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Abstract: This paper addresses the problem of learning the 

best approximation of a concept from examples, when the 

concept cannot be expressed in the learner’s representation 

language. It presents a method that determines the version 

space of the best approximations and demonstrates that for any 

given approximation of the target concept there is a better 

approximation in this version space. The method does not 

depend on the order of examples and has an almost monotonic 

convergence. This method was developed for the Disciple 

learning agent that can be taught by a subject matter expert 

how to perform complex problem solving tasks. 
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I. Introduction 

We are researching a general approach to the development 

of learning agents that can be taught directly by subject 

matter experts how to solve problems. This research resulted 

in the development of the Disciple theory, methodology and 

family of learning agent shells [1]-[3]. The expert teaches 

the Disciple agent in a way that is similar to how the expert 

would teach a person, by demonstrating and explaining the 

agent how to solve specific problems, and by supervising, 

correcting and explaining agent’s errors. 

The Disciple approach has already been applied to 

develop knowledge based agents in complex domains such 

as course of action critiquing [4], center of gravity 

determination [5] and intelligence analysis [6], proving to be 

a good solution to the knowledge acquisition bottleneck [7]. 

The problem-solving engine of a Disciple agent is based 

on the general task reduction paradigm [8]. In this paradigm, 

a problem solving task is successively reduced to simpler 

tasks. The solutions of the simplest tasks are found and then 

these solutions are successively combined until they produce 

the solution of the initial task. To exhibit such a behavior, 

the knowledge base of the Disciple agent is structured into 

an object ontology and a set of if-then problem solving rules. 

The object ontology is a hierarchical representation of the 

objects and types of objects from the application domain. It 

represents the different kinds of objects, the properties of 

each object, and the relationships existing between objects 

([9] and [10]). A fragment of the ontology of an agent that 

assists a student to select a PhD advisor is presented in 

Fig.1. 

 

The if-then problem solving rules are learned from the 

expert’s problem solving examples by using the object 

ontology as a generalization hierarchy ([11] and [12]). 

 

To illustrate the rule learning process consider how an 

expert may teach a Disciple agent how to help a student 

select a PhD advisor. The expert formulates an initial 

problem solving task, such as “Determine a PhD advisor for 

Task: Determine whether John Smith can be a PhD advisor for 
Tom Evan in Artificial Intelligence.

Subtask: Determine whether John Smith would be a good PhD

advisor for Tom Evan in Artificial Intelligence.

Question: Is John Smith likely to stay on the faculty of George

Mason University for the duration of Tom Evan’s dissertation? 
Answer: Yes, because John Smith has a tenured position.

 
 

Figure 2.  Task reduction example. 
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Figure 1.  Ontology fragment. 
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Tom Evan.” Then, using the task reduction paradigm, the 

expert successively reduces this task to simpler tasks, guided 

by questions and answers, as illustrated by the task reduction 

step from Fig. 2. 

From each such task reduction step, Disciple learns a 

general task reduction rule. The learned rules are used by 

Disciple in the task reduction process, and the critiques 

received from the expert guides their refinement. For 

instance, the rule learned from the above example is applied 

to “Determine whether Mark White can be a PhD advisor for 

Tom Evan in Artificial Intelligence.” However, the 

corresponding reduction is rejected by the expert because 

“Mark White is likely to move to Stanford University.” 

Consequently, Disciple adds an except-when condition to the 

rule which takes the form shown in Fig. 3. As illustrated in 

this figure, the rules learned by Disciple have an IF-THEN 

part that preserves the expert’s language from the example, a 

main applicability condition and, optionally, several except-

when conditions (which should not be satisfied to apply the 

rule). The conditions are partially learned, containing 

plausible upper and lower bounds for the acceptable values 

of the rule’s variables. Rule’s representative examples are 

also kept to help in its further refinement [13]. 

The applicability conditions of the learned rules aim to 

capture the complex concepts used by the subject matter 

expert. Often, these concepts are not expressible in the 

agent’s representation language where the correct instance of 

a variable (e.g. ?O1 in Fig. 3) is specified as being an 

instance of a concept from the object ontology (e.g. PhD 

advisor in Fig.1 and Fig.3), and having certain features (e.g. 

has-as-employer ?O4, and has-as-position ?O5).  

In this paper we describe an approach to capturing and 

representing the subtle and complex concepts of a subject 

matter expert. One idea of this approach is to significantly 

extend the generalization hierarchy and, implicitly, the 

representation language. Another idea is to develop methods 

for learning approximations of the concepts that cannot be 

expressed even in the extended representation language. 

The rest of this paper is organized as follows. Section 2 

defines the learning problem. Section 3 presents a 

refinement of the generalization hierarchy. Section 4 

presents the best approximation of a target concept, 

including “the target’s best approximation theorem.” Then 

section 5 presents a method for learning the upper and lower 

approximations of a target concept, and demonstrates several 

convergence theorems. Section 6 discusses related research 

and future directions. 

II. Learning Concept Approximations from 

Examples 

The learning problem discussed in this paper is presented 

in Table 1. This learning problem is a basic component of 

the complex problem of learning problem solving rules (such 

as the one from Fig.3) from specific examples of problem 

solving steps (such as the one from Fig.2).  

 

Table 1. Learning Concept Approximations From 

Examples. 

This problem is a generalization of the classical problem 

of incremental concept learning from examples [14], and 

reduces to it if the target concept C is included in the 

generalization hierarchy GH. However, the classical learning 

problem will fail when the target concept C is not part of 

GH. In such a case, the learning problem from Table 1 does 

not require the learning of the exact concept C, but its best 

approximations.To illustrate this learning problem, let us 

consider the generalization hierarchy from the top of Fig. 4. 

The sequence of positive and negative examples of the target 

concept is: I1(+), I2(+), I3(-), and I4 (+). None of the 

concepts from the generalization hierarchy in Fig. 4 covers 

all the positive examples, I1, I2, and I4, without covering the 

negative example I3.  The bottom part of Fig. 4 shows two 

possible views of the same hierarchy, where the concepts are 

Given: 

• A sequence of positive and negative examples 

(instances) of a target concept C. 

• A generalization hierarchy of concepts GH which may 

or may not include the target concept C. 

Determine: 

• Either the target concept C, which covers all the 

positive examples and none of the negative examples, 

if C is a concept from GH.  

