properties:

1. is transitive in conjunction with subconcept-of, i.e. ∀

i∈Instances, c1, c2∈Concepts, i instance-of c1

subconcept-of c2 ⇒ i instance-of c2;

2. is complete over Instances, i.e. ∀ i∈Instances, ∃

c∈Concepts, i instance-of c.

Lemma: All instances are in the relation instance-of with

the root-concept.

A very important aspect of the instances is that not all of

them are defined in a given generalization hierarchy of

objects. Therefore a concept will not be equivalent with the

set of all its instances defined at a particular time in the

generalization hierarchy.

Definition: The relation direct-instance-of is defined by:

i direct-instance-of c if and only if i instance-of c and there

is no concept c' such that i instance-of c' subconcept-of c.

di(C) represents all known direct instances of C.

A minterm of a concept C represents all possible direct

instances of C (i.e. not only the ones present in the

hierarchy) that have no other direct superconcept. Also:

U
ConceptOfdirectSubCS

SCCtermnmi \)(⊂

Notice that mt(c1, c2,... cn) has an intuitive interpretation

as representing all the possible common direct instances of

the concepts c1, c2... cn.

Lemma: The minimal concept from E(Concepts) that

covers an instance i is mt(c1, c2... cn) where c1, c2... cn are all

the direct superconcepts of the instance i. We will denote

this by minC(i).

In the following sections we will denote with GHT the

extension with the target T of the generalization hierarchy of

concepts. Similarly, we will denote with E(Concepts)∪{T}

the extension with T of the generalization hierarchy

E(Concepts).

IV. Target’s best approximation

A. Partial order relation for target approximations

There are many possible approximations of a target

R

A

C D

B R
B

A
D

C

mt (R)

mt (A)

mt (C)

mt (B)

mt (A,B)

mt (D)

∅∅∅∅

mt (C,D)

mt (B,C)

Figure 7. The minterms from Fig. 6 in short notation.

R

A

I1 I2

B

A =

mt(A)∪∪∪∪mt(A,B)

mt(A) mt(A,B) mt(B)

∅∅∅∅

I2

mt(A)∪∪∪∪mt(B)

mt(R)

mt(R)∪∪∪∪mt(B)mt(R)∪∪∪∪mt(A) mt(R)∪∪∪∪mt(A,B)

I1

mt(R)∪∪∪∪mt(A) ∪∪∪∪mt(B) mt(R)∪∪∪∪mt(A) ∪∪∪∪mt(A,B) mt(R)∪∪∪∪mt(B) ∪∪∪∪mt(A,B) mt(A)∪∪∪∪mt(B) ∪∪∪∪mt(A,B)

B =

mt(B)∪∪∪∪mt(A,B)

R =

mt(R)∪∪∪∪mt(A)∪∪∪∪mt(B)∪∪∪∪mt(A,B) mt(X)=minterm(X)

Figure 8. The extension of a small hierarchy.

Learning Best Concept Approximations from Examples 89

concept in E(Concepts). For example, some of the

approximations for T2 in Fig. 5 are: C, D, C∪D, mt(F),

A∪B.

In order to be able to compare how good the

approximations are we will define a partial order relation

between different approximations of a target concept.

Although, there might be several criteria for comparing the

approximations all of them must somehow express how well

the approximations overlap the target concept. Because any

approximation TA will only partially overlap the target T, the

following definitions identify two important sets of

instances.

Definition: The negative exceptions from the point of

view of the approximation TA of a target concept T are the

elements in the approximation that are not in the target, i.e.

Negative-exceptionsT(TA)=TA\T.

Definition: The positive exceptions from the point of

view of the approximation TA of a target concept T are the

elements in the target that are not in the approximation, i.e.

Positive-exceptionsT(TA)=T\TA.

Notice that we consider only the instances that are

represented in the hierarchy. Therefore, in Fig. 5, for the

approximation B of T2, I3 is a negative exception and I1 is a

positive exception.

Notice that, together, the positive and the negative

exceptions characterize the overlap between the target

concept and an approximation. Therefore we will define a

partial order relation between approximations based on these

sets of exceptions.

Definition: An approximation TA1 of the target concept T

is better than (or equally good as) an approximation TA2 if

and only if Negative-exceptionsT(TA1)⊆ Negative-

exceptionsT(TA2) and Positive-exceptionsT(TA1)⊆ Positive-

exceptionsT(TA2)

Two approximations are equally good if and only if they

generate the same positive and negative exceptions.

For example, in Fig. 5 the following order relations hold:

C∪D is a better approximation of T2 than A, because C∪D

will have the same positive exceptions as A (I4+), but has no

negative exceptions. However A has I3 as negative

exception. There is no order relation between B and F as

approximations of T2. Because F⊂B, Positive-

exceptions(B)⊆ Positive-exceptions(F). Notice also that I2 is

a positive exception for F, but not for B. Therefore, we

obtain Positive-exceptions(B)⊂Positive-exceptions(F).

Similarly, Negative-exceptions(F)⊆ Negative-exceptions(B).

Because I3 is a negative exception for B, but not for F, we

obtain Negative-exceptions(F)⊂Negative-exceptions(B).

The definition of a better approximation is mathematically

justified by the fact that the errors made by a worse

approximation always include the errors made by a better

approximation. However, a disadvantage of this definition is

that it is very computationally expensive, being based on an

exhaustive enumeration of the instances of the target

concept. There are many other partial order relations that are

easier to use. For instance, one may consider the weighted

sum of the number of the positive exceptions and the number

of the negative exceptions known at some particular

moment. However, our definition has a significant

advantage, providing a necessary condition that any other

partial order relation must satisfy, as stated in following

lemma.

Lemma: An approximation that is better in our selected

partial order relation must be better in any other partial order

relation that is based on a measure of overlap between the

target and the approximation. Therefore, any property which

holds for our selected partial order relation will also hold for

any other partial order relation.

B. The lower approximation of the target concept

In this section we will study approximations that are

always included into the target concept.

Definition: An approximation TA is a conservative

approximation of the target concept T if TA is included into

T.

Lemma: An approximation TA of the target concept T has

the following properties:

• TA is a conservative approximation if and only if it does

not generate negative exceptions;

• a conservative approximation TA ≠ T always generates

positive exceptions.

In the following we will construct the best conservative

approximation of the target, called target's lower

approximation, and show some of its properties.

