
 
 

 

  

Abstract— In this paper, a new evolving artificial neural 
network using evolutionary computation is introduced. Based 
on the pre-defined Beta operator sets, this model called Flexible 
Beta Basis Function Neural Tree (FBBFNT), can be created 
and learned. The structure is developed using the Extended 
Immune Programming (EIP). The Beta parameters and 
connected weights are optimized using the Hybrid Bacterial 
Foraging Optimization algorithm. The performance of the 
proposed method is evaluated for nonlinear systems and 
compared with those of related methods. 

   Keywords— Extended Immune Programming; Hybrid 
Bacterial Foraging Optimization algorithm; Flexible Beta Basis 
Function Neural Tree; nonlinear systems. 

I. INTRODUCTION 

rtificial Neural Network (ANN) is a growing 
interdisciplinary field which considers the systems as 
adaptive, distributed and mostly nonlinear, three of 
the elements found in the real applications. It is 

placed at the crossroads of various biological-inspired 
approaches where it is considered as an abstract simulation 
of a real nervous system. 

The performance of the ANN can be mainly conditioned 
by the appropriate structure and the training algorithm. 
Many efforts have been provided in the literature to address 
these issues. Since 1991, Yao [1] is one of the first 
researchers who have exploited possible benefits arising 
from the interactions between ANNs and evolutionary 
computation, to design and evolve ANN. In such case the 
model is noted Evolving Artificial Neural Network (EANN). 

To evolve the ANN structure, several researchers used 
tree representation and evolutionary computation to design 
and optimize automatically the ANN structure. The 
evolutionary computation used for solve this task include: 
Genetic Programming (GP) [2, 3, 4], probabilistic 
incremental program evolution algorithm (PIPE) [5], and 
Immune programming [6]. Moreover, the ANN parameters 
(weights and transfer function parameters) can be learned by 
various evolutionary computation such genetic algorithm 
[7], particle swarm optimization algorithm [8], Bacterial 
Foraging Optimization Algorithm [9], etc.  

 
S. Bouaziz and A.M. Alimi is with REsearch Group on Intelligent Machines 
(REGIM), University of  Sfax, National School of Engineers (ENIS), BP 
1173, Sfax 3038, Tunisia, (souhir.bouaziz@ieee.org, adel.alimi@ieee.org) 
Ajith Abraham is with IT4Innovations, VSB-Technical University of 
Ostrava, Czech Republic, (ajith.abraham@ieee.org). 

 

Recently, there has been an increasing interest to optimize 
the ANN structure and parameters simultaneously [3-6, 10, 
11]. 

The most used transfer function is the Gaussian function. 
However, the Beta function [12, 13] shows its performance 
against the Gaussian function for typical representation of 
ANN, due to its large flexibility and its universal 
approximation capacity [7, 12, 13]. The initiative of using 
Beta functions for designing Artificial Neural Network was 
introduced by Alimi [12] and in this case the network is 
called Beta Basis Function Neural Network (BBFNN). 

Although matrix-representation of BBFNN has a number 
of advantages such as better approximation capabilities and 
simple network topologies, adapting such representation 
suffers from slow premature convergence characteristics and 
makes the BBFNN’s structure difficult to regulate. For these 
reasons, a tree-based encoding method is adopted, in this 
paper, to design the BBFNN. A hybrid algorithm which 
simultaneously optimizes the structure and parameters, is 
used to evolve the new model. This model is named Flexible 
Beta Basis Function Neural Tree (FBBFNT). The structure 
is developed using the Extended Immune Programming 
(EIP). The fine tuning of the Beta parameters (centre, spread 
and the form parameters) and weights encoded in the 
structure is optimized using Hybrid Bacterial Foraging 
Optimization Algorithm (HBFOA).  

The paper is planned as follows: Section 2 describes the 
basic flexible Beta basis function neural tree model. A 
hybrid learning algorithm for evolving the FBBFNT models 
is the subject of Section 3. The set of some simulation 
results for nonlinear prediction systems are provided in 
Section 4. Finally, some concluding remarks are presented in 
Section 5.  

II. FLEXIBLE BETA BASIS FUNCTION NEURAL TREE MODEL 

The first time where the Beta function was used as transfer 
function for neural networks was in 1997 by Alimi [12] and 
the corresponding model is named Beta basis function neural 
network. 