• Or the best approximations of the target concept C, 

expressed with concepts from GH, if C is not included 

in GH. 

MAIN CONDITION

?O1  is     PUB (PhD_advisor)      PLB (PhD_advisor)
has_as_employer ?O4 
has_as_position ?O5 

?O2 is    PUB (person)                PLB (PhD_student)

?O3 is    PUB (research_area)    PLB (Artificial_Intelligence)
?O4 is    PUB (employer)            PLB (university)
?O5 is    PUB (position)              PLB (tenured_position)

EXCEPT WHEN CONDITION

?O1 is    PUB (person)               PLB (PhD_advisor)

is_likely_to_move_to ?O6
?O6 is    PUB (employer)           PLB (university)

IF: Determine whether ?O1 can be a PhD advisor for ?O2 in ?O3 

THEN: Determine whether ?O1 would be a good PhD advisor for 
?O2 in ?O3

Question: Is ?O1 likely to stay on the faculty of ?O4 for the 
duration of ?O2 's dissertation? 
Answer: Yes, because ?O1 has a ?O5 

Positive Example: (?O1=John_Smith ?O2=Tom_Evan
?O3=Artificial_Intelligence ?O4=George_Mason_University

?O5=tenured_position)
Negative Example: (?O1=Mark_White ?O2=Tom_Evan
?O3=Artificial_Intelligence ?O4=George_Mason_University
?O5=tenured_position ?O6=Stanford_University)

 
 

Figure 3.  Partially learned plausible version space rule. 
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represented as sets and the instances as points. Because the 

target concept cannot be any of the already represented 

concepts, it must be a new one, such as those indicated by 

dashed lines in the figure. The one from the left hand side is 

a target that does not contain any concept from hierarchy. 

The one from the right hand side is a target concept that 

includes the concepts C and D.   

 

    Fig. 5 shows how the two target concepts from the bottom 

of Fig. 4 can be introduced into the generalization hierarchy, 

based on their generalization relationships with the other 

concepts from the hierarchy. T1 can be introduced under the 

root concept as a terminal concept. T2 can be introduced as a 

subconcept of R and a superconcept of C and D.  

Thus, another result of the learning problem in Table 1 is 

the potential extension of the generalization hierarchy with 

new concepts, such as T1 or T2. 

III. Refinement of a Generalization Hierarchy 

A. Generalization hierarchy of concepts 

In this section we give a formal definition for the 

generalization hierarchy of concepts, as a partially ordered 

set, having the generalization relation as the order relation. 

Definition: A generalization hierarchy of concepts is a 

structure, GHC(Concepts, root-concept, subconcept-of) with 

the following properties: 

• Concepts is a finite, non-empty set of distinct elements, 

named concepts. A concept might be viewed as 

representing a set of elements named instances. 

Examples of concepts from Fig. 1 are: professor, student, 

person. 

• root-concept is an element from Concepts. We generally 

use the concept named object as the root-concept. 

• subconcept-of is a binary, strict partial order relation on 

the set Concepts (denoted also by ⊂) having root-

concept as the maximum element (i.e. any other concept 

is a subconcept of root-concept). An example is: student 

subconcept-of person (see Fig. 1). 

Definition: The relation direct-subconcept-of is defined 

by: c1 direct-subconcept-of c2 if and only if c1 subconcept-of 

c2 and there is no other concept c such that c1 subconcept-of 

c and c subconcept-of c2. 

B. The concepts' algebra 

We will extend the initial set of concepts by using the 

operations of union, intersection and negation, defined 

similarly with the set theory [3]. This extension will lead to a 

much more expressive language. 

Definition: The set E(Concepts) denotes the extension of 

the set Concepts under the operations: ∪, ∩, and ¬. 

Lemma: The extended relation subconcept-of (⊂) is a 

partial order relation on E(Concepts) having Root-Concept 

as a maximum element and ∅ as the minimum element. 

Lemma: LGHC(E(Concepts),∪,∩,⊂) is a complete lattice, 

having sup{x, y}= x∪y and inf{x, y}=x∩y.  

Lemma: LGHC(E(Concepts),∪,∩,¬, ∅,Root-Concept) is a 

Boolean algebra.  

Following the Boolean algebra theory [15], a minterm in 

the Boolean algebra LGHC is a conjunction of concepts and 

negated concepts: 

I
ConceptsCCorCist

C

C

t
∈¬ ,

 

The minterms are the bricks from which all the elements 

of E(Concepts) are constructed. Any element from 

E(Concepts) can be written as a union of minterms. These 

minterms are disjoint. However, because of the existing 

partial order relation some of the minterms are always 

empty, as for instance, one in which both c1 and ¬c2 appear, 

and c1 subconcept-of c2.  

 

Fig. 6 shows all the minterms for a small hierarchy. Most 

of the minterms are empty, only 8 out of 32 having a 

meaningful interpretation, as the right hand side of the figure 
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Figure 5. The generalization hierarchy with the target 

concept. 
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Figure 4.  Two potential target concepts. 
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Figure 6.  The minterms for a small hierarchy. 
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shows. Each minterm will represent one of the disjoint areas 

in the figure. If a concept appears in a non empty minterm 

non-negated, all its superconcepts must also appear non-

negated. Therefore we may write D∩¬C instead of 

R∩A∩B∩¬C∩D. Moreover, we may denote this minterm 

with minterm(D), or mt(D) with the convention that D and 

all its superconcepts appear in the minterm non-negated, and 

all the other concepts appear negated.  

 

Definition: For a list of concepts c1, c2... cn that are not 

hierarchically connected (i.e. none of them is a subconcept 

of another) we denote with mt(c1, c2... cn) the minterm for 

which these concepts and all their superconcepts appear non-

negated, and all the other concepts appear negated.  

With this convention the minterms from Fig. 6 may be 

rewritten as in Fig. 7.  

The semantics of concepts may further reduce the number 

of non-empty minterms. Consider, for example, assistant-

professor, associate-professor∈ Concepts. Based on their 

semantics we know that assistant-professor ∩ associate-

professor = ∅. All the minterms containing both assistant-

professor and associate-professor not negated will be empty. 

 

Fig. 8 shows how the generalization hierarchy from the 

bottom-left side is extended to a significantly larger 

hierarchy. This hierarchy contains all the expressions from 

E(Concepts). Notice that it offers more expressiveness than 

the initial hierarchy, while still using the same initial 

concepts. The learning method presented in this paper is 

based on this extended hierarchy. 