Definition: The target's lower approximation, TLA, is the

union of all the subconcepts of the target from E(Concepts):

U
UTConceptsEinTOfsubconceptS

LA ST
)(

=

Lemma: The following properties hold:

• TLA is a conservative approximation,

• TLA is the only direct subconcept of T in the

E(Concepts)∪{T}.

• Any other conservative approximation of T is a

subconcept of (i.e. it is included into) TLA.

• TLA is the best conservative approximation of the target

concept T in E(Concepts).

For computational and learning reasons we will divide the

lower approximation into two parts: a disjunction of

concepts from the initial hierarchy of concepts (TLA-FC) and a

disjunction of the remaining minterms (TLA-MT).

Lemma: TLA may be decomposed in two disjoint sets, as

shown in the following equations:

MTLAFCLALA TTT −−= U

U
GHTinTonceptOfdirectSubcS

FCLA ST =−

U
GHTinTMTMGHTinTofntermmiM

MTLA

FCLA

MT
⊂⊄

−

−

=
,,

90 Mihai Boicu and Gheorghe Tecuci

For the two target concepts considered in Fig. 4 and Fig. 5

their respective lower approximations are shown in Fig. 9.

For the hierarchy from the left hand side of Fig. 5 T1LA is

empty. This situation always happens when the target

concept is added as a terminal concept in the existing

generalization hierarchy. In such a case there is no other

conservative approximation for the target concept. In the

hierarchy from the right hand side of Fig. 5, T2LA=C∪D.

There are other possible conservative approximations: C, D

and the empty set. All of them are included into the best

conservative approximation, which is T2LA.

C. The upper approximation of the target concept

In this section we will study the target's approximations

that always include the target concept.

Definition: An approximation TA is a complete-covering

approximation of the target concept T if T is included into

TA.

Lemma: An approximation TA of the target concept T has

following properties:

• TA is a complete-covering approximation if and only if it

does not generate positive exceptions.

• A complete-covering approximation TA≠T always

generates negative exceptions.

In the following we will construct the best complete-

covering approximation of the target, called target's upper

approximation, and show some of its properties.

Definition: The target's upper approximation, TUA, is the

intersection of all superconcepts of the target T from

E(Concepts):

I
TConceptsEinTOfperconceptsuS

UA ST
∪

=
)(

Lemma: The following properties hold:

• TUA is a complete-covering approximation.

• TUA is the only direct superconcept of T in the

E(Concepts)∪{T}.

• Any other complete-covering approximation of T is a

superconcept of TUA.

• TUA is the best complete-covering approximation of the

target concept T from E(Concepts).

Lemma: TUA may be decomposed in two disjoint sets, as

shown in the following equations:

MTUALAUA TTT −= U

U
UTConceptsEinTMTMTofntermmiM

MTUA

LA

MT
)(,, Φ≠∩⊄

− =

For the two target concepts considered in Fig. 4 and Fig. 5

the corresponding target's upper approximations are shown

in Fig. 9. For the hierarchy from the left hand side of the Fig.

5 T1UA = mt(C)∪mt(D,E)∪mt(F). In the hierarchy from the

right hand side of the Fig. 5 T2UA=C∪D∪mt(F). There are

other possible complete-covering approximations: C∪D∪F,

A∪B, R. Each of them includes the best complete-covering

approximation T2UA.

D. The version space of target's best approximations

We will consider a special version space bounded by TLA

and TUA. This space will contain all the concepts C from

E(Concepts) for which TLA ⊂ C ⊂ TUA. Fig. 10 shows the

version spaces of the best approximations for the previous

targets: T1 and T2. Not all the concepts from E(Concepts)

are shown but only the ones from these version spaces and

the original generalization hierarchy. The concepts from

these version spaces have a darker background.

For a given target concept, this version space is called the

version space of the target's best approximations because it

contains all the best approximations of the target for any

possible order relation considered, as will result from the

following theorem.

The target's best approximation theorem: For any

approximation TA of the target concept T there is an as good

as or a better approximation than TA in the version space

R

A

I1+ I2+

B

C F

I3-I4+

T1

R

A

I1+ I2+

B

C D E

F

I3-

I4+

T2

∅∅∅∅ T1LA

mt(C)∪∪∪∪mt(D,E)∪∪∪∪mt(F)

T1UA

mt(C) mt(D,E)

D

mt(F)

E

C ∪∪∪∪ D

C∪∪∪∪D∪∪∪∪mt(F)

mt(F)T2LA

T2UA

Figure 9. The lower and upper approximations for two target

concepts.

R

A B

C F

T1

R

A

I1+ I2+

B

C D E

F

I3-

I4+

T2

∅∅∅∅ T1LA

mt(C)∪∪∪∪mt(D,E)∪∪∪∪mt(F)

T1UA

mt(C) mt(D,E)

D

mt(F)

E C ∪∪∪∪ D

C∪∪∪∪D∪∪∪∪mt(F)

mt(F)T2LA

T2UA

mt(C)∪∪∪∪mt(D,E) mt(C)∪∪∪∪mt(F) mt(D,E)∪∪∪∪mt(F)

Figure 10. Target’s best approximation version space.

Figure 11. The target’s best approximation theorem.

Learning Best Concept Approximations from Examples 91

bounded by TLA and TUA in E(Concepts).

Proof: Let di(T)=T\TLA representing the direct instances of

T in E(Concepts). Let I1= TA ∩ di(T), representing the direct

instances of T covered by TA. Let,












=

∈

UU

1

)(1

Ii

LA inCmiTT

We will show that T1 is an approximation as good as or

better than TA. It is clear that T1 is included into the version

space bounded by TLA and TUA (because TLA ⊆ T1 ⊆ TUA).

Let us compute the positive exceptions and the negative

exceptions of T1: PET1=di(T)\I1

TinCmiNE
Ii

T \)(
1

1












=

∈

U

Fig. 11 illustrates the concepts used in this theorem. The

small squares represent the minterms. All the concepts from

E(Concepts) must be formed by a union of minterms. The

left hand side represents TA and the right hand side T1.

Let us compare the positive exceptions of TA with the

positive exception of T1. By definition (di(T)\I1)∩TA=∅, and

(di(T)\I1)⊂T. Therefore (di(T)\I1) are positive exceptions of

TA, i.e. (di(T)\I1)⊆PETA. Moreover PET1=di(T)\I1. Therefore

PET1⊆ PETA.

Regarding the negative exceptions we have that I1⊂TA,

and I1⊂T. However, the instances from I1 must be introduced

in any approximation by their corresponding minterms

minC(i), which will conclude that

A

Ii

T)i(minC

1

⊂












∈

U
.