In this study, the Beta basis function neural network is 
encoded by the tree-based encoding method instead of the 
matrix-based encoding method, since this method is more 
flexible and gives a more adjustable and modifiable 
architecture. This new representation is called Flexible Beta 
Basis Function Neural (FBBFNT). The FBBFNT is formed 
of a node set NS representing the union of function node set 
F and terminal node set T: 

Evolving Flexible Beta Basis Function Neural Tree for Nonlinear 
Systems 

Souhir Bouaziz, Adel.M. Alimi, Ajith Abraham 

A 



 
 

 

    (1) 

Where: 
• Βn (n = 2, 3, …, N) denote non-terminal nodes and 

represent flexible Beta basis neurons with n inputs 
and N is the maximum degree of the tree. 

• /N is the root node and represents a linear transfer 
function. 

• x1, x2,. . ., xM are terminal nodes and define the input 
vector values.  

The output of a non-terminal node is calculated as a flexible 
neuron model (see Fig.1). 

 
Fig. 1. A flexible Beta Basis Function. 

If a function node, i.e., n is selected, n real values are 
randomly created to represent the connected weight between 
the selected node and its offspring. In addition, seen that the 
flexible transfer function used for the hidden layer nodes is 
the Beta function, four adjustable parameters (the center , 
width  and the form parameters are randomly 
generated as flexible Beta operator parameters.  

For each non-terminal node, its total excitation is 
calculated by: 

                                           (2) 

Where (j = 1, …, n) are the inputs of the selected node 
and  ( j = 1, …, n) are the connected weights.  
 

The output of node n is then calculated by: 
 

 

                

                       (3) 

The output layer yields a vector by linear combination of 
the node outputs of the last hidden layer to produce the final 
output.  

A typical flexible Beta basis function neural tree model is 
shown in Fig.2. The overall output of flexible Beta basis 

function neural tree can be computed recursively by depth-
first method from left to right. 

 
 

Fig. 2. A typical representation of FBBFNT: function node set F = {β2, β3, 
/5}, and terminal node set T = {x1, x2, x3, x4}. 

III. THE HYBRID LEARNING ALGORITHM FOR THE FBBFNT 
MODEL 

The optimization of FBBFNT includes two issues which 
are structure optimization and parameter optimization. In 
this work, finding an optimal or a near optimal Beta basis 
function neural tree structure is achieved by using Extended 
Immune Programming (EIP) algorithm and the parameters 
implanted in a FBBFNT are optimized by Hybrid Bacterial 
Foraging Optimization Algorithm (HBFOA).  

A. The Extended Immune Programming  for structure 
optimization 

Based on the results found by Musilek et al. in [14], IP 
has a more convergence capacity than GP: successful 
solutions are found in fewer generation numbers with the 
evident improvement when using a small antibody 
population. These reasons encouraged us to apply IP with an 
adapted version of our model in the search of the optimal 
structure. This new algorithm is called Extended Immune 
Programming (EIP). The EIP global process is formed by 
seven main steps as follow and it is summarized in Fig. 3: 

1) Initialization: Firstly, the initial population (repertoire) 
of flexible Beta basis function neural trees (antibodies) is 
randomly generated with random structures (number of 
layers and number of nodes for each layer). The node 
parameters (Beta parameters and weights) of each tree are 
also randomly generated in its search spaces.  

2) Evaluation: All of the antibodies (NA antibodies) are 
compared to an antigen representing the problem to be 
solved, and their fitness Fit(i) (affinity) with respect to the 
antigen is calculated (according to the section C).  

3) Cloning: An antibody Abi of the current population is 
selected to be treated; if its affinity is higher than a random 



 
 

 

 

generated number so this antibody can be cloned with a 
probability Pc, and placed in the new population. 
 

4) Mutation: if a selected high-affinity (corresponding to 
low RMSE value) antibody  in the previous step has not 
been cloned due to the stochastic character of the cloning 
process, it is submitted to mutation. Four different mutation 
operators were used: 

• Changing one terminal node: select one terminal 
node randomly in this antibody and replace it with 
another terminal node;  

• Changing all the terminal nodes: select each terminal 
nodes in the antibody and replace it with another 
terminal node;  

• Growing: select a random terminal node in hidden 
layer of the antibody and replace it with a randomly 
generated sub-tree;  

• Pruning: randomly select a function node in the 
antibody and replace it with a random terminal node. 

