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ABSTRACT. Finding several feasible solutions for a constrained nonlinear system of equations is a very 

challenging problem. Fundamental problems from engineering, chemistry, medicine, etc. can be formulated 

as a system of equations. Finding a solution for such a system requires sometimes high computational efforts. 

There are situations when these systems having multiple solutions. For such problems, the task is to find as 

many solutions as possible. This task can be complicated by adding several inequalities and/or variable 

bound constraints. In this paper, we deal with such systems of equations, which have multiple solutions and 

we try to solve them using two different approaches. Both approaches transform the problem into an 

optimization problem. One approach uses a line search based technique and the other one an evolutionary 

algorithm technique. Several experiments are performed in order to emphasize the advantages and 

disadvantages of the two methods.  
Keywords: Polynomial systems, multiple roots, optimization, line search, evolutionary 

algorithms 

 

1. Introduction.  

A nonlinear system of equations is defined as: 
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where x=(x1, x2,…, xn), f1,…,fn are nonlinear functions in the space of all real valued 

continuous functions on [ ] n
n

i
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Some of the equations can be linear, but not all of them.Finding a solution for a nonlinear 

system of equations f(x) involves finding a solution such that every equation in the 

nonlinear system is 0: 
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The assumption is that a zero, or root, of the system exists. The solutions we are looking for 

are those points (if any) that are common to the zero contours of fi, i=1,...,n.  

 

Polynomials are popular in curve and surface representations and many critical problems 

arising in computer aided geometric design such as surface interrogation are reproduced to 

find a zero set of a system of nonlinear equations [19].  

 

There are several ways to solve nonlinear equation systems. Probably the most famous 

techniques are Newton type techniques. Other techniques are: Trust-Region Method, 

Broyden method, Secant method and Halley method [3][4][5][10]. Some recent work can 

be found in [1][2]. Fekik et al. [7] implemented neural-network based system identification 

techniques for nonlinear systems. A direct adaptive fuzzy backstepping control approach 

for a class of unknown nonlinear systems is developed in [27]. Most of the root finding 

algorithms experience difficulties in dealing with roots with high multiplicity such as 

performance deterioration and lack of robustness in numerical computation. Newton 

methods, for instance, require a good initial approximation of the roots of the system and 

fail to provide full assurance that all roots have been found [19].  

 

Most of the times, the solution of a system of equations is not unique. Several practical 

problems require finding multiple solutions for a system. We refer to this type of equations 

systems in this research. Not only the problem of computing all solutions for a nonlinear 

constrained system of equations is NP-hard, but it is also possible that there exist 

exponentially many such solutions [14][16]. Also, simply checking if a solution exists is 

NP-hard [15][16]. 

 

In this paper, we develop two approaches, which treat the problem in two different ways. 

The first approach is a line search based technique, which is able to obtain one approximate 

solution in one run. This technique is applied several times in order to get multiple 

solutions [8][9][12]. The second approach transforms the system into a multiobjective 

optimization problem [10] [11] and a population based meta-heuristic (evolutionary 

algorithm) is then applied. Pareto dominance concept is used and a set of feasible solutions 

(Pareto optimal) are obtained in a single run. Rest of the paper is organized as follows. 

Section 2 presents the two optimization techniques. Experiment results, analysis and 

discussions are provided in Section 3. Finally, conclusions are provided towards the end. 

 

2. Optimization Techniques Used 

 

A modified line search and evolutionary algorithms are used and the way in which they 

treat the problem is presented in detail in the following sub-sections. 

 



  

 

 

2.1. Line search 

It is known that Line Search (LS) technique uses a starting point. There are also versions 

which allow the use multiple points and the search starts separately from each of these points. 

In the proposed approach, multiple arbitrary starting points are used. Each point is randomly 

generated over the definition domain [min1, max1] ×[min2, max2] × . . . × [minn, maxn] 

For direction, we use a random value between -0.5 and 0.5.  

The step value is given by
12

3
2 2

+
+

k
, where k denotes the iteration number.  

After a given number of iterations, the search process is restarted. In order to restart the 

algorithm, the best result obtained in the previous set of iterations is taken into account and 

by following the steps given below: 

 

o Among all the considered points, the solution for which the objective function is 

obtaining the best value is selected. If there are several such solutions, one of them is 

randomly selected. This solution is a multi-dimensional point in the search space and 

denoted by x for an easier reference. 

o For each dimension i of the point x, the first partial derivative with respect to this 

dimension is calculated. This means the gradient of the objective function is 

calculated which is denoted by g. 