Therefore, the instances that do not belong to T from this

union are negative exceptions for TA:

TA

Ii

NET\)i(minC

1

⊆












∈

U
.

Moreover

T\)i(minCNE

1Ii

1T












=

∈

U
.

Therefore: NET1⊆ NETA.

Because PET1⊆ PETA and NET1⊆ NETA the approximation

T1 will be better than or as good as TA. QED.

This result is very important because focuses the goal of

the learning algorithm when the target concept is not

represented in the generalization hierarchy. If the target

concept is represented in the hierarchy then the learning

algorithm must find it. If the target concept is not in the

hierarchy, then the learning algorithm must converge toward

one of the target approximations belonging to the version

space bounded by TLA and TUA in E(Concepts).

However, a better approach is to have a learning

algorithm that will try to determine the version space of the

target's best approximations. In order to determine this

version space it is enough to determine the version space

bounds TLA and TUA. Any other element in the version space

can be easily constructed based on them. In the next section

we will present a method to learn the target's lower

approximation and the target's upper approximation.

V. Learning the lower and the upper

approximations of the target concept

A. Concepts’ support from examples

As indicated in Table 1, the target concept T, or an

approximation of it, is incrementally learned from a

sequence of instances i
1
, i

2
... i

n
 classified either as positive

examples (i.e., covered by the target concept) or as negative

examples (i.e., not covered by the target concept).

Definition: We denote with PE
n
 the set of positive

examples, PE
n
={i

k
,k≤n | type-of(i

k
)=positive}.

Definition: We denote with NE
n
 the set of negative

examples, NE
n
={i

k
,k≤n| type-of(i

k
)=negative}.

A positive example which is an instance of a concept C1

from the generalization hierarchy will support the

assumption that C1 is a part of the target. By contrast, a

negative example which is an instance of a concept C2 will

support the assumption that C2 is not a part of the target.

Using the instance-of relations corresponding to the known

examples of the target concept, one can classify the concepts

from the generalization hierarchy, as indicated by the

following definitions and illustrated in Fig. 12.

Definition: A direct positive concept is a concept that

covers at least one positive example and does not cover any

negative example, such as C01 and C12 in Fig. 12.

Definition: A direct negative concept is a concept that

covers at least one negative example and does not cover any

positive example, such as C03 and C14 in Fig. 12.

Definition: A direct irrelevant concept is a concept that

covers both a positive example and a negative example, such

as R and C02 in Fig. 12.

Direct support

R

C01

I1+ I2-

C02

C11 C12

DP

DI

C03

C13 C14 C15

DI

DU

DN

DNDP DU DU

C DP – Direct positive concept

C DN – Direct negative concept

C DI – Direct irrelevant concept

C DU – Direct unclassified concept

C21
DU

Indirect support

R

C01

I1+ I2-

C02

C11 C12

C03

C13 C14 C15

IP IU IN

C21
II

C IP – Indirect positive concept

C IN – Indirect negative concept

C II – Indirect irrelevant concept

C IU – Indirect unclassified concept

Figure 12. Concept classification based on instances support.

92 Mihai Boicu and Gheorghe Tecuci

Definition: A direct unclassified concept is a concept

that does not cover any positive example and any negative

example, such as C11, C13, C15 and C21 in Fig. 12.

The direct unclassified concepts may be further classified

based on their indirect support received from the direct

positive and negative concepts.

Definition: An indirect positive concept is a direct

unclassified concept that has a direct positive superconcept

and no direct negative superconcept, such as C11 in Fig. 12.

Definition: An indirect negative concept is a direct

unclassified concept that has a direct negative superconcept

and no direct positive superconcept, such as C15 in Fig. 12.

Definition: An indirect irrelevant concept is a direct

unclassified concept that has both direct positive

superconcepts and direct negative superconcepts, such as

C21.

Definition: An indirect unclassified concept is a direct

unclassified concept that has neither a direct positive

superconcept nor a direct negative superconcept, such as

C13.

As shown in the previous section, the lower

approximation of the target concept T is TLA=TLA-FC∪TLA-MT.

We will divide the learning of TLA into learning its two

disjoint parts TLA-FC and TLA-MT. We will first present

methods to learn TLA-FC. By definition, TLA-FC is the union of

direct subconcepts of T in GHT. Because we do not know

the direct subconcepts of T we will try to determine all the

plausible candidates.

Because TLA must not have negative exceptions it must not

cover direct negative concepts or direct irrelevant concepts.

Therefore TLA will always be expressed with direct positive

concepts and direct unclassified concepts. Moreover, any

union of direct positive and direct unclassified concepts

from GH (which are not hierarchically connected) will be a

plausible candidate for TLA-FC. We will construct a version

space with all these plausible candidates, as described in the

next section.

B. The version space for TLA-FC candidates

Let us assume that we have k examples i
1
, i

2
... i

k
 of the

target concept. We may accordingly classify the concepts

from GH. This classification will evolve as new examples

will be received.

Let us first look at the direct unclassified concepts. All the

subconcepts of a direct unclassified concept will also be

direct unclassified concepts. Therefore the most general

direct unclassified concepts will determine an upper bound

for the set of all direct unclassified concepts. Let UC
k
UB

denote the upper bound of all the direct unclassified

concepts.

A direct positive concept will have all its subconcepts

either direct positive concepts or direct unclassified

concepts. The set of the most general direct positive

concepts will be an upper bound for all the direct positive

concepts, but will also cover some direct unclassified

concepts. Let PC
k
UB denote the upper bound of all the direct

positive concepts.

Because our goal is to approximate both the unclassified

and the positive concepts the fact that the concepts from

PC
k
UB cover also unclassified concepts does not create any

problem. These two bounds contain distinct concepts but

they generally cover common instances. Their union

UC
k
UB∪ PC

k
UB represents the upper bound of the concepts

that are either direct positive or direct unclassified.

We use of the following notation where S is a set of sets:

U U
SA

AS
∈

=

Lemma: T
k
LA-FC-UB=∪ (UC

k
UB∪ PC

k
UB) is an upper bound

of the candidates for TLA-FC in E(Concepts).

Proof: Any union of concepts from GH covered by

∪(UC
k
UB∪ PC

k
UB) is a candidate for TLA-FC because it

contains concepts from the original generalization hierarchy,

and does not cover any known negative example. Moreover,

the lower approximation TLA-FC must be included in this set,

because all other concepts from GH already cover a negative

example and thus cannot be in the union of TLA-FC.