The EIP mutation operators were applied according to the 
method of Chellapilla [15] as follows: 

a)  Define a number M which represents a sample 
from a Poisson random variable. 

b) Select randomly M    mutation operators from above 
four mutation operator set. 

c) Apply these M mutation operators in sequence one 
after the other to the parent to create the offspring. 

5) Replacement: if the current antibody Abi is not selected 
to be cloned or mutated, a new antibody is generated and 
placed into the new population with a certain probability, Pr. 
This way, low affinity antibodies are implicitly replaced.  

6) Iteration-population: steps 3–5 (cloning, mutation and 
replacement) are repeated until a complete new population 
has been created. 

7) Iteration-algorithm: after the new population has been 
constructed, the generation number (EIP_Iter = 1 during 
initialization) is incremented, EIP_Iter = EIP_Iter + 1. The 
algorithm so iteratively proceeds through steps 2–6 
(evaluation, cloning, mutation, replacement, iteration–
repertoire) until a terminal criterion is reached. 
 

B. Hybrid Bacterial Foraging Optimization Algorithm  

Recently, Bacterial Foraging Optimization Algorithm 
(BFOA) [16] has drawn the attention of researchers from 
diverse fields of knowledge especially due to its biological 
motivation and graceful structure. For these reasons it has 
been successfully applied for some engineering applications 
such as optimal control [16], harmonic estimation [17], etc. 
It is also effectively used, in recent years, to learn artificial 
neural network for many fields such as prediction systems 
[18], classification problems [19], and power transformers 
[20]. 

 

 

 

 

Fig. 3. Flowchart of the Extended Immune Programming algorithm. 

According to the experimental results of [16] to several 
benchmark functions, BFOA possesses a poor convergence 
behavior over multimodal and rough fitness landscapes as 
compared to other naturally inspired optimization techniques 
like GA, PSO and DE. Its performance is also affected with 
the growth of search space dimensionality. In order to get 
better convergence and to improve the BFOA’s performance 
on complex optimization problems, it becomes necessary to 
optimize this algorithm. That’s why scientists are trying to 
hybridize BFOA with some other algorithms, i.e., PSO and 
DE.  

We therefore are motivated to study this new trend of 
swarm intelligence and we proposed a new hybridization of 
BFOA called Hybrid Bacterial Foraging Optimization 
Algorithm (HBFOA) [21]. This hybrid algorithm has shown 
its efficiency mainly with multimodal and high dimensional 
functions and also in overcoming the problem of premature 
convergence. HBFOA is centered essentially on the 
chemotaxis step of the BFOA process by creating a new 
proposed adaptive chemotactic step size, and by integrating 
the ideas of PSO velocity and DE operators to update the 
movement of the bacterium. In fact, a new chemotactic step 
size is proposed depending on the current fitness value and 
the global best fitness value. It is expected so to provide 
better convergence behavior as compared to a fixed step 
size. Thus, to get a better improvement and to accelerate the 



 
 

 

convergence speed, the parameter Fbest was introduced in 
the adaptation equation of the step size C as follows: 

                                   
   (4)   

S(i) is the new adaptive chemotactic step size for the i-th 
bacterium and Fbest is the parameter fitness function value 
for the globally best bacterium. 

From (4), we can see that if  is large, then 
the bacterium is far away from the global best, so S will be 
large also. On the other hand, if  is small, 
then the bacterium is very close the global best and 
consequently S will be small also. Using this new adaptive 
chemotaxis step size, the bacterium with better function 
value (in a nutrient-rich zone) will try to take a smaller step 
and retain its current position. Moreover, the bacterium 
located at a poor nutrient region of the fitness landscape will 
take large step sizes to attain better fitness. After undergoing 
a chemotactic step of the BFO algorithm, each bacterium 
takes the mutation and crossover steps of the DE algorithm. 
Then, the result vector obtained was first coupled with the 
velocity operator of PSO algorithm, and then with the 
updated step size factor S. Also, we coupled this result 
vector in the same time with the adaptive S and with the 
velocity. Finally, a selection step of DE algorithm was 
introduced in a modified way to select the best vector result. 
The set of HBFOA parameters is as shown in table 1. 