Taking this into account, the bounds of the definition domain for each dimension is 

re-calculated as follows: 

if 
i

i
x

f
g

∂

∂
= > 0 then maxi = xi; 

if 
i

i
x

f
g

∂

∂
= < 0 then mini = xi 

o The search process is re-started by re-initializing a new set of arbitrary points but 

between the newly obtained boundaries (between the new maxi or new mini). 

 

The line search is a very useful optimization tool. Therefore, the equations system is 

transformed into an optimization problem as follows [15][16][21][22]:  

minimize ∑
=

n

i
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2.2 Multiobjective Evolutionary approach 

The Evolutionary Algorithm (EA) approach transforms the system of equations into a 

multiobjective optimization problem as follows: 

Minimize 
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We generate the initial solutions over the given problem domain. These solutions are then 

evolved in an iterative manner. In order to compare the solutions, Pareto dominance 



  

 

 

relationship is used [26]. Real encoding of solutions, tournament selection, convex 

crossover and Gaussian mutation are used [9][24][27][25]. An external set is used for 

storing all the non-dominated solutions found during the iteration process. Tournament 

selection is applied. n individuals are randomly selected from the unified set of current 

population and external population. Out of these n solutions the one which dominated a 

greater number of solutions is chosen. If there are two or more 'equal' solutions then one of 

them is picked at random. At each iteration, this archive is updated by introducing all the 

non-dominated solutions obtained at the respective step and by removing all solutions that 

might become dominated. 

 

3. Experimental Results and Analysis 
 

We consider 5 systems of equations having between one and nine solutions. In Table 1, the 

details of these systems are provided. 

 

TABLE 1. Benchmarks used in experiments 

Problem Number of variables Ranges 

Brown 5 [-2, 2]
5 

Bullard 2 [5.49⋅e-6
, 4.553]×[ 0.0021961, 18.21] 

Ferrais 2 [0.25, 1]×[1.5, 6.28] 

Himmelblau 2 [-5, 5]
2 

Steady state CSTR 2 [0, 1]
2 

 

Each algorithm was run 10 times. For the EA approach, all the nondominated sets obtained 

at the end of each run were unified. For the LS approach, we consider all the solutions (out 

of the 10 obtained), which are different. We also illustrate the evolution of the best merit 

function obtained by LS in all the 10 runs. Parameters used by LS and EA for all 

benchmarks are given in Table 2. 
 

TABLE 2. Parameters used in experiments by LS and EA. 

Parameter Setting 

 Brown Bullard Ferrais Himmelblau Steady 

State CSTR 

LS      

No of starting points 100 100 100 100 100 

No of re-starts 10 10 10 10 10 

No of iterations per re-start 5 5 5 5 5 

EA      

Population size 500 100 100 500 200 

Number of generations 500 500 500 500 200 

Size of nondominated set 100 100 100 100 100 

Sigma (for mutations) 0.1 0.1 0.1 0.1 0.1 

Tournament size 3 3 3 3 3 
 

 



  

 

 

3.1. Equation System 1 (Brown)  

 

This benchmark is given by the following system of equations: 
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LS is only obtaining a single exact solution in all independent runs. This solution is (1, 1, 1, 

1, 1) for which the functions values are all equal to 0.  The evolution of the merit function 

is depicted in Figure 1. As evident, the merit function converges to 0 after 4 iterations (we 

consider 5 iterations in one re-start). This means there is not even a need to use derivatives 

and to restart the line search. The EA approach is obtaining multiple solutions but none of 

the solutions are close to the results obtained by LS.  In Figure 2, the solutions obtained by 

EA in all the 10 runs are plotted. It can be observed that only few of them are having the 

Euclidian norm less than 1.  

 
FIGURE 1. The evolution of the merit function for LS approach for Brown benchmark. 



  

 

 

 
FIGURE 2. Solutions obtained by EA for Brown benchmark. 

 

3.2. Equation System 2 (Bullard) 

 

This benchmark consists of a system of two equations given by: 
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For Bullard benchmark, both algorithms obtain only approximate solutions. 10 best 

solutions obtained are depicted in Figure 3. Even though the evolution of the merit function 

(for LS) is very close to 0 (as evident from Figure 4) the values of the equations are in the 

range of 10
-3

-10
-5

.  
 

 
FIGURE 3. Solutions obtained by LS and EA for Bullard benchmark (objectives space-left, 

variables space-right). 



  

 

 

 
FIGURE 4 The evolution of merit functions for LS approach for the Bullard benchmark. 
 

3.3. Equation System 3 (Ferrais) 

 

This benchmark consists of the following system of equations: 
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For this example, LS obtained a single solution which is (0.5, 3.14) for which the functions 

values are 0.0001265 and 0.0137805. Solutions obtained by EA are plotted in Figure 5. The 

evolution of the merit function for LS is depicted in Figure 6.  