Lemma: T
k
LA-FC-LB=∅ is a lower bound of the candidates

for TLA-FC.

Proof: For TLA-FC the empty set is a candidate until all

possible examples are used, because there may always be a

negative example under each concept from the union T
k
LA-FC-

UB. Real world concepts have very many instances, possibly

infinite. Therefore for such real situations we will not use all

the examples and T
k
LA-FC-LB is a lower bound of the

candidates.

Lemma: The version space of the candidates for TLA-FC,

after k examples are given, denoted with VS(T
k
LA-FC), is

bounded by T
k
LA-FC-LB=∅ as the lower bound and

T
k
LA-FC-UB=∪ (UC

k
UB∪ PC

k
UB) as the upper bound.

Considering the target concept T2 from the previously

given example (see Fig. 9) we obtain the following sequence

of bounds, as new examples are classified: T
1
LA-FC-UB=R,

T
2
LA-FC-UB=R, T

3
LA-FC-UB=C∪D∪F, T

4
LA-FC-UB= C∪D∪F,

T
5
LA-FC-UB= C∪D. The lower bound T

k
LA-FC-LB is the empty

set at each of the previous steps. Fig. 13 shows in a darker

color the direct positive and the direct unclassified concepts

as new instances are classified.

Theorem of monotonic convergence to TLA-FC: The more

R

A

I1+ I2+

B

E F

I3- I4+ I5-

R

A

I1+ I2+

B

E

I3- I4+

R

A

I1+ I2+

B

C D E F C D F C D

Figure 13. Learning the TLA-FC.

Learning Best Concept Approximations from Examples 93

examples are used the smaller the version space of the

TLA-FC candidates becomes, i.e. for any number of examples

k>0, TLA-FC⊆T
k+1

LA-FC-UB⊆T
k
LA-FC-UB.

Proof: Let us assume that the new example is positive.

The superconcepts of this example will change their status as

follow: the negative concepts will become irrelevant; the

irrelevant concepts will remain irrelevant; the positive

concepts will remain positive; the unclassified concepts will

become positive. Therefore T
k+1

LA-FC-UB=T
k
LA-FC-UB. Now let

us assume that the new example is negative. The previously

negative and irrelevant concepts which are superconcepts of

this example will remain the same. However the previously

neutral superconcepts will become negative and the

previously positive superconcepts will become irrelevant.

Both of these types will be removed from T
k
LA-FC-UB.

Therefore the upper bound will be specialized covering

fewer concepts, i.e. T
k+1

LA-FC-UB⊂T
k
LA-FC-UB. QED

This theorem is very important because it shows that this

version space monotonically converges toward TLA-FC.

Moreover, we have proved that only negative examples

influence the size of this version space.

C. The plausible version space for TLA-MT candidates

The learning of TLA-MT and TUA-MT is strongly correlated

with the learned expression of TLA-FC, because both of them

add some minterms to it. Given TLA-FC, for each positive

example not covered by TLA-FC, the minterm that contains

this positive example (i.e. minC(i)) is added to TLA-MT, if it

does not cover any negative example, and to TUA-MT

otherwise.

However, there are many plausible candidates for both

TLA-MT and TUA-MT. For TLA-MT any minterm not included into

TLA-FC that does not cover any negative example may be part

of a plausible candidate. For TUA-MT any minterm not

included into TLA-FC may be part of a plausible candidate.

Let us first analyze the possible candidates for TLA-MT for a

fixed value of TLA-FC, denoted with T
k
LA-FC.

Lemma: The version space of the candidates for TLA-MT is

the set VS(T
k
LA-MT):













⊄∈∀∧

∅=∧∅=
∈ −

CCConceptsC

NECTC
ConceptsEC

kk

FCLA

11 ,
)(

II

The lower bound of this version space is the empty set, and

the upper bound contains the most general of them. This

version space will decrease as T
k
LA-FC increases. However

this version space contains a huge number of possible

candidates and it will decrease very slowly during learning,

requiring a very large number of negative examples.

Therefore the use of this version space for learning will be

non operational.

One way to workaround this problem is to adopt a more

conservative condition for a plausible candidate, one that

will offer a smaller but more meaningful version space. By

definition TLA-MT is the union of minterms included into the

target concept. We may consider that a minterm must cover

at least a known positive example and must not cover any

known negative example in order to be considered as part of

this union, as indicated in the following definition.

Definition: We denote with LAPM
k
 the plausible

minterms for the lower approximation:









∅=∩∧∅≠∩
=

kk

k

NEMPEM

ConceptsEinntermmiM
LAPM

|)(

In this case we will obtain the following plausible version

space (named plausible because it no longer contains all

possible candidates but only the most plausible ones):

Definition: We denote with PVS(T
k
LA-MT) the plausible

version space for T
k
LA-MT with candidates containing only

minterms from LAPM
k
:

{ }








⊄∈⊂= −

∈

−

k

FCLA

k

PM

k

MTLA TM|LAPMMP|M)T(PVS U

 Lemma: PVS(T
k
LA-MT) is bounded by the following

plausible lower bound and plausible upper bound:

T
k
LA-MT-PLB=∅

U
∅=∩=∈∃

−−

−

=
kk

FCLA
k NEMiCMTPEi

k

PUBMTLA MT
),(min,\

One may adopt another condition in order to construct the

plausible version space. However, the one considered above

is based on the intuition that a very specific concept (in our

case a minterm) that is supported by some positive examples

and is not contradicted by any known negative example is

very likely to be a part of the target concept.

Lemma: Let us denote with T
k
LA-MT-CUB the T

k
LA-MT-PUB that

correspond to T
k
LA-FC-UB. For any selection of T

k
LA-FC,

T
k
LA-MT-CUB is always included into the T

k
LA-MT-PUB. It

represents a constant part that must appear in all plausible

upper bounds.

Lemma: We have the following properties

T
k
LA-MT-CUB is always between ∅ and TLA-MT∪ TUA-MT

T
k
LA-MT-CUB∩ TLA-MT ⊆ T

k+1
LA-MT-CUB∩ TLA-MT

Theorem of oscillatory convergence to TLA-MT: T
k
LA-MT-

CUB has an oscillatory convergence toward TLA-MT being

bounded by T
k-1

LA-MT-CUB∩ TLA-MT and by TLA-MT∪ TUA-MT

These results are important because they show that T
k
LA-

MT-CUB is a good plausible candidate for TLA-MT. The learning

method proposed will be based on it.