C. Generalization hierarchy of objects 

A generalization hierarchy of objects contains, in addition 

to a generalization hierarchy of concepts, some of the 

concepts’ instances and their hierarchical relations. 

Definition: A generalization hierarchy of objects is a 

structure GH(Concepts, root-concept, subconcept-of, 

Instances, instance-of), that satisfies the following 

properties: 

• GH(Concepts, Root-Concept, subconcept-of) is a 

generalization hierarchy of concepts. 

• Instances is the set of all known instances in the 

hierarchy. Examples of instances from Fig. 1 are Mark-

White and George-Mason-University. 

• instance-of is a relation over Instances x Concepts, that 

has the following properties: 

1. is transitive in conjunction with subconcept-of, i.e. ∀ 

i∈Instances, c1, c2∈Concepts, i instance-of c1 

subconcept-of c2 ⇒ i instance-of c2;  

2. is complete over Instances, i.e. ∀ i∈Instances, ∃ 

c∈Concepts, i instance-of c. 

Lemma: All instances are in the relation instance-of with 

the root-concept.  

A very important aspect of the instances is that not all of 

them are defined in a given generalization hierarchy of 

objects. Therefore a concept will not be equivalent with the 

set of all its instances defined at a particular time in the 

generalization hierarchy.  

Definition: The relation direct-instance-of is defined by: 

i direct-instance-of c if and only if i instance-of c and there 

is no concept c' such that i instance-of c' subconcept-of c. 

di(C) represents all known direct instances of C.  

A minterm of a concept C represents all possible direct 

instances of C (i.e. not only the ones present in the 

hierarchy) that have no other direct superconcept. Also: 

U
ConceptOfdirectSubCS

SCCtermnmi \)( ⊂  

Notice that mt(c1, c2,... cn) has an intuitive interpretation 

as representing all the possible common direct instances of 

the concepts c1, c2... cn.  

Lemma: The minimal concept from E(Concepts) that 

covers an instance i is mt(c1, c2... cn) where c1, c2... cn are all 

the direct superconcepts of the instance i. We will denote 

this by minC(i). 

In the following sections we will denote with GHT the 

extension with the target T of the generalization hierarchy of 

concepts. Similarly, we will denote with E(Concepts)∪{T} 

the extension with T of the generalization hierarchy 

E(Concepts). 

IV. Target’s best approximation 

A. Partial order relation for target approximations 

There are many possible approximations of a target 
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Figure 7.  The minterms from Fig. 6 in short notation. 
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Figure 8.  The extension of a small hierarchy. 
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concept in E(Concepts). For example, some of the 

approximations for T2 in Fig. 5 are: C, D, C∪D, mt(F), 

A∪B.  

In order to be able to compare how good the 

approximations are we will define a partial order relation 

between different approximations of a target concept. 

Although, there might be several criteria for comparing the 

approximations all of them must somehow express how well 

the approximations overlap the target concept. Because any 

approximation TA will only partially overlap the target T, the 

following definitions identify two important sets of 

instances. 

Definition: The negative exceptions from the point of 

view of the approximation TA of a target concept T are the 

elements in the approximation that are not in the target, i.e. 

Negative-exceptionsT(TA)=TA\T. 

Definition: The positive exceptions from the point of 

view of the approximation TA of a target concept T are the 

elements in the target that are not in the approximation, i.e. 

Positive-exceptionsT(TA)=T\TA.  

Notice that we consider only the instances that are 

represented in the hierarchy. Therefore, in Fig. 5, for the 

approximation B of T2, I3 is a negative exception and I1 is a 

positive exception. 

Notice that, together, the positive and the negative 

exceptions characterize the overlap between the target 

concept and an approximation. Therefore we will define a 

partial order relation between approximations based on these 

sets of exceptions. 

Definition: An approximation TA1 of the target concept T 

is better than (or equally good as) an approximation TA2 if 

and only if Negative-exceptionsT(TA1)⊆ Negative-

exceptionsT(TA2) and Positive-exceptionsT(TA1)⊆ Positive-

exceptionsT(TA2) 

Two approximations are equally good if and only if they 

generate the same positive and negative exceptions.  

For example, in Fig. 5 the following order relations hold: 

C∪D is a better approximation of T2 than A, because C∪D 

will have the same positive exceptions as A (I4+), but has no 

negative exceptions. However A has I3 as negative 

exception. There is no order relation between B and F as 

approximations of T2. Because F⊂B, Positive-

exceptions(B)⊆ Positive-exceptions(F). Notice also that I2 is 

a positive exception for F, but not for B. Therefore, we 

obtain Positive-exceptions(B)⊂Positive-exceptions(F). 

Similarly, Negative-exceptions(F)⊆ Negative-exceptions(B). 

Because I3 is a negative exception for B, but not for F, we 

obtain Negative-exceptions(F)⊂Negative-exceptions(B). 

The definition of a better approximation is mathematically 

justified by the fact that the errors made by a worse 

approximation always include the errors made by a better 

approximation. However, a disadvantage of this definition is 

that it is very computationally expensive, being based on an 

exhaustive enumeration of the instances of the target 

concept. There are many other partial order relations that are 

easier to use. For instance, one may consider the weighted 

sum of the number of the positive exceptions and the number 

of the negative exceptions known at some particular 

moment. However, our definition has a significant 

advantage, providing a necessary condition that any other 

partial order relation must satisfy, as stated in following 

lemma.  

Lemma: An approximation that is better in our selected 

partial order relation must be better in any other partial order 

relation that is based on a measure of overlap between the 

target and the approximation. Therefore, any property which 

holds for our selected partial order relation will also hold for 

any other partial order relation.  

B. The lower approximation of the target concept 

In this section we will study approximations that are 

always included into the target concept. 

Definition: An approximation TA is a conservative 

approximation of the target concept T if TA is included into 

T. 

Lemma: An approximation TA of the target concept T has 

the following properties:  

• TA is a conservative approximation if and only if it does 

not generate negative exceptions;  

• a conservative approximation TA ≠ T always generates 

positive exceptions. 

In the following we will construct the best conservative 

approximation of the target, called target's lower 

approximation, and show some of its properties.  