 
FIGURE 5. Solutions obtained by EA for Ferrais benchmark (objectives space – left, 

variables space-right). 
 



  

 

 

 
Figure 6. Evolution of merit function for LS for Ferrais benchmark. 

 

3.4. Equation System 4 (Himmelblau) 

 

This example is given by the following system of equations: 
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For this example, there are 9 known solutions found so far. In 10 independent runs, LS is 

able to detect 7 solutions.  The 7 solutions obtained by LS are given in Table 3. Solutions 

obtained by both LS and EA are plotted in Figure 7 (objectives space) and Figure 8 

(variables space). As evident from Figure 8, in the variables space the solutions obtained by 

EA are centered on one of the solutions obtained by LS.  The convergence of the merit 

function for the best result obtained in 10 runs (which is 0.2E-8) is depicted in Figure 9.  

 

TABLE 3. Solutions obtained by LS for Himmelblau benchmark. 

Solution Functions values 

x1 x2 f1 f2 

-0.270841381989373 -0.923036977925469 1.51325E-4 4.19365E-5 

0.0867085036783106 2.88423339327931 1.19474E-3 1.212087E-3 

-3.07304526798170 -0.0813371350117495 1.58640E-3 3.61678E-4 

3.38519412590167 0.0735892503227077 -1.93149E-4 -3.80767E-3 

3.00003916764214 1.99979209998351 1.25948E-3 6.28423E-3 

3.58441811907790 -1.84770519568769 -1.85554E-3 -1.22804E-2 

-0.127609787275348 -1.95313642658286 2.22599E-2 -8.22744E-3 
 



  

 

 

 
FIGURE 7. Solutions obtained by LS and EA for Himellblau benchmark represented in the 

objectives space (different sizes of the domain are considered for a better visualization).  
 

 
FIGURE 8. Solutions obtained by LS and EA for Himellblau benchmark represented in the 

variables space. 
 

 
FIGURE 9. Evolution of merit function for LS for Himmelblau benchmark. 

 



  

 

 

3.5. Equation System 5 (Steady state CSTR) 

 

This problem is given by the following system of equations: 
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where: 

    D = 22; β1 = 2; β2 = 2; R = 0.935; γ = 1000 

but different other values for R may be considered. For this benchmark, LS obtained one 

solution (0.00752614, 0.05989059) for which the functions values are (-0.0433387, 

0.09334198) and the merit function is 0.01059. The evolution of the merit function is 

depicted in Figure 10 and the solutions obtained by EA in all the 10 runs are depicted in 

Figure 11. 

 
FIGURE 10. The evolution of merit function for LS for Steady state CSTR benchmark. 

 

 
FIGURE 11. Solutions obtained by EA for steady state CSTR benchmark (objectives space – 

left, variables space-right). 
 



  

 

 

5. Conclusions 
 

One of the most studied problems in applied mathematics, engineering and sciences is 

funding multiple solutions of a set of nonlinear equations. Two different techniques are 

considered in this paper: line search based approach (LS) and an Evolutionary Algorithm 

(EA) based approach. Both techniques transform the system of equations into an 

optimization problem: LS transforms the systems of equations into a single objective 

optimization problem and EA transforms the system into a multiobjective optimization 

problem. Several equations systems having more than one solution are considered in the 

experiments. The numerical results reveal that LS can approximate solutions better than EA 

even though LS detect only one solution at one time and has to be applied multiple times 

while EA detects a set of solutions in one single run. Still the advantage of EA is that it can 

obtain multiple solutions and sometimes the user really needs a set from where the desired 

solution could be chosen. 
 

REFERENCES 
 

[1] M. Basin, J. Perez, D. Calderon-Alvarez, Optimal Filtering for Linear Systems over Polynomial 

Observations, International Journal of Innovative Computing, Information and 

Control, 4(2),  pp. 313-320, 2008 

[2] Michael Basin, Joel Perez, Rodolfo Martinez-Zuniga, Optimal Filtering for Nonlinear Polynomial 

Systems over Linear Observations with Delay, International Journal of Innovative Computing, 

Information and Control, 2(4) pp. 863-874, 2006 

[3] C.G. Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics of 

Computation, 19, 577-593, 1965.  

[4] A.R. Conn, N.I.M. Gould, P.L. Toint, Trust-Region methods, SIAM, Philadelphia, 2000. 

[5] A. Cuyt, P.van der Cruyssen, Abstract Pade approximants for the solution of a system of nonlinear 

equations, Computational Mathematics and Applications, 9, 139-149, 1983. 

[6] L.J. Eshelman, R.A. Caruna, J.D. Schaffer, Biases in the crossover landscape. In Proceeding of the Third 

International Conference on Genetic Algorithms, J. Schaffer (ed.), Morgan Kaufmann Publisher, Los 

Altos, CA, 10-19, 1989. 