Fig. 14 shows a series of examples for a target T3 that is

R

A

I3+ I1+

B

E F

I2- I4+ I5-

R

A

I3+ I1+

B

E

I2- I4+

R

A

I1+

B

C D E F C D F C D

I6-

Figure 14. A series of examples for a target concept T3.

94 Mihai Boicu and Gheorghe Tecuci

placed in E(Concepts) between mt(C) and mt(C) ∪ mt(D,E)

∪ mt(F). Therefore T3LA-MT=mt(C).

Table 2 shows how TLA-MT is learned for the target T3.

Notice the oscillatory convergence of T
k
LA-MT-CUB.

Table 2. Learning of TLA-MT.

D. The version space of TUA-MT candidates

Let us now analyze the possible candidates for T
k
UA-MT.

Notice that, in order to compute T
k
UA-MT, we need to know

the values for both T
k
LA-FC and T

k
LA-MT. We consider fixed

values of T
k
LA-FC and T

k
LA-MT, which implies a fixed value for

T
k
LA. TUA-MT is the union of minterms that are only partially

covered by the target concept. Therefore the minterms that

cover both positive and negative examples must be included

into T
k
UA-MT.

Definition: The set of minterms which are partially

covered by the target concept, determined after first k

examples, is denoted by:









∅≠∩∧∅≠∩
=

kk

k

NEMPEM

ConceptsEinntermmiM
PCM

|)(

Lemma: The version space for T
k
UA-MT is:









⊂∧∅=∈=
∈

− UI
kPCMM

k

LA

k

MTUA CMTC|)Concepts(EC)T(VS

Lemma: We consider the target lower approximation as

being T
k
LA. The version space VS(T

k
UA-MT) is bounded by:

UU U
k

LA
kk TMLAPMMPCMM

k

LBMTUA MMT
⊄∧∈∈

−− =

k

LA

k

UBMTUA TRT \=−−

As in the case of VS(T
k
LA-MT), this version space will

decrease very slowly. Therefore the upper bound is not

relevant for learning. However the lower bound will

accumulate the minterms that must be in T
k
UA-MT and is

relevant for learning.

Lemma: Let

U
kPCMM

k

CLBMTUA MT
∈

−− =

.

For any selection of T
k
LA-FC and T

k
LA-MT, T

k
UA-MT-CLB is

always included into the T
k
UA-MT-LB. It represents a constant

part that must appear in all plausible lower bounds.

Lemma: We have the following properties

T
k
UA-MT-CLB is always between ∅ and TUA-MT

T
k
UA-MT-CLB ⊆ T

k+1
UA-MT-CLB

Theorem: T
k
UA-MT-CLB has a monotonic convergence

toward TUA-MT

These results are important because they show that T
k
UA-

MT-CLB is a good plausible candidate for TUA-MT. The learning

method proposed will be based on it.

Let us consider again the examples from Fig. 13. Table 3

shows how the bounds of the version spaces evolve as new

examples are used. Each row shows the bounds of the

version spaces for the indicated value of TLA-FC after the

example from the header was used. When TLA-FC has a value

between its lower and upper bound the lower bounds and the

upper bounds of the two version spaces have values between

the indicated values.

Table 3. Learning of TUA-MT

E. The learning algorithm

Based on the above analysis of the plausible candidates of

the target's lower and upper approximations we have

developed the algorithm from Table 4.

After k examples i
1
, i

2
... i

k
 the learned bounds are:

• T
k
LA-FC-UB=TLA-FC

• T
k
LA-MT-CUB=TLA-MT

• T
k
UA-MT-CLB=TUA-MT

To avoid storing all the examples, one keeps the minterms

that cover them together with their respective classification:

• Minterms covering only positive examples:

OPMT∪ TLA-MT

• Minterms covering both positive and negative examples:

TUA-MT

TUA=TLA∪∪∪∪TUA-MTTLA=TLA-FC∪∪∪∪TLA-MT

R\(mt(C)∪∪∪∪mt(D,E)∪∪∪∪mt(F))∅∅∅∅mt(C)∪∪∪∪mt(D,E)∪∪∪∪mt(F)

R\(C∪∪∪∪D ∪∪∪∪F)∅∅∅∅

R\(mt(C)∪∪∪∪mt(D,E))∅∅∅∅

R\(C∪∪∪∪D)mt(F)

R\(mt(C)∪∪∪∪mt(D,E))mt(F)

R\(C∪∪∪∪D ∪∪∪∪F)∅∅∅∅

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)

∅∅∅∅

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)

∅∅∅∅∅∅∅∅

R\(mt(C)∪∪∪∪mt(D,E))∅∅∅∅

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

CUB

∅∅∅∅

mt(C)

PUB

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

PLB

TLA-MT

∅∅∅∅∅∅∅∅

R\mt(C)∅∅∅∅

R\(C∪∪∪∪D)

R

R\(C∪∪∪∪D ∪∪∪∪F)

R

R\(C∪∪∪∪D ∪∪∪∪F)

R

∅∅∅∅

R

∅∅∅∅

R

UB

mt(F)

mt(C)∪∪∪∪mt(D,E)∪∪∪∪mt(F)

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)∪∪∪∪mt(F)

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)

∅∅∅∅

mt(C)

LB

TUA-MT
TLA-FC

UB=C∪∪∪∪D ∪∪∪∪F

∅∅∅∅

LB=∅∅∅∅

I4+

UB=C∪∪∪∪D ∪∪∪∪F

∅∅∅∅

LB=∅∅∅∅

I3-

UB=R

∅∅∅∅

LB=∅∅∅∅

I2+

I5-

I1+

CLB

UB=C∪∪∪∪D

mt(F)

LB=∅∅∅∅

∅∅∅∅

UB=R

LB=∅∅∅∅

TUA=TLA∪∪∪∪TUA-MTTLA=TLA-FC∪∪∪∪TLA-MT

R\(mt(C)∪∪∪∪mt(D,E)∪∪∪∪mt(F))∅∅∅∅mt(C)∪∪∪∪mt(D,E)∪∪∪∪mt(F)

R\(C∪∪∪∪D ∪∪∪∪F)∅∅∅∅

R\(mt(C)∪∪∪∪mt(D,E))∅∅∅∅

R\(C∪∪∪∪D)mt(F)

