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Abstract

This paper proposes a novel approach to generate a
uniform distribution of the optimal solutions along the
Pareto frontier. We make use of a standard mathemat-
ical technique for optimization namely line search and
adapt it so that it will be able to generate a set of so-
lutions uniform distributed along the Pareto front. To
validate the method, numerical bi-criteria examples are
considered. The method deals with both unconstrained
as well as constrained multicriteria optimization prob-
lems.

1 Introduction

Multiobjective Optimization Problems (MOP’s) are
ones of the hardest optimization problems, which arise
in many real-world applications. Due to the increas-
ing interest in multiobjective optimization, several al-
gorithms for dealing with such problems have been
proposed recently [1] [2][3][6][7][8]. Most of these al-
gorithms use an iterative method to generate multiple
points approximating the Pareto set. A Pareto optimal
set is regarded as the mathematical solution to a multi-
criteria problem. In continuous problems, the number
of Pareto optimal solutions is usually infinite. Only in
relatively simple cases the entire Pareto optimal set can
be determined analytically. In a typical problem, we
must be satisfied by obtaining enough Pareto optima
to cover the minimal set in the criteria space properly.
This computed subset of Pareto optima could be called
as a representative Pareto optimal set and its quality
can be judged for example by its ability to cover the
whole minimal set evenly. In some problems, however,
the cost of generating just one Pareto optimum may
become so high that the designer can afford only a few

Pareto optimal solutions. Before performing numerical
optimization a suitable generation strategy is to be se-
lected, which guarantees that only Pareto optima are
obtained.

The paper deals with the generation of uniformly
distributed Pareto points. A scalarization of the objec-
tives is used in order to transform the multiobjective
optimization problem into a single objective optimiza-
tion problem. A line search based technique is used
to obtain an efficient solution. Starting with this so-
lution, a set of efficient points are further generated,
which are widely distributed along the Pareto frontier
using again a line search based method but involving
Pareto dominance relationship.

Rest of the paper is organized as follows. The multi-
objective algorithm used is presented in Section 2. The
numerical examples used to emphasize the efficiency of
the used approach are presented in Section 3 followed
by Conclusions in Section 4.

2 The Multicriteria Approach

The line search [3] is a well established optimiza-
tion technique. The standard line search technique is
modified so that it is able to generate the set of non-
dominated solutions for a multiobjective optimization
problem (MOP) [4]. The approach comprises of two
phases: first, the problem is transformed into a SOP
and a solution is found using a line search based ap-
proach. This is called as convergence phase. Second,
a set of Pareto solutions are generated starting with
the solution obtained at the end of convergence phase.
This is called as spreading phase.

Consider the MOP formulated as follows:
Let <m and <n be Euclidean vector spaces referred

to as the decision space and the objective space. Let
X ⊂ <m be a feasible set and let f be a vector-valued
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objective function f : <m → <n composed of n real-
valued objective functions f=(f1, f2,. . . , fn), where
fk: <m → <, for k=1,2,. . . , n. A MOP is given by:

min (f1(x), f2(x),. . . , fn(x)),

subject to x ∈ X.

The MOP is further transformed into a single
objective optimization problem (SOP) by considering:

min F =
n∑

i=1

f3
i (x)

subject to x ∈ X.

Direction and step setting

The direction is set as being a random number be-
tween 0 and 1.

The step is set as follows:

αk=2+ 3
22k+1

(1)
where k refers to the iteration number.

Convergence phase

Initially, a set of points are randomly generated
within the given boundaries. The line search with di-
rection and step set as mentioned above is applied for a
given number of iterations for each of these points. Af-
terwards, the boundaries of the definition domain are
modified taking into account the partial derivatives as
follows:

Let x be the best result obtained in the previous set
of iterations:

For each dimension iof the point x, the first partial
derivative with respect to this dimension is calculated.
This means the gradient of the objective function is
calculated which is denoted by g. Taking this into
account, the bounds of the definition domain for each
dimension are re-calculated as follows:

if gi = ∂F
∂xi

< 0then lower bound =xi

if gi = ∂F
∂xi

> 0then upper bound =xi;

The search process is re-started by re-initializing
a new arbitrary point between the newly obtained
boundaries.