TABLE I.  DESCRIPTION OF THE PARAMETERS 

Parameters Description 

NP The number of bacteria in the population 
Nc The number  of chemotactic steps 
Nre The number of reproduction steps 
Ned The number of elimination-dispersal events 
Ns  Swimming length 
Ped Elimination-dispersal probability 
C(i) The size of the step taken in the random 

direction specified by the tumble 
F, CR DE parameters 
C1, C2, R1, R2, 
w, velocity 

PSO parameters 

This algorithm is adopted to be used for the FBBFNT 
parameter optimization. The initial population is formed by 
the initial positions of bacterium, Xi (i=1, …, NP), which are 
randomly generated NParam x Size matrix. Where: NParam 
is the number of parameters (Beta parameters and weights) 
and Size is the number of FBBFNT nodes. The learning 
process of HBFOA is described in the algorithm 1. 

C. Fitness Function 
   To find an optimal FBBFNT, the Root Mean Squared 
Error (RMSE) is employed as a fitness function: 

                 (5) 

where P is the total number of samples,   and  are the 
desired output and the FBBFNT model output of jth sample. 

 denotes the fitness value of ith individual. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D. The hybrid evolving algorithm for FBBFNT model 
To find an optimal or near-optimal FBBFNT model, 

structure and parameter optimization are used alternately. 
Combining of the EIP and HBFO algorithms, a hybrid 
algorithm for learning FBBFNT model is described as 
follows: 

 
a) Randomly create an initial population (FBBFNT 

trees and its corresponding parameters);                   
G = 0 , where G is the generation  number of the 
learning algorithm; 
GlobalIter = 0, where GlobalIter is the global 
iteration  number of the learning algorithm; 

b) Structure optimization is achieved by the Extended 
Immune Programming (EIP) as described in section A; 

 



 
 

 

c) If a better structure is found or a maximum number 
of EIP iterations is attained, then go to step (d),  

        GlobalIter = GlobalIter + EIP_Iter; 
        otherwise go to step (b); 

d) Parameter optimization is achieved by the HBFO 
algorithm. The architecture of FBBFNT model is fixed, 
and it is the best tree found by the structure search. The 
parameters (weights and flexible Beta function 
parameters) encoded in the best tree formulate a bacteria 

e) If the maximum number of HBFOA iterations is 
attained, or no better parameter vector is found for a 
fixed time then go to step (f);  

      GlobalIter = GlobalIter + HBFOA_Iter; 
        otherwise go to step (d); 

f) If satisfactory solution is found or a maximum 
global iteration number is reached, then the algorithm is 
stopped; otherwise let (G = G +1) and go to step (b). 

IV. EXPERIMENTAL RESULTS 
To evaluate its performance, the proposed FBBFNT 

model is submitted to various nonlinear systems especially 
for prediction, i.e., Mackey-Glass chaotic, Jenkins–Box, and 
sunspot number time series. After many experiences of the 
system parameters, the chosen parameters to be used for all 
problems are as listed in table 2. 

TABLE II.  FBBFNT PARAMETERS 

EIP 
Parameter  Initial value 
Population size (NA) 50 
Cloning probability (Pc) 0.7 
Replacement probability (Pr) 0.5 
Maximum generation number 1000 

HBFOA 
Parameter  Initial value 
Population size (NP) 50 
Maximum  iteration number 4000 
Nc 100 
Nre 16 
Ned 2 
Ns 12 
Ped 0.25 
F 0.5 
CR 0.9 
c1 1.2 
c2 0.5 

Hybrid evolving algorithm 
Parameter  Initial value 
Maximum global iteration number 40 000 
Connected weights rand[0, 1] 
Beta center 	
   rand[min(x), max(x)] 
Beta spread  rand[0, |max(x)-min(x)|] 
Beta form parameters (  rand[0, 5] 

A. Example  1: Mackey–Glass time series prediction 
A time-series prediction problem can be constructed 

based on the Mackey–Glass [22] differential equation: 

       (4) 

The setting of the experiment varies from one work to 
another. In our case, we take a = 0.2, b = 0.1, c = 10, and  = 
17. These values are the same ones used by the comparison 
systems [5, 11, 23-25]. As in the studies mentioned above, 
the task is to predict the value of the time series at point 

, with using the inputs variables 
. 1000 sample 

points are used in our study. The first 500 data pairs of the 
series are used as training data, while the remaining 500 are 
used to validate the model identified. 