R\(mt(C)∪∪∪∪mt(D,E))mt(F)

R\(C∪∪∪∪D ∪∪∪∪F)∅∅∅∅

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)

∅∅∅∅

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)

∅∅∅∅∅∅∅∅

R\(mt(C)∪∪∪∪mt(D,E))∅∅∅∅

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

CUB

∅∅∅∅

mt(C)

PUB

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

∅∅∅∅

PLB

TLA-MT

∅∅∅∅∅∅∅∅

R\mt(C)∅∅∅∅

R\(C∪∪∪∪D)

R

R\(C∪∪∪∪D ∪∪∪∪F)

R

R\(C∪∪∪∪D ∪∪∪∪F)

R

∅∅∅∅

R

∅∅∅∅

R

UB

mt(F)

mt(C)∪∪∪∪mt(D,E)∪∪∪∪mt(F)

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)∪∪∪∪mt(F)

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)

∅∅∅∅

mt(C)∪∪∪∪mt(D,E)

∅∅∅∅

mt(C)

LB

TUA-MT
TLA-FC

UB=C∪∪∪∪D ∪∪∪∪F

∅∅∅∅

LB=∅∅∅∅

I4+

UB=C∪∪∪∪D ∪∪∪∪F

∅∅∅∅

LB=∅∅∅∅

I3-

UB=R

∅∅∅∅

LB=∅∅∅∅

I2+

I5-

I1+

CLB

UB=C∪∪∪∪D

mt(F)

LB=∅∅∅∅

∅∅∅∅

UB=R

LB=∅∅∅∅

∅∅∅∅∅∅∅∅C∪∪∪∪F
∅∅∅∅

mt(C)∪∪∪∪mt(F)∅∅∅∅∅∅∅∅
I4+

∅∅∅∅

∅∅∅∅

C∪∪∪∪F

C∪∪∪∪F

R

UBLB

mt(C)∅∅∅∅

mt(C)
mt(C)

∅∅∅∅∅∅∅∅
I6-

mt(C)∪∪∪∪mt(F)∅∅∅∅

mt(C)∪∪∪∪mt(F)
mt(C)∪∪∪∪mt(F)

∅∅∅∅∅∅∅∅
I5-

∅∅∅∅∅∅∅∅

mt(C)
∅∅∅∅

∅∅∅∅∅∅∅∅
I3+

∅∅∅∅∅∅∅∅

∅∅∅∅
∅∅∅∅

∅∅∅∅∅∅∅∅
I2-

∅∅∅∅∅∅∅∅

mt(D,E)
∅∅∅∅

∅∅∅∅∅∅∅∅
I1+

CUBPUBPLB

TLA-MTTLA-FC

∅∅∅∅∅∅∅∅C∪∪∪∪F
∅∅∅∅

mt(C)∪∪∪∪mt(F)∅∅∅∅∅∅∅∅
I4+

∅∅∅∅

∅∅∅∅

C∪∪∪∪F

C∪∪∪∪F

R

UBLB

mt(C)∅∅∅∅

mt(C)
mt(C)

∅∅∅∅∅∅∅∅
I6-

mt(C)∪∪∪∪mt(F)∅∅∅∅

mt(C)∪∪∪∪mt(F)
mt(C)∪∪∪∪mt(F)

∅∅∅∅∅∅∅∅
I5-

∅∅∅∅∅∅∅∅

mt(C)
∅∅∅∅

∅∅∅∅∅∅∅∅
I3+

∅∅∅∅∅∅∅∅

∅∅∅∅
∅∅∅∅

∅∅∅∅∅∅∅∅
I2-

∅∅∅∅∅∅∅∅

mt(D,E)
∅∅∅∅

∅∅∅∅∅∅∅∅
I1+

CUBPUBPLB

TLA-MTTLA-FC

Learning Best Concept Approximations from Examples 95

• Minterms covering only negative examples: ONMT

The bounds of a partially learned concept may be used in

problem solving to classify a new instance i. If the instance

is covered by any of the three disjoint sets (TLA-FC, TLA-

MT or TUA-MT) it will be considered as a plausible positive

example, otherwise it will be a plausible negative example.

However, the level of confidence in the classification is

different in each case, as follows:

• If i∈TLA-FC the instance is only covered by direct

positive or direct unclassified concepts. This case gives

the highest level of confidence that i is a positive

example.

• If i∈TLA-MT the instance is covered by irrelevant or

negative concepts, but its minterm does not contain any

negative example. In this case there is a lower level of

confidence that i is a positive example.

• If i∈TUA-MT the instance is covered by a minterm that

also covers a negative example. Therefore i might be

either a positive or negative example. This case gives the

lowest level of confidence that i is a positive example.

Table 4. The Learning algorithm

This classification of confidence levels justifies why we

are considering the plausibility condition for TLA-MT and the

constant part of the lower bound of TUA-MT. Because, during

problem solving the plausible candidates for TLA-MT and TUA-

MT are generating instances that have lower levels of

confidence of being positive examples. To minimize the

chances for error we consider only the most plausible

candidates for these parts.

The learning algorithm has the following strengths (as

demonstrated in the previous sections):

• T
k
LA-FC-UB(=TLA-FC) converges monotonically (through

successive specializations) toward the exact value of TLA-

FC

• T
k
LA-MT-CUB(=TLA-MT) converges oscillatorily toward the

exact value of TLA-MT but it is always bounded by T
k-1

LA-

MT-CUB∩ TLA-MT (as a generalization of it) and by TLA-

MT∪TUA-MT\T
k
UA-MT-CLB (as a specialization of it).

• T
k
UA-MT-CLB(=TUA-MT) converges monotonically

(through successive generalizations) toward the exact

value of TUA-MT

Therefore the algorithm converges almost monotonically

toward the lower and the upper approximations of the target.

The algorithm has also the following weaknesses:

T
k
LA-FC-UB generally covers also many negative examples

(because it is specialized toward the exact value). Therefore

its use in problem solving to classify new instances or to

generate positive examples leads to low confidence

solutions.

T
k
LA-FC-UB generally converges slowly toward TLA-FC

(because it also includes the unclassified concepts) and

requires a significant number of examples to reach the exact

value.

When specializing TLA-FC to no longer cover a negative

example, if some minterms from TLA-MT are no longer

covered by TLA-FC and these minterms do not yet cover a

positive example, they will no longer be covered by any of

the maintained sets. In this case there is no trivial way in

which the problem solving method may generate instances

under them in order to reconsider them. As a consequence,

the method may "loose" some minterms.