Definition: The target's lower approximation, TLA, is the 

union of all the subconcepts of the target from E(Concepts): 

U
UTConceptsEinTOfsubconceptS

LA ST
)(

=   

Lemma: The following properties hold:  

• TLA is a conservative approximation,  

• TLA is the only direct subconcept of T in the 

E(Concepts)∪{T}. 

• Any other conservative approximation of T is a 

subconcept of (i.e. it is included into) TLA. 

• TLA is the best conservative approximation of the target 

concept T in E(Concepts).  

For computational and learning reasons we will divide the 

lower approximation into two parts: a disjunction of 

concepts from the initial hierarchy of concepts (TLA-FC) and a 

disjunction of the remaining minterms (TLA-MT). 

Lemma: TLA may be decomposed in two disjoint sets, as 

shown in the following equations:  

MTLAFCLALA TTT −−= U  

U
GHTinTonceptOfdirectSubcS

FCLA ST =−  

U
GHTinTMTMGHTinTofntermmiM

MTLA

FCLA

MT
⊂⊄

−

−

=
,,
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For the two target concepts considered in Fig. 4 and Fig. 5 

their respective lower approximations are shown in Fig. 9.  

For the hierarchy from the left hand side of Fig. 5 T1LA is 

empty. This situation always happens when the target 

concept is added as a terminal concept in the existing 

generalization hierarchy. In such a case there is no other 

conservative approximation for the target concept. In the 

hierarchy from the right hand side of Fig. 5, T2LA=C∪D. 

There are other possible conservative approximations: C, D 

and the empty set. All of them are included into the best 

conservative approximation, which is T2LA.  

C. The upper approximation of the target concept 

In this section we will study the target's approximations 

that always include the target concept. 

Definition: An approximation TA is a complete-covering 

approximation of the target concept T if T is included into 

TA. 

Lemma: An approximation TA of the target concept T has 

following properties: 

• TA is a complete-covering approximation if and only if it 

does not generate positive exceptions. 

• A complete-covering approximation TA≠T always 

generates negative exceptions. 

In the following we will construct the best complete-

covering approximation of the target, called target's upper 

approximation, and show some of its properties.  

Definition: The target's upper approximation, TUA, is the 

intersection of all superconcepts of the target T from 

E(Concepts): 

I
TConceptsEinTOfperconceptsuS

UA ST
∪

=
)(

 

Lemma: The following properties hold:  

• TUA is a complete-covering approximation. 

• TUA is the only direct superconcept of T in the 

E(Concepts)∪{T}.  

• Any other complete-covering approximation of T is a 

superconcept of TUA. 

• TUA is the best complete-covering approximation of the 

target concept T from E(Concepts).  

Lemma: TUA may be decomposed in two disjoint sets, as 

shown in the following equations:  

MTUALAUA TTT −= U  

U
UTConceptsEinTMTMTofntermmiM

MTUA

LA

MT
)(,, Φ≠∩⊄

− =  

For the two target concepts considered in Fig. 4 and Fig. 5 

the corresponding target's upper approximations are shown 

in Fig. 9. For the hierarchy from the left hand side of the Fig. 

5 T1UA = mt(C)∪mt(D,E)∪mt(F). In the hierarchy from the 

right hand side of the Fig. 5 T2UA=C∪D∪mt(F). There are 

other possible complete-covering approximations: C∪D∪F, 

A∪B, R. Each of them includes the best complete-covering 

approximation T2UA. 

 

D. The version space of target's best approximations 

We will consider a special version space bounded by TLA 

and TUA. This space will contain all the concepts C from 

E(Concepts) for which TLA ⊂ C ⊂ TUA. Fig. 10 shows the 

version spaces of the best approximations for the previous 

targets: T1 and T2. Not all the concepts from E(Concepts) 

are shown but only the ones from these version spaces and 

the original generalization hierarchy. The concepts from 

these version spaces have a darker background.  

For a given target concept, this version space is called the 

version space of the target's best approximations because it 

contains all the best approximations of the target for any 

possible order relation considered, as will result from the 

following theorem.  

 

 

The target's best approximation theorem: For any 

approximation TA of the target concept T there is an as good 

as or a better approximation than TA in the version space 
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Figure 9.  The lower and upper approximations for two target 

concepts. 
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Figure 10.  Target’s best approximation version space. 

 
 

Figure 11.  The target’s best approximation theorem. 
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bounded by TLA and TUA in E(Concepts).  

Proof: Let di(T)=T\TLA representing the direct instances of 

T in E(Concepts). Let I1= TA ∩ di(T), representing the direct 

instances of T covered by TA. Let, 












=

∈

UU

1

)(1

Ii

LA inCmiTT  

We will show that T1 is an approximation as good as or 

better than TA. It is clear that T1 is included into the version 

space bounded by TLA and TUA (because TLA ⊆ T1 ⊆ TUA).  

Let us compute the positive exceptions and the negative 

exceptions of T1: PET1=di(T)\I1 

TinCmiNE
Ii

T \)(
1

1












=

∈

U  

Fig. 11 illustrates the concepts used in this theorem. The 

small squares represent the minterms. All the concepts from 

E(Concepts) must be formed by a union of minterms. The 

left hand side represents TA and the right hand side T1. 

Let us compare the positive exceptions of TA with the 

positive exception of T1. By definition (di(T)\I1)∩TA=∅, and 

(di(T)\I1)⊂T. Therefore (di(T)\I1) are positive exceptions of 

TA, i.e. (di(T)\I1)⊆PETA. Moreover PET1=di(T)\I1. Therefore 

PET1⊆ PETA.  

Regarding the negative exceptions we have that I1⊂TA, 

and I1⊂T. However, the instances from I1 must be introduced 

in any approximation by their corresponding minterms 

minC(i), which will conclude that 

A

Ii

T)i(minC

1

⊂












∈

U
.  

Therefore, the instances that do not belong to T from this 

union are negative exceptions for TA: 

TA

Ii

NET\)i(minC

1

⊆
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
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
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


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Moreover 
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Therefore: NET1⊆ NETA. 

Because PET1⊆ PETA and NET1⊆ NETA the approximation 

T1 will be better than or as good as TA. QED. 

This result is very important because focuses the goal of 

the learning algorithm when the target concept is not 

represented in the generalization hierarchy. If the target 

concept is represented in the hierarchy then the learning 

algorithm must find it. If the target concept is not in the 

hierarchy, then the learning algorithm must converge toward 

one of the target approximations belonging to the version 

space bounded by TLA and TUA in E(Concepts).  