The used node set for creating an optimal FBBFNT model 
is , where  (i = 1, 2, 3, 4) 
denotes , , , and , 
respectively. After 16 generations (G = 16) and 6,004,148 
global number of function evaluations of the hybrid learning 
algorithm, an optimal FBBFNT model was obtained with 
RMSE 5.3430e-10. The RMSE value for validation data set 
is 1.8630e-09. The evolved FBBFNT_EIP&HBFOA, the 
actual time-series data and the output of FBBFNT model for 
training ant testing samples are shown in Fig. 4. 

The FBBFNT_EIP&HBFOA evolving model is 
essentially compared with the FBONT model [23] and 
FBBFNT_EGP&OPSO [24] with the same initial 
parameter’s values and number of generations (G = 16). The 
comparison is mainly based on the prediction error (RMSE) 
/ Number of Function Evaluations (NFEs) compromise. In 
fact, for FBONT model [23], RMSE = 0.0076, NFEs = 
2,934,112 and for FBBFNT_EGP&OPSO [24], RMSE = 
0.0068, NFEs = 1,966,825. It is clear that 
FBBFNT_EIP&HBFOA significantly reduces the prediction 
error over the other two models, but with much greater 
number of function evaluations. 

Other comparisons are also shown in Table 3. As 
observed, the FBBFNT_EIP&HBFOA achieves the lowest 
training and testing errors. 

 

TABLE III.  COMPARISON OF DIFFERENT METHODS FOR THE 
PREDICTION OF MACKEY-GLASS TIME-SERIES. 

Method  Training error 
(RMSE) 

Testing error  
(RMSE) 

HMDDE–BBFNN [11] 0.0094 0.0170 
Aouiti [7] - 0.013 
Fuzzy&MRB [25] 0.000990  0.000884 
CPSO [26] 0.0199 0.0322 
HCMSPSO [27] 0.0095 0.0208 
FNT [5] 0.0069 0.0071 
FBONT [23] 0.0074 0.0076 
FBBFNT_EGP& OPSO [24] 0.0061  0.0068  
FBBFNT_EIP&HBFOA 5.3430e-10 1.8630e-09 



 
 

 

0 20 40 60 80 100 120 140 160 180 200
0.7

0.8

0.9

1

1.1

Data training

o
u
tp

u
t

0 10 20 30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

1.05

Data testing

o
u
tp

u
t

Real output
FBBFNT output

 

 

 

 

 

 

Fig. 4. Evolved FBBFNT_EIP&HBFOA  architecture (left), The actual time series data and the output of the FBBFNT model for training and test samples 
(right) to forecast Mackey-Glass data. 

B. Example  2 : Box and Jenkins’ Gas Furnace Problem 
The gas furnace data of Box and Jenkins [28] was saved 

from a combustion process of a methane-air mixture. It is 
used as a benchmark example for testing prediction methods. 
The data set forms of 296 pairs of input-output 
measurements. The input is the gas flow into the 
furnace and the output is the CO2 concentration in 
outlet gas. The inputs for constructing FBBFNT model are 

, and the output is . In this study, 200 
data samples are used for training and the remaining data 
samples are used for testing the performance of the proposed 
model. The used instruction set is , 
where  (i = 1, 2) denotes , respectively. 
After 22 generations (G = 22) of the learning algorithm, the 
optimal FBBFNT model was obtained with the RMSE 
0.008026. The RMSE value for validation data set is 
0.009121. The evolved FBBFN tree is shown in Fig. 5. The 
actual time-series data and the output of FBBFNT model are 
shown in Fig. 6. A comparison result of different methods 
for Jenkins-Box data prediction is shown in Table 4. 

 

Fig. 5. The evolved FBBFNT for prediction of the Jenkins–Box time-
series  ( ). 

 

Fig. 6. The actual time series data and the output of the FBBFNT model 
for training and test samples to forecast the Jenkins–Box time-series  

( ). 

TABLE IV.  COMPARISON OF TESTING ERRORS OF BOX AND JENKINS. 