Another potential problem is the execution time that

depends on the representation of the generalization hierarchy

and of the concept bounds. However one may use an

optimized representation of the hierarchy to allow fast

computations, as described in [3].

VI. Related Research and Conclusions

The methods that are most related to the method presented

in this paper are those based on the version space

representation ([16], [14], [17], [1], and [2]), which are

discussed in the following.

A. The version space candidate elimination method

The roots of our method are in Mitchell’s candidate

elimination method [16] which had significantly advanced

the field of machine learning with a solid theoretical

treatment of the concept learning problem. However, the

applicability of the candidate elimination method to complex

real-world problems is very limited due to several factors.

The method assumes that the representation space is correct

Global Structures:

GH(Concepts, Instances, Root-Concept, subconcept-of, instance-of)

PVS(TLA-FC, TLA-MT, TUA-MT, OPMT, ONMT)

Initialization:

TLA-FC←Root-concept; TLA-MT←∅; TUA-MT←∅

OPMT←∅;the minterms that cover a positive example covered by TLA-FC

ONMT←∅;the minterms that cover a negative example and are not in TUA-MT

Classify-Positive-Example(pi∈∈∈∈Instances)

mt-pi←minC(pi) (the minterm that covers the positive example)

if pi covered by a concept from TLA-FC then

if mt-pi∉OPMT then add minterm mt-pi to OPMT

else if mt-pi∈ONMT then

add minterm mt-pi to TUA-MT

delete minterm mt-pi from ONMT

else if mt-pi∉TLA-MT and mt-pi∉TUA-MT then

add minterm mt-pi to TLA-MT

Classify-Negative-Example(ni∈∈∈∈Instances)

mt-ni←minC(ni) (the minterm that covers the negative example)

if ni covered by a concept from TLA-FC then

minimally specialize TLA-FC to no longer cover ni

if mt-ni∈OPMT then

delete mt-ni from OPMT

add mt-ni to TUA-MT

else
add mt-ni to ONMT

for each mt∈OPMT do

if mt not covered by TLA-FC then

delete mt from OPMT

add mt to TLA-MT

else if mt-ni∈TLA-MT then

delete mt-ni from TLA-MT

add mt-ni to TUA-MT

else if mt-ni∉TUA-MT and mt-ni∉ONMT then

add mt-ni to ONMT

96 Mihai Boicu and Gheorghe Tecuci

and complete, that the concept to be learned is in this space,

and that there are no errors in the input examples. If the

concept to be learned is not in this space, or if there are

errors in the examples, the method will fail. Moreover the

method suffers from the combinatorial explosion of the size

of the bounds of the version space.

B. Extensions of the version space method

In its original form, Mitchell’s candidate elimination

method learns conjunctive concepts only. Several

researchers have proposed extensions of the method so that

it can also learn disjunctive concepts. An important example

is the disjunctive version spaces method with delayed choice

of bias, proposed by Sebag [17]. Her main idea was to

search both for the target concept and for its negation (the

concept that best characterizes the negative examples) and to

consider, for each training example, the hypothesis space

that covers this example and does not cover its counter

examples. In order to decide on the classification of an

instance, the method searches for a neighbor hypothesis

space (positive or negative). The method allows noisy data

ignoring the first found counter-examples that contradict the

instance to be classified. It also avoids overgeneralization by

requiring at least M attributes to be satisfied by the instance

to be classified.

Both Sebag’s method and our method allow noisy data by

using a similar approach. For instance, in our method, we

can require that a minterm be considered irrelevant only if

both the number of covered positive examples, and the

number of covered negative examples are above a certain

threshold. However, in our method, the error may appear not

only in the example but also in the generalization hierarchy.

Sebag's method makes the assumption that a positive

example and a negative example can always be

discriminated in the hypothesis space. Our method allows

for exceptions, that is, for negative and positive examples

that cannot be distinguished in the current representation

space of the concepts. As in the case of Mitchell’s method,

Sebag’s method requires the target concept to be included in

the representation language, as opposed to our method which

can learn approximations of this concept.

Sebag’s method is also computationally expensive, being

proportional to the square of the number of examples. In our

method the comparison is done between all positive

examples and all negative examples at once, making the

method more efficient. More significantly, however, is the

fact that our method is based on a more complex

representation language with an incomplete generalization

hierarchy, while Sebag’s method uses a much simple feature-

vector representation. This makes our method applicable to

significantly more complex application domains.

C. The plausible version space method

The plausible version space method developed by Tecuci

[1] was a significant development of the version space

approach, making it applicable to complex real world

problems [2]. The method assumes an incomplete

representation space which can be extended with new

concepts during learning. This will increase the hypothesis

space and will require concept revision. The method may

learn an approximation of the target concept, when this is

not representable, and may learn concepts in the presence of

exceptions (e.g. covered negative examples). However, the

method does not guarantee the learning of the best

approximations of the target concept, the approximation

learned depends on the order of the examples, and the

convergence toward this approximation is oscillatory, not

monotonic.

The method presented in this paper removes the above

limitations. It learns the best approximations of the target

concept, minimizes the number of positive and negative

exceptions stored, and does not depend on the order of

examples. Moreover, it extends the representation of the

learned concept which can include conjunctions,

disjunctions and negations.

D. Conclusions and future research

The most important aspect of the presented method is that

it allows the learning of a version space containing the best

approximations of a target concept when the target is not

representable in the search space. The method has an almost

monotonic convergence toward the best approximations of

the bounds of the version space. Also, the learned concept

does not depend on the order of examples. These add to the

advantages already offered by the plausible version space

learning method, such as learning in an incomplete and

evolving representation space, and learning in the presence

of exceptions.

There are several natural extensions of the presented

method. One is to develop an optimized representation for

learning in order to allow efficient learning algorithms.

Another is to analyze the behavior of the method in the

context of an evolving and partially incorrect representation.

In this paper we have addressed the basic problem of

learning an approximation of a concept, from its positive and

negative examples, in the context of a generalization

hierarchy of concepts. However, the goal of a Disciple

agent, for which this method was developed, is to learn

complex concept expressions, such as the condition of the

task reduction rule from Fig. 3 (see [2] for a formal

description of such a concept). This condition is only

partially learned, and is defined by a plausible upper bound

(PUB) concept and a plausible lower bound (PLB) concept.