However, a better approach is to have a learning 

algorithm that will try to determine the version space of the 

target's best approximations. In order to determine this 

version space it is enough to determine the version space 

bounds TLA and TUA. Any other element in the version space 

can be easily constructed based on them. In the next section 

we will present a method to learn the target's lower 

approximation and the target's upper approximation.  

V. Learning the  lower and the upper 

approximations of the target concept 

A. Concepts’ support from examples 

As indicated in Table 1, the target concept T, or an 

approximation of it, is incrementally learned from a 

sequence of instances i
1
, i

2
... i

n
 classified either as positive 

examples (i.e., covered by the target concept) or as negative 

examples (i.e., not covered by the target concept).  

Definition: We denote with PE
n
 the set of positive 

examples, PE
n
={i

k
,k≤n | type-of(i

k
)=positive}. 

Definition: We denote with NE
n
 the set of negative 

examples, NE
n
={i

k
,k≤n| type-of(i

k
)=negative}. 

A positive example which is an instance of a concept C1 

from the generalization hierarchy will support the 

assumption that C1 is a part of the target. By contrast, a 

negative example which is an instance of a concept C2 will 

support the assumption that C2 is not a part of the target. 

Using the instance-of relations corresponding to the known 

examples of the target concept, one can classify the concepts 

from the generalization hierarchy, as indicated by the 

following definitions and illustrated in Fig. 12. 

Definition: A direct positive concept is a concept that 

covers at least one positive example and does not cover any 

negative example, such as C01 and C12 in Fig. 12.  

Definition: A direct negative concept is a concept that 

covers at least one negative example and does not cover any 

positive example, such as C03 and C14 in Fig. 12. 

Definition: A direct irrelevant concept is a concept that 

covers both a positive example and a negative example, such 

as R and C02 in Fig. 12. 
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Figure 12.  Concept classification based on instances support. 



92  Mihai Boicu and Gheorghe Tecuci 

Definition: A direct unclassified concept is a concept 

that does not cover any positive example and any negative 

example, such as C11, C13, C15 and C21 in Fig. 12.  

The direct unclassified concepts may be further classified 

based on their indirect support received from the direct 

positive and negative concepts. 

Definition: An indirect positive concept is a direct 

unclassified concept that has a direct positive superconcept 

and no direct negative superconcept, such as C11 in Fig. 12. 

Definition: An indirect negative concept is a direct 

unclassified concept that has a direct negative superconcept 

and no direct positive superconcept, such as C15 in Fig. 12. 

Definition: An indirect irrelevant concept is a direct 

unclassified concept that has both direct positive 

superconcepts and direct negative superconcepts, such as 

C21.  

Definition: An indirect unclassified concept is a direct 

unclassified concept that has neither a direct positive 

superconcept nor a direct negative superconcept, such as 

C13. 

As shown in the previous section, the lower 

approximation of the target concept T is TLA=TLA-FC∪TLA-MT. 

We will divide the learning of TLA into learning its two 

disjoint parts TLA-FC and TLA-MT. We will first present 

methods to learn TLA-FC. By definition, TLA-FC is the union of 

direct subconcepts of T in GHT. Because we do not know 

the direct subconcepts of T we will try to determine all the 

plausible candidates.  

Because TLA must not have negative exceptions it must not 

cover direct negative concepts or direct irrelevant concepts. 

Therefore TLA will always be expressed with direct positive 

concepts and direct unclassified concepts. Moreover, any 

union of direct positive and direct unclassified concepts 

from GH (which are not hierarchically connected) will be a 

plausible candidate for TLA-FC. We will construct a version 

space with all these plausible candidates, as described in the 

next section. 

B. The version space for TLA-FC candidates 

Let us assume that we have k examples i
1
, i

2
... i

k
 of the 

target concept. We may accordingly classify the concepts 

from GH. This classification will evolve as new examples 

will be received.  

Let us first look at the direct unclassified concepts. All the 

subconcepts of a direct unclassified concept will also be 

direct unclassified concepts. Therefore the most general 

direct unclassified concepts will determine an upper bound 

for the set of all direct unclassified concepts. Let UC
k
UB 

denote the upper bound of all the direct unclassified 

concepts. 

A direct positive concept will have all its subconcepts 

either direct positive concepts or direct unclassified 

concepts. The set of the most general direct positive 

concepts will be an upper bound for all the direct positive 

concepts, but will also cover some direct unclassified 

concepts. Let PC
k
UB denote the upper bound of all the direct 

positive concepts.  

Because our goal is to approximate both the unclassified 

and the positive concepts the fact that the concepts from 

PC
k
UB cover also unclassified concepts does not create any 

problem. These two bounds contain distinct concepts but 

they generally cover common instances. Their union 

UC
k
UB∪ PC

k
UB represents the upper bound of the concepts 

that are either direct positive or direct unclassified.  

We use of the following notation where S is a set of sets: 

U U
SA

AS
∈

=  

Lemma: T
k
LA-FC-UB=∪ (UC

k
UB∪ PC

k
UB) is an upper bound 

of the candidates for TLA-FC in E(Concepts).  

Proof: Any union of concepts from GH covered by 

∪(UC
k
UB∪ PC

k
UB) is a candidate for TLA-FC because it 

contains concepts from the original generalization hierarchy, 

and does not cover any known negative example. Moreover, 

the lower approximation TLA-FC must be included in this set, 

because all other concepts from GH already cover a negative 

example and thus cannot be in the union of TLA-FC.  

Lemma: T
k
LA-FC-LB=∅ is a lower bound of the candidates 

for TLA-FC. 

Proof: For TLA-FC the empty set is a candidate until all 

possible examples are used, because there may always be a 

negative example under each concept from the union T
k
LA-FC-

UB. Real world concepts have very many instances, possibly 

infinite. Therefore for such real situations we will not use all 

the examples and T
k
LA-FC-LB is a lower bound of the 

candidates. 

Lemma: The version space of the candidates for TLA-FC, 

after k examples are given, denoted with VS(T
k
LA-FC), is 

bounded by T
k
LA-FC-LB=∅ as the lower bound and  

T
k
LA-FC-UB=∪ (UC

k
UB∪ PC

k
UB) as the upper bound. 