Method  Prediction 
error  
(RMSE) 

ANFIS model [29] 0.0845 
FuNN model [30] 0.0714 
FNN_AP&PSO [31] 0.0260 
FNT [5] 0.0256 
HMDDE [11] 0.2411 
FBBFNT_EGP& OPSO [24] 0.011618 

0 50 100 150 200 250 300 350 400 450 500
0.4

0.6

0.8

1

1.2

1.4

Training data

O
ut

pu
t

0 50 100 150 200 250 300 350 400 450 500
0.4

0.6

0.8

1

1.2

1.4

Testing data

O
ut

pu
t

FBBFNT output
Target



 
 

 

FBBFNT_EIP& HBFOA 0.009121 

C. Example 3:  Prediction of sunspot number time series  

The sunspot number time series is considered as a real-
world highly-complex and non stationary time series. It is 
recorded for the years 1700-1979. The dataset is available at 
the National Geophysical Data Center website 
(http://www.ngdc.noaa.gov/stp/solar/ssndata.html). 

To make our comparisons meaningful with related works 
[32- 35], the dataset is divided into three parts. The data 
points between 1700 and 1920 are used for training 
FBBFNT model. For the test two sets are used the first one 
is from 1921 to 1955 and the second is from 1956 to 1979. 
The and  are used as 
inputs to the FBBFNT model in order to predict the output 

. The used node set for the FBBFNT model is 
, where  (i = 1, 2, 3, 4) 

denotes , ,  and , 
respectively. 

After 26 generations of the evolution (G = 26), an optimal 
FBBFNT model was obtained with RMSE 1.9566e-10. The 
RMSE value for the first data set validation is 4.1519e-10 
and for the second data set validation is 7.2714e-10. The 
evolved FBBFNT is shown in Fig. 7. The actual time-series 
data and the output of FBBFNT model for training and the 
two test cases are shown in Fig. 8. Table 5 illustrates the 
comparison of the proposed algorithm with other models 
according to the training and testing errors. As evident from 
Table 5, FBBFNT_EIP&HBFOA shows again the 
efficiencies for the sunspot number time series. 

 
Fig. 7. The evolved FBBFNT for prediction of the sunspot number time-

series. 

TABLE V.  COMPARISON OF DIFFERENT MODELS OF SUNSPOT TIME 
SERIES PREDICTION. 

 Model  RMSE 
Training 

RMSE 
Testing 1 

RMSE 
Testing 2 

Transversal Net [32]  0.0987  0.0971  0.3724  
Recurrent net [32]  0.1006  0.0972  0.4361  
RFNN [33]  - 0.2749 0.6249 
FWNN-M [34]  0.0828  0.0973  0.1988  
ABC_BBFNN [35] 0.0012  0.0018  0.0044  
FBBFNT_EGP& 1.9566e-10 4.1519e-10 7.2714e-10 

HBFOA 

 
 

Fig. 8. The actual time series data and the output of the FBBFNT model 
for training, testing 1 and testing 2 to predict the sunspot number time-

series. 

CONCLUSION 
In this paper, a hybrid learning algorithm based on the 

evolutionary computation is introduced to create and evolve 
the Flexible Beta Basis Function Neural Tree (FBBFNT) 
model. The proposed algorithm can successfully optimize 
simultaneously the structure and the parameters of the 
FBBFNT. The structure is developed using Extended 
Immune Programming (EIP). The Beta parameters and 
connected weights are optimized by the Hybrid Bacterial 
Foraging Optimization Algorithm (HBFOA). The results 
show that the FBBFNT_EIP&HBFOA method can 
effectively predict nonlinear systems such as Mackey-Glass 
chaotic time series, Jenkins–Box time series, and sunspot 
number time series. 

ACKNOWLEDGMENT  
The authors would like to acknowledge the financial support 
of this work by grants from General Direction of Scientific 
Research (DGRST), Tunisia, under the ARUB program. 
This work was also supported in the framework of the IT4 
Innovations Centre of Excellence project, reg. no. 
CZ.1.05/1.1.00/02.0070 by operational programme 
‘Research and Development for Innovations’ funded by the 
Structural Funds of the European Union and state budget of 
the Czech Republic, EU.  



 
 

 

REFERENCES 
[1] X. Yao, “Influence of phosphorus runoff from agricultural areason 

enclosed sea downsteram”, Int. Symp. AI, Reasoning and Creativity, 
pp. 49–52, 1991. 

[2] B.T. Zhang, P. Ohm, H. Miihlenbein, “Evolutionary induction of 
sparse neural trees”, Evolutionary Computation, vol. 5, pp. 213-236, 
1997. 