The PLB concept is the set of tuples (?O1,?O2, ?O3, ?O4,

?O5, ?O6) that satisfy the expression of the PUB concept.

That is, ?O1 should be a PhD advisor who has as employer

?O4 (which should be a university), and has as position ?O5

(which should be a tenured position). Moreover, ?O2 should

be a PhD student, and ?O3 should be Artificial Intelligence.

However, ?O1 should not be a PhD advisor who is likely to

Learning Best Concept Approximations from Examples 97

move to ?O6 (which is a university). A future research

direction is to integrate the presented method into Disciple’s

learning method. This will allow the type of a variable (e.g.

PhD advisor for ?O1) to be not just a concept from the

generalization hierarchy, but also a union of minterms. This

will very significantly increase the ability of Disciple to

learn complex problem solving rules from subject matter

experts, and therefore its practical applicability.

References

[1] G. Tecuci, “DISCIPLE: A Theory, Methodology and

System for Learning Expert Knowledge,” Ph.D.

dissertation, Univ. of Paris-South, Paris, France, 1988.

[2] G. Tecuci, BUILDING INTELLIGENT AGENTS: An

Apprenticeship Multistrategy Learning Theory,

Methodology, Tool and Case Studies. San Diego, CA:

Academic Press, 1998.

[3] M. Boicu, “Modeling and Learning with Incomplete

Knowledge,” Ph.D. dissertation, School of Inf. Tech.

and Eng., George Mason Univ., Fairfax, VA, 2002.

[4] G. Tecuci, M. Boicu, M. Bowman, and D. Marcu, “An

Innovative Application from the DARPA Knowledge

Bases Programs: Rapid Development of a Course of

Action Critiquer,” AI Magazine, vol. 22, pp. 43-61,

Feb., 2001.

[5] G. Tecuci, M. Boicu, D. Marcu, B. Stanescu, C. Boicu

and J. Comello, “Training and Using Disciple Agents: A

Case Study in the Military Center of Gravity Analysis

Domain,” AI Magazine, vol. 24, pp.51 – 68, April,

2002.

[6] G. Tecuci, M. Boicu, C. Ayers, D. Cammons, “Personal

Cognitive Assistants for Military Intelligence Analysis:

Mixed-Initiative Learning, Tutoring, and Problem

Solving,” in Proc. 1st Intern. Conf. Intelligence

Analysis, McLean, VA, 2005. Available:

https://analysis.mitre.org/proceedings/index.html

[7] B. G. Buchanan and D. C. Wilkins, Ed. Readings in

Knowledge Acquisition and Learning: Automating the

Construction and Improvement of Expert Systems, San

Francisco, CA: Morgan Kaufmann, 1993.

[8] N. J. Nilsson, Problem Solving Methods in Artificial

Intelligence, New York: McGraw-Hill, 1971.

[9] D. Fensel, Ontologies: A Silver Bullet for Knowledge

Management, Berlin: Springer-Verlag, 2000.

[10] B. Stanescu, C. Boicu, G. Balan, M. Barbulescu, M.

Boicu, G. Tecuci, “Ontologies for Learning Agents:

Problems, Solutions and Directions,” in Proc. IJCAI-03

Workshop on Ontologies and Distributed Systems,

Acapulco, Mexico: AAAI Press, 2003, pp. 75-82.

[11] M. Boicu, G. Tecuci, D. Marcu, M. Bowman, P. Shyr,

F. Ciucu, and C. Levcovici, “Disciple-COA: From

Agent Programming to Agent Teaching,” in Proc. of the

17th Int. Conf. on Machine Learning, Stanford,

California: Morgan Kaufman, 2000.

[12] G. Tecuci, M. Boicu, C. Boicu, D. Marcu, B. Stanescu,

M. Barbulescu, “The Disciple-RKF Learning and

Reasoning Agent”, Computational Intelligence, vol 21,

No. 4, 2005, pp 462-479.

[13] C. Boicu, G. Tecuci, M. Boicu, “Rule Refinement by

Domain Experts in Complex Knowledge Bases,” in

Proc. 20th Nat. Conf. on Artificial Intelligence,

Pittsburgh, PA, 2005.

[14] T. M. Mitchell, Machine Learning, New York:

McGraw-Hill Companies, 1997.

[15] B. A. Davey and H A. Priestley, Introduction to lattices

and order, Cambridge, NY: Cambridge University

Press, 1990.

[16] T. M. Mitchell. “Version spaces: An approach to

concept learning,” Ph.D. Dissertation, Elec. Eng. Dept.,

Stanford Univ., Stanford, CA, 1979.

[17] M. Sebag. “Delaying the Choice of Bias: A Disjunctive

Version Space Approach,” in Saitta, L. (Ed.) Machine

Learning – Proceedings of the 13th Int. Conf., San

Francisco, California: Morgan Kaufmann Publishers,

Inc, 1996, pp. 444-452.

Authors Biographies

Mihai Boicu is Research Assistant Professor and Associate Director of the

Learning Agents Center in the School of Information Technology and

Engineering of George Mason University. He received a License in

Informatics from the Bucharest University in 1995, and a Ph.D. in

Information Technology from George Mason University in 2003. His

domains of interest are knowledge representation, knowledge acquisition,

multistrategy learning and mixed-initiative reasoning with applications to

instructable agents. Dr. Boicu has published around 50 papers in these

areas and has received several awards and recognitions for his professional

activity, including the Outstanding Graduate Student Award from George

Mason University, the Deployed Application Award from the American

Association of Artificial Intelligence, two certificates of appreciation and

the centennial coin from the US Army War College.

Gheorghe Tecuci is Professor of Computer Science in the School of

Information Technology and Engineering and Director of the Learning

Agents Center at George Mason University. Professor Tecuci is also a

member of the Romanian Academy and former Chair of Artificial

Intelligence at the US Army War College. He received an M.S. degree in

Computer Science from the Polytechnic University of Bucharest in 1979,

and two Ph.D. degrees in Computer Science, from the University of Paris-

South and from the Polytechnic University of Bucharest, both in 1988. He

joined George Mason University in 1990. Dr. Tecuci has published over

150 papers and 6 books, including “Building Intelligent Agents: An

Apprenticeship Multistrategy Learning Theory, Methodology, Tool, and

Case Studies,” “Machine Learning: A Multistrategy Approach,” and

“Machine Learning and Knowledge Acquisition: Integrated Approaches.”

His research focuses on creating and applying a general theory of how

subject matter experts can directly teach automated agents how to solve

problems.