[7] A. Fekih, H. Xu, F. N. Chowdhury, Neural Networks Based System Identification Techniques for Model 

Based Fault Detection of Nonlinear Systems, International Journal of Innovative Computing, Information 

and Control, 3(5) pp. 1073-1085, 2007 

[8] C. A. Floudas, P.M. Pardalos, C. Adjiman, W.R. Esposito, Z. H. Gümüs, S. T. Harding, J. L. Klepeis, 

C.A. Meyer, C.A. Schweiger, Handbook of Test Problems in Local and Global Optimization (Nonconvex 

Optimization and Its Applications), Kluwer Academic Publishers, Dordrecht, 1999.  

[9] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning. Addison Wesley, 

Reading, MA, 1989. 

[10] W. Gragg, G. Stewart, A stable variant of the secant method for solving nonlinear equations, SIAM 

Journal of Numerical Analysis, 13, 889-903, 1976 

[11] Grosan, C., Abraham, A., Hybrid line search for multiobjective optimization, International Conference 

on High Performance Computing and Communications (HPCC-07), Springer Verlag, Germany, R. Perrott 

et al. (Eds.): HPCC 2007, LNCS 4782, pp. 62-73, 2007. 



  

 

 

[12] Grosan, C., Abraham, A., Exploration of Pareto Frontier Using a Fuzzy Controlled Hybrid Line Search, 

7th International Conference on Hybrid Intelligent Systems, Kaiserslautern, Germany, IEEE Computer 

Society press, USA, ISBN 07695-2662-4, pp. 366-371, 2007. 

[13] C. Grosan, A. Abraham, A new approach for solving nonlinear equations systems, IEEE Transactions on 

Systems, Man and Cybernetics - Part A, Volume 38, No. 3, 2008 (in press). 

[14] Grosan, C., Abraham, A., Chang, T.G., Kim, D.H. Solving Nonlinear Equation Systems Using an 

Evolutionary Multiobjective Optimization Approach, 5th Mexican International Conference on Artificial 

Intelligence, Mexico, Lecture Notes in Computer Science, Springer Verlag, Germany, A. Gelbukh and 

C.A. Reyes-Garcia (Eds.): MICAI 2006, LNAI 4293, pp. 283-293, 2006. 

[15] C. Grosan, A. Abraham, Exploration of Multiple Roots for a Polynomial System, International 

Conference on Digital Information Management (ICDIM), Lyon, France, IEEE Press, USA, ISBN 

1-4244-1476-8, pp. 133-137, 2007. 

[16] M.J. Hirsch , C.N. Meneses , P.M. Pardalos,M.G.C. Resende, Global optimization by continuous grasp, 

Optimization Letters, 1(2), 201-212, 2007. 

[17] R. Horst, P.M. Pardalos, N.V. Thoai, Introduction to global optimization, Kluwer Academic Publishers, 

1995. 

[18] R. Horst, P.M. Pardalos, Handbook of global optimization, Kluwer Academic Publishers, 1995. 

[19] K.H. Ko, T. Sakkalis, N.M. Patrikalakis, Nonlinear polynomial systems: multiple roots and their 

multiplicities, Proceedings on Shape Modeling Applications, pp. 87-98, 2004 

[20] C.D Maranas, C.A. Floudas, Finding all solutions of nonlinearly constrained systems of equations, 

Journal of Global Optimization, 7, 143-182, 1995. 

[21] P.Y. Nie, A null space method for solving system of equations, Applied Mathematics and Computation, 

149(1), 215-226, 2004. 

[22] P.Y. Nie, An SQP approach with line search for a system of nonlinear equations, Mathematical and 

Computer Modelling, 43, 368-373, 2006. 

[23] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables. New 

York: Academic Press, 1970 

[24] W.M. Spears, K.A. De Jong, On the virtues of uniform crossover. In Proceedings of the Fourth 

International Conference on Genetic Algorithms, Morgan Kaufmann Publisher, 230-236, 1991. 

[25] G. Syswerda, Uniform crossover in genetic algorithms. In Proceedings of the third Conference in Genetic 

Algorithms, J. Schaffer (ed.), Morgan Kaufmann Publisher, Los Altos, CA, 2-9, 1989. 

[26] Steuer, R. E. Multiple Criteria Optimization. Theory, Computation, and Application. Wiley Series in 

Probability and Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley Sons, 

Inc, 1986. 

[27] S. Tong, Y. Li, Direct Adaptive Fuzzy Backstepping Control for a Class of Nonlinear Systems, 

International Journal of Innovative Computing, Information and Control, 3(4) pp. 887-896, 2007 