Considering the target concept T2 from the previously 

given example (see Fig. 9) we obtain the following sequence 

of bounds, as new examples are classified: T
1
LA-FC-UB=R, 

T
2
LA-FC-UB=R, T

3
LA-FC-UB=C∪D∪F, T

4
LA-FC-UB= C∪D∪F, 

T
5
LA-FC-UB= C∪D. The lower bound T

k
LA-FC-LB is the empty 

set at each of the previous steps. Fig. 13 shows in a darker 

color the direct positive and the direct unclassified concepts 

as new instances are classified.  

 

Theorem of monotonic convergence to TLA-FC: The more 
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Figure 13.  Learning the TLA-FC. 
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examples are used the smaller the version space of the  

TLA-FC candidates becomes, i.e. for any number of examples 

k>0, TLA-FC⊆T
k+1

LA-FC-UB⊆T
k
LA-FC-UB.  

Proof: Let us assume that the new example is positive. 

The superconcepts of this example will change their status as 

follow: the negative concepts will become irrelevant; the 

irrelevant concepts will remain irrelevant; the positive 

concepts will remain positive; the unclassified concepts will 

become positive. Therefore T
k+1

LA-FC-UB=T
k
LA-FC-UB. Now let 

us assume that the new example is negative. The previously 

negative and irrelevant concepts which are superconcepts of 

this example will remain the same. However the previously 

neutral superconcepts will become negative and the 

previously positive superconcepts will become irrelevant. 

Both of these types will be removed from T
k
LA-FC-UB. 

Therefore the upper bound will be specialized covering 

fewer concepts, i.e. T
k+1

LA-FC-UB⊂T
k
LA-FC-UB. QED 

This theorem is very important because it shows that this 

version space monotonically converges toward TLA-FC. 

Moreover, we have proved that only negative examples 

influence the size of this version space. 

C. The plausible version space for TLA-MT candidates 

The learning of TLA-MT and TUA-MT is strongly correlated 

with the learned expression of TLA-FC, because both of them 

add some minterms to it. Given TLA-FC, for each positive 

example not covered by TLA-FC, the minterm that contains 

this positive example (i.e. minC(i)) is added to TLA-MT, if it 

does not cover any negative example, and to TUA-MT 

otherwise. 

However, there are many plausible candidates for both 

TLA-MT and TUA-MT. For TLA-MT any minterm not included into 

TLA-FC that does not cover any negative example may be part 

of a plausible candidate. For TUA-MT any minterm not 

included into TLA-FC may be part of a plausible candidate. 

Let us first analyze the possible candidates for TLA-MT for a 

fixed value of TLA-FC, denoted with T
k
LA-FC.  

Lemma: The version space of the candidates for TLA-MT is 

the set VS(T
k
LA-MT): 


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The lower bound of this version space is the empty set, and 

the upper bound contains the most general of them. This 

version space will decrease as T
k
LA-FC increases. However 

this version space contains a huge number of possible 

candidates and it will decrease very slowly during learning, 

requiring a very large number of negative examples. 

Therefore the use of this version space for learning will be 

non operational.  

One way to workaround this problem is to adopt a more 

conservative condition for a plausible candidate, one that 

will offer a smaller but more meaningful version space. By 

definition TLA-MT is the union of minterms included into the 

target concept. We may consider that a minterm must cover 

at least a known positive example and must not cover any 

known negative example in order to be considered as part of 

this union, as indicated in the following definition. 

Definition: We denote with LAPM
k
 the plausible 

minterms for the lower approximation:  






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
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kk
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NEMPEM

ConceptsEinntermmiM
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In this case we will obtain the following plausible version 

space (named plausible because it no longer contains all 

possible candidates but only the most plausible ones): 

 

Definition: We denote with PVS(T
k
LA-MT) the plausible 

version space for T
k
LA-MT with candidates containing only 

minterms from LAPM
k
: 

{ }


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    Lemma: PVS(T
k
LA-MT) is bounded by the following 

plausible lower bound and plausible upper bound:  

T
k
LA-MT-PLB=∅ 

U
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=
kk
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One may adopt another condition in order to construct the 

plausible version space. However, the one considered above 

is based on the intuition that a very specific concept (in our 

case a minterm) that is supported by some positive examples 

and is not contradicted by any known negative example is 

very likely to be a part of the target concept.  

Lemma: Let us denote with T
k
LA-MT-CUB the T

k
LA-MT-PUB that 

correspond to T
k
LA-FC-UB. For any selection of T

k
LA-FC,  

T
k
LA-MT-CUB is always included into the T

k
LA-MT-PUB. It 

represents a constant part that must appear in all plausible 

upper bounds.  

Lemma: We have the following properties 

T
k
LA-MT-CUB is always between ∅ and TLA-MT∪ TUA-MT 

T
k
LA-MT-CUB∩ TLA-MT  ⊆ T

k+1
LA-MT-CUB∩ TLA-MT   

Theorem of oscillatory convergence to TLA-MT: T
k
LA-MT-

CUB has an oscillatory convergence toward TLA-MT being 

bounded by T
k-1

LA-MT-CUB∩ TLA-MT and by TLA-MT∪ TUA-MT 

These results are important because they show that T
k
LA-

MT-CUB is a good plausible candidate for TLA-MT. The learning 

method proposed will be based on it. 

 

Fig. 14 shows a series of examples for a target T3 that is 
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Figure 14.  A series of examples for a target concept T3. 
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placed in E(Concepts) between mt(C) and mt(C) ∪ mt(D,E) 

∪ mt(F). Therefore T3LA-MT=mt(C). 

Table 2 shows how TLA-MT is learned for the target T3. 

Notice the oscillatory convergence of T
k
LA-MT-CUB. 

 

Table 2.  Learning of TLA-MT. 

 

D. The version space of TUA-MT candidates 

Let us now analyze the possible candidates for T
k
UA-MT. 

Notice that, in order to compute T
k
UA-MT, we need to know 

the values for both T
k
LA-FC and T

k
LA-MT. We consider fixed 

values of T
k
LA-FC and T

k
LA-MT, which implies a fixed value for 

T
k
LA. TUA-MT is the union of minterms that are only partially 

covered by the target concept. Therefore the minterms that 

cover both positive and negative examples must be included 

into T
k
UA-MT. 