[3] Y. Chen, A. Abraham, B. Yang, “Feature Selection and Classification 
using Flexible Neural Tree”, Neurocomputing, vol. 70, pp. 305-313, 
2006. 

[4] Y. Chen, B. Yang, Q. Meng, “Small-time Scale Network Traffic 
Prediction Based on Flexible Neural Tree”, Applied Soft 
Computing, vol.12, pp. 274-279, 2012. 

[5] Y. Chen, B. Yang, J. Dong, A. Abraham, “Time-series forecasting 
using flexible neural tree model”, Information Sciences, vol. 174,             
pp. 219–235, 2005. 

[6] Y. Chen, F. Chen, J.Y. Yang, “Evolving MIMO Flexible Neural Trees 
for Nonlinear System Identification”, in International Conference on 
Artificial Intelligence, pp. 373-377, Nevada, USA, June 25-28, 2007. 

[7] C. Aouiti, , A.M. Alimi, A. Maalej, “A Genetic Designed Beta Basis 
Function Neural Net-works for approximating of multi-variables 
functions”, in Proc. Int. Conf. Artificial Neural Nets and Genetic 
Algorithms Springer Computer Science, Prague, Czech Republic, pp. 
383-386, 2001.  

[8] H. Dhahri, A.M. Alimi, , F. Karray, “Designing beta basis function 
neural network for optimization using particle swarm optimization”, 
in IEEE International Joint Conference on Neural Networks, Hong 
Kong, China, pp. 2564-2571, 2008.  

[9] I.A.A. Al-Hadi, S.Z. M. Hashim and S. M. H. Shamsuddin, “Bacterial 
Foraging Optimization Algorithm for neural network learning 
enhancement”, in 11th International Conference on Hybrid Intelligent 
Systems (HIS), pp. 200–205, Malacca, Malaysia, December 5-8 2011. 
IEEE.  

[10] C. Aouiti, A.M. Alimi, K. Karray, A. Maalej, “The design of bate 
basis function neural network and beta fuzzy systems by a hierarchical 
genetic algorithm”, fuzzy Sets and Systems, vol. 154, pp. 251-274, 
2005. 

[11] H. Dhahri, A.M. Alimi, A. Abraham, “Hierarchical multi-dimensional 
differential evolution for the design of beta basis function neural 
network”, Neurocomputing, vol. 79, pp.131-140, 2012. 

[12] A.M. Alimi, “The Beta Fuzzy System: Approximation of Standard 
Membership Functions”, in Proc. 17eme Journees Tunisiennes 
d'Electrotechnique et d'Automatique: JTEA'97, Nabeul, Tunisia, vol. 
1, pp. 108-112, 1997. 

[13] A.M. Alimi, “The Beta System: Toward a Change in Our Use of 
Neuro-Fuzzy Systems”, International Journal of Management, Invited 
Paper, June, pp. 15-19, 2000.  

[14] P. Musilek, A. Lau, M. Reformat and L. Wyard-scot, “Immune 
Programming”, Information Sciences, vol. 176, issue 8, pp. 972–1002, 
April 2006. 

[15] K. Chellapilla, “Evolving computer programs without subtree 
crossover”, IEEE Transactions on Evolutionary Computation, vol. 
1(3), pp. 209-216, 1998. 

[16] K. M. Passino, “Biomimicry of bacterial foraging for distributed 
optimization and control”, IEEE Control Systems Magazine, vol. 22, 
pp. 52–67, 2002. 

[17] S. Mishra, “A hybrid least square-fuzzy bacterial foraging strategy for 
harmonic estimation”, IEEE Transactions on Evolutionary 
Computation, vol. 9, no. 1, pp. 61– 73, February 2005. 

[18] H.K. Dong and H.C. Chae, “Bacteria Foraging Based Neural Network 
Fuzzy Learning”,  in Proceedings of the Indian International 
Conference on Artificial Intelligence, pp. 2030–2036, Pune India, 
December 20-22, 2005. 

[19] I.A.A. Al-Hadi, S.Z.M. Hashim and S. M.H. Shamsuddin, “Bacterial 
Foraging Optimization Algorithm for neural network learning 
enhancement”, in 11th International Conference on Hybrid Intelligent 
Systems (HIS), pp. 200–205, Malacca-Malaysia, December 5-8, 2011.  

[20] M. Geethanjali, V. Kannan and A. V. R. Anjana, “Bacterial foraging 
optimization algorithm trained ANN based differential protection 
scheme for power transformers”, in Proceedings of the Second 
international conference on Swarm, Evolutionary, and Memetic 
Computing - Volume Part II, SEMCCO’11, pp. 267–277, Berlin, 
Heidelberg, 2011. Springer-Verlag. 

[21] Y. Jarraya, S. Bouaziz and A.M. Alimi. Adaptive Bacterial Foraging 
Swarm Optimization with Chemotactic Differential Evolution 
Algorithm. In Proceedings of International conference on 
Metaheuristic and Nature Inspired Computing (META’12), Port El-
Kantaoiui, Sousse-Tunisia, October 27-31 2012. 

[22] E.N. Lorenz, “Deterministic non-periodic flows”, J. Atm. Sci., vol. 20 
pp. 130–141, 1963. 

[23] S. Bouaziz, H. Dhahri, A.M. Alimi, “Evolving Flexible Beta Operator 
Neural Trees (FBONT) for Time Series Forecasting”, T. Hung et al. 
(Eds.) : 19th International Conference in neural information 
Processing  (ICONIP’12), Proceedings, Part III,  Series: Lecture Notes 
in Computer Science, Doha-Qatar,  vol. 7665, pp. 17-24, 2012. 

[24] S. Bouaziz, H. Dhahri, A.M. Alimi, A. Abraham, “A hybrid learning 
algorithm for evolving Flexible Beta Basis Function Neural Tree 
Model”, Neurocomputing, In Press-Corrected Proof, 2013. 

[25] C.G. Coy and D. Kaur, “Improving evolutionary training for Sugeno 
Fuzzy Inference Systems using a Mutable Rule Base”, 2010 Annual 
Meeting of the North American, Fuzzy Information Processing 
Society (NAFIPS), pp. 1–6, 12-14 July, 2010. 

[26] F. Van Den Bergh, A.P. Engelbrecht, “A cooperative approach to 
particle swarm optimization”, IEEE Trans. Evol. Comput., vol. 8, no. 
3, pp. 225–239, Jun. 2004. 

[27] C.F. Juang, C.M. Hsiao, C.H. Hsu, “Hierarchical Cluster-Based 
Multispecies Particle-Swarm optimization for Fuzzy-System 
Optimization”, IEEE Transactions on Fuzzy Systems, vol. 18(1), pp. 
14-26, 2010.  

[28] G.E.P. Box, G.M. Jenkins, “Time Series Analysis--Forecasting and 
Control”, Holden Day, San Francisco, CA, 1976. 

[29] J. Nie, “Constructing fuzzy model by self-organising counter 
propagation network”, IEEE Transactions on Systems Man and 
Cybernetics 25, pp. 963–970, 1995.  

[30]  J.-S.R. Jang, C.-T. Sun, E. Mizutani, “Neuro-fuzzy and soft 
computing: a computational approach to learning and machine 
intelligence”, Prentice-Hall, Upper Saddle River, NJ, 1997. 

[31] Y. Chen, B. Yang, J. Dong, “Evolving Flexible Neural Networks 
Using Ant Programming and PSO Algorithm”, International 
Symposium on Neural Networks (ISNN’04), Lecture Notes on 
Computer Science 3173, pp.211-216, 2004. 

[32] J.R. McDonnell, D. Waagen, “Evolving recurrent perceptrons for 
time-series modeling”, IEEE Trans Neural Netw, vol. 5(1), pp. 24-38, 
1994.  

[33] R.A. Aliev, B.G. Guirimov, R.R. Aliev, “Evolutionary algorithm-
based learning of fuzzy neural networks”, Part 2: Recurrent fuzzy 
neural networks, Fuzzy Sets and Systems, vol. 160 (17), 2009. 

[34] S. Yilmaz, Y. Oysal, “Fuzzy wavelet neural network models for 
prediction and identification of dynamical systems”, IEEE 
Transactions on Neural Networks, pp. 1599-1609, 2010. 

[35] H. Dhahri, A.M. Alimi, “Designing Beta Basis Function Neural 
Network for Optimization Using Artificial Bee Colony (ABC)”, 
International Joint Conference on Neural Networks, Brisbane, pp. 
2161-4393, 2012. 
 