Definition: The set of minterms which are partially 

covered by the target concept, determined after first k 

examples, is denoted by: 
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Lemma: The version space for T
k
UA-MT is: 
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Lemma: We consider the target lower approximation as 

being T
k
LA. The version space VS(T

k
UA-MT) is bounded by: 

UU U
k

LA
kk TMLAPMMPCMM

k

LBMTUA MMT
⊄∧∈∈

−− =  

k

LA

k

UBMTUA TRT \=−−  

As in the case of VS(T
k
LA-MT), this version space will 

decrease very slowly. Therefore the upper bound is not 

relevant for learning. However the lower bound will 

accumulate the minterms that must be in T
k
UA-MT and is 

relevant for learning.  

Lemma: Let 

U
kPCMM

k

CLBMTUA MT
∈

−− =

. 

For any selection of T
k
LA-FC and T

k
LA-MT, T

k
UA-MT-CLB is 

always included into the T
k
UA-MT-LB. It represents a constant 

part that must appear in all plausible lower bounds.  
 

 

Lemma: We have the following properties 

T
k
UA-MT-CLB is always between ∅ and TUA-MT 

T
k
UA-MT-CLB ⊆ T

k+1
UA-MT-CLB 

Theorem: T
k
UA-MT-CLB has a monotonic convergence 

toward TUA-MT  

These results are important because they show that T
k
UA-

MT-CLB is a good plausible candidate for TUA-MT. The learning 

method proposed will be based on it. 

Let us consider again the examples from Fig. 13. Table 3 

shows how the bounds of the version spaces evolve as new 

examples are used. Each row shows the bounds of the 

version spaces for the indicated value of TLA-FC after the 

example from the header was used. When TLA-FC has a value 

between its lower and upper bound the lower bounds and the 

upper bounds of the two version spaces have values between 

the indicated values. 

 

Table 3.  Learning of TUA-MT 

 

E. The learning algorithm 

Based on the above analysis of the plausible candidates of 

the target's lower and upper approximations we have 

developed the algorithm from Table 4. 

After k examples i
1
, i

2
... i

k
 the learned bounds are:  

• T
k
LA-FC-UB=TLA-FC 

• T
k
LA-MT-CUB=TLA-MT 

• T
k
UA-MT-CLB=TUA-MT 

To avoid storing all the examples, one keeps the minterms 

that cover them together with their respective classification: 

• Minterms covering only positive examples:  

OPMT∪ TLA-MT 

• Minterms covering both positive and negative examples: 

TUA-MT 
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• Minterms covering only negative examples: ONMT 

The bounds of a partially learned concept may be used in 

problem solving to classify a new instance i. If the instance 

is covered by any of the three disjoint sets (TLA-FC, TLA-

MT or TUA-MT) it will be considered as a plausible positive 

example, otherwise it will be a plausible negative example. 

However, the level of confidence in the classification is 

different in each case, as follows: 

• If i∈TLA-FC the instance is only covered by direct 

positive or direct unclassified concepts. This case gives 

the highest level of confidence that i is a positive 

example. 

• If i∈TLA-MT the instance is covered by irrelevant or 

negative concepts, but its minterm does not contain any 

negative example. In this case there is a lower level of 

confidence that i is a positive example. 

• If i∈TUA-MT the instance is covered by a minterm that 

also covers a negative example. Therefore i might be 

either a positive or negative example. This case gives the 

lowest level of confidence that i is a positive example. 
 

Table 4.  The Learning algorithm 

 

This classification of confidence levels justifies why we 

are considering the plausibility condition for TLA-MT and the 

constant part of the lower bound of TUA-MT. Because, during 

problem solving the plausible candidates for TLA-MT and TUA-

MT are generating instances that have lower levels of 

confidence of being positive examples. To minimize the 

chances for error we consider only the most plausible 

candidates for these parts. 

The learning algorithm has the following strengths (as 

demonstrated in the previous sections): 

• T
k
LA-FC-UB(=TLA-FC) converges monotonically (through 

successive specializations) toward the exact value of TLA-

FC  

• T
k
LA-MT-CUB(=TLA-MT) converges oscillatorily toward the 

exact value of TLA-MT but it is always bounded by T
k-1

LA-

MT-CUB∩ TLA-MT (as a generalization of it) and by TLA-

MT∪TUA-MT\T
k
UA-MT-CLB (as a specialization of it). 

• T
k
UA-MT-CLB(=TUA-MT) converges monotonically 

(through successive generalizations) toward the exact 

value of TUA-MT  

Therefore the algorithm converges almost monotonically 

toward the lower and the upper approximations of the target. 

The algorithm has also the following weaknesses: 

T
k
LA-FC-UB generally covers also many negative examples 

(because it is specialized toward the exact value). Therefore 

its use in problem solving to classify new instances or to 

generate positive examples leads to low confidence 

solutions. 

T
k
LA-FC-UB generally converges slowly toward TLA-FC 

(because it also includes the unclassified concepts) and 

requires a significant number of examples to reach the exact 

value. 

When specializing TLA-FC to no longer cover a negative 

example, if some minterms from TLA-MT are no longer 

covered by TLA-FC and these minterms do not yet cover a 

positive example, they will no longer be covered by any of 

the maintained sets. In this case there is no trivial way in 

which the problem solving method may generate instances 

under them in order to reconsider them. As a consequence, 

the method may "loose" some minterms. 

Another potential problem is the execution time that 

depends on the representation of the generalization hierarchy 

and of the concept bounds. However one may use an 

optimized representation of the hierarchy to allow fast 

computations, as described in [3]. 

VI. Related Research and Conclusions 

The methods that are most related to the method presented 

in this paper are those based on the version space 

representation ([16], [14], [17], [1], and [2]), which are 

discussed in the following. 

A. The version space candidate elimination method 

The roots of our method are in Mitchell’s candidate 

elimination method [16] which had significantly advanced 

the field of machine learning with a solid theoretical 

treatment of the concept learning problem. However, the 

applicability of the candidate elimination method to complex 

real-world problems is very limited due to several factors. 

The method assumes that the representation space is correct 

 

Global Structures: 

GH(Concepts, Instances, Root-Concept, subconcept-of, instance-of) 

PVS(TLA-FC, TLA-MT, TUA-MT, OPMT, ONMT) 

Initialization: 

TLA-FC←Root-concept; TLA-MT←∅; TUA-MT←∅ 

OPMT←∅;the minterms that cover a positive example covered by TLA-FC 

ONMT←∅;the minterms that cover a negative example and are not in TUA-MT 

Classify-Positive-Example(pi∈∈∈∈Instances) 

mt-pi←minC(pi) (the minterm that covers the positive example) 

if pi covered by a concept from TLA-FC then 

if mt-pi∉OPMT then add minterm mt-pi to OPMT 

else if mt-pi∈ONMT then 

add minterm mt-pi to TUA-MT 

delete minterm mt-pi from ONMT 

else if mt-pi∉TLA-MT and mt-pi∉TUA-MT then 

add minterm mt-pi to TLA-MT 

Classify-Negative-Example(ni∈∈∈∈Instances) 

mt-ni←minC(ni)  (the minterm that covers the negative example) 

if ni covered by a concept from TLA-FC then 

minimally specialize TLA-FC to no longer cover ni 

if mt-ni∈OPMT then 

delete mt-ni from OPMT 

add mt-ni to TUA-MT 

else 
add mt-ni to ONMT 

for each mt∈OPMT do 

if mt not covered by TLA-FC then 

delete mt from OPMT 

add mt to TLA-MT 

else if mt-ni∈TLA-MT then 

delete mt-ni from TLA-MT 

add mt-ni to TUA-MT 

else if mt-ni∉TUA-MT and mt-ni∉ONMT then 

add mt-ni to ONMT 
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and complete, that the concept to be learned is in this space, 

and that there are no errors in the input examples. If the 

concept to be learned is not in this space, or if there are 

errors in the examples, the method will fail. Moreover the 

method suffers from the combinatorial explosion of the size 

of the bounds of the version space. 

B. Extensions of the version space method 

In its original form, Mitchell’s candidate elimination 

method learns conjunctive concepts only. Several 

researchers have proposed extensions of the method so that 

it can also learn disjunctive concepts.  An important example 

is the disjunctive version spaces method with delayed choice 

of bias, proposed by Sebag [17]. Her main idea was to 

search both for the target concept and for its negation (the 

concept that best characterizes the negative examples) and to 

consider, for each training example, the hypothesis space 

that covers this example and does not cover its counter 

examples. In order to decide on the classification of an 

instance, the method searches for a neighbor hypothesis 

space (positive or negative). The method allows noisy data 

ignoring the first found counter-examples that contradict the 

instance to be classified. It also avoids overgeneralization by 

requiring at least M attributes to be satisfied by the instance 

to be classified.  

Both Sebag’s method and our method allow noisy data by 

using a similar approach. For instance, in our method, we 

can require that a minterm be considered irrelevant only if 

both the number of covered positive examples, and the 

number of covered negative examples are above a certain 

threshold. However, in our method, the error may appear not 

only in the example but also in the generalization hierarchy. 

Sebag's method makes the assumption that a positive 

example and a negative example can always be 

discriminated in the hypothesis space. Our method allows 

for exceptions, that is, for negative and positive examples 

that cannot be distinguished in the current representation 

space of the concepts. As in the case of Mitchell’s method, 

Sebag’s method requires the target concept to be included in 

the representation language, as opposed to our method which 

can learn approximations of this concept. 

Sebag’s method is also computationally expensive, being 

proportional to the square of the number of examples. In our 

method the comparison is done between all positive 

examples and all negative examples at once, making the 

method more efficient. More significantly, however, is the 

fact that our method is based on a more complex 

representation language with an incomplete generalization 

hierarchy, while Sebag’s method uses a much simple feature-

vector representation. This makes our method applicable to 

significantly more complex application domains. 

C. The plausible version space method 

The plausible version space method developed by Tecuci 

[1] was a significant development of the version space 

approach, making it applicable to complex real world 

problems [2]. The method assumes an incomplete 

representation space which can be extended with new 

concepts during learning. This will increase the hypothesis 

space and will require concept revision. The method may 

learn an approximation of the target concept, when this is 

not representable, and may learn concepts in the presence of 

exceptions (e.g. covered negative examples). However, the 

method does not guarantee the learning of the best 

approximations of the target concept, the approximation 

learned depends on the order of the examples, and the 

convergence toward this approximation is oscillatory, not 

monotonic. 

The method presented in this paper removes the above 

limitations. It learns the best approximations of the target 

concept, minimizes the number of positive and negative 

exceptions stored, and does not depend on the order of 

examples. Moreover, it extends the representation of the 

learned concept which can include conjunctions, 

disjunctions and negations. 

D. Conclusions and future research 

The most important aspect of the presented method is that 

it allows the learning of a version space containing the best 

approximations of a target concept when the target is not 

representable in the search space. The method has an almost 

monotonic convergence toward the best approximations of 

the bounds of the version space. Also, the learned concept 

does not depend on the order of examples. These add to the 

advantages already offered by the plausible version space 

learning method, such as learning in an incomplete and 

evolving representation space, and learning in the presence 

of exceptions.  

There are several natural extensions of the presented 

method. One is to develop an optimized representation for 

learning in order to allow efficient learning algorithms. 

Another is to analyze the behavior of the method in the 

context of an evolving and partially incorrect representation. 

In this paper we have addressed the basic problem of 

learning an approximation of a concept, from its positive and 

negative examples, in the context of a generalization 

hierarchy of concepts. However, the goal of a Disciple 

agent, for which this method was developed, is to learn 

complex concept expressions, such as the condition of the 

task reduction rule from Fig. 3 (see [2] for a formal 

description of such a concept). This condition is only 

partially learned, and is defined by a plausible upper bound 

(PUB) concept and a plausible lower bound (PLB) concept. 

The PLB concept is the set of tuples (?O1,?O2, ?O3, ?O4, 

?O5, ?O6) that satisfy the expression of the PUB concept. 

That is, ?O1 should be a PhD advisor who has as employer 

?O4 (which should be a university), and has as position ?O5 

(which should be a tenured position). Moreover, ?O2 should 

be a PhD student, and ?O3 should be Artificial Intelligence. 

However, ?O1 should not be a PhD advisor who is likely to 
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move to ?O6 (which is a university). A future research 

direction is to integrate the presented method into Disciple’s 

learning method. This will allow the type of a variable (e.g. 

PhD advisor for ?O1) to be not just a concept from the 

generalization hierarchy, but also a union of minterms. This 

will very significantly increase the ability of Disciple to 

learn complex problem solving rules from subject matter 

experts, and therefore its practical applicability. 
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