Spreading phase

At the end of the convergence phase, a solution is
obtained. This solution is considered as an efficient
(or Pareto) solution. During this phase and taking
into account of the existing solution, more efficient
solutions are to be generated so as to have a thorough
distribution of all several good solutions along the
Pareto frontier. In this respect, the line search
technique is made use of to generate one solution
at the end of each set of iterations. This procedure
is applied several times in order to obtain a larger
set of non-dominated solutions. The following steps
are repeated in order to obtain one non-dominated
solution:

Step 1. A set of nondominated solutions found so
far is archived. Let us denote it by NonS. Initially,
this set will have the size one and will only contain
the solution obtained at the end of convergence phase.

Step2. We apply line search for one solution and one
dimension of this solution at one time. For this:

Step 2.1. A random number i between one and
|NonS| (|.| denotes the cardinal) is generated. Denote
the corresponding solution by nonS i.

Step 2.2. A random number j between one and
the number of dimensions (the number of decision
variables) is generated. Denote this by nonS ij .

Step 3. Line search is applied for nonS ij .
Step 3.1. Set p=random.
Step 3.2. Set α (which depends on the problem, on

the number of total nondominated solutions which are
to be generated, etc.).

Step 3.3. The new obtained solution new sol is iden-
tical to nonS i in all dimensions except dimension j
which is:

new sol j= nonS ij+α ·p
Step 3.4. if (new sol j > upper bound) or (new sol j

< lower bound)
then new sol j = lower bound + random · (upper bound
– lower bound).

Step 4. if F (new sol) > F (nonS 1)
then discard new sol
else if new sol is nondominated with respect to the set
NonS
then add new sol to NonS and increase the size on
NonS by 1.

Go to step 2.
Step 5. Stop
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3 Experiment Results

In order to emphasize the performance of the above
technique to generate uniformly distributed Pareto
points we make use of two multiobjective optimiza-
tion test problems: and unconstrained MOP and a
constrained MOP.

3.1 Unconstrained example (Problem 1)

Consider the following problem [9]:

Min f={f1(x), f2(x)}
f1(x)=cosh(x)
f2(x) = x2-12x+35

The multiobjective approach used the following
parameters:

• number of re-starts: 10;

• number of iteration per each re-start: 10;

• α for the spreading phase (its value depends on
the number of Pareto solutions which are to be
generated).

The Pareto frontier generated using 100 solutions is
depicted in Figure 1 and using 1000 solutions in Figure
2. The value of α is 4.9, while the Pareto front consists
of 100 points and 9.5 when the Pareto front has 1000
points.

3.2 Constrained example (Problem 2)

Considering the following test function with equali-
ties and inequalities constraints [9]:

Min f={f1(x), f2(x)}
f1(x)=(x1-2)2+(x2-1)2

f2(x) = x2
1 + (x2 − 6)2

s.t.

g1(x) = x2
1 − x2 ≤ 0

g2(x) = 5x2
1 + x2 ≤ 10

g3(x) = x2 ≤ 5
g4(x) = −x1 ≤ 0

The Pareto frontier generated using 100 solutions
is illustrated in Figure 3 and using 1000 solutions in
Figure 4. The value of α is 5.4 and the Pareto front
consists of 100 points and 7.2 when the Pareto front
has 1000 points.

Figure 1. Pareto front obtained with 100 solu-
tions for Problem 1.

Figure 2. Pareto front obtained with 1000 so-
lutions for Problem 1.
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Figure 5. Distributions of solutions along the Pareto frontier for Problem 2 by considering: (a) α=1.5
and (b) α=9.7.

Figure 3. Pareto front obtained with 100 solu-
tions for Problem 2.

Figure 4. Pareto front generated using 1000
points for Problem 2.
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One of the challenges of this approach is to find an
adequate value for α. The values obtained in our ex-
amples were set based on several experiments. For ex-
ample, Figure 5 depicts two other distributions of the
solutions along the Pareto front which are not uniform
obtained for α=1.5 (Figure 5 (a)) and α=9.7 (Figure
5 (b)).

4 Conclusions

The paper proposed a novel method for finding a
set of uniformly distributed Pareto solutions along the
Pareto frontier. A line search based technique is ap-
plied in order to obtain one solution. Starting from this
solution, a simplified version of the initial line search is
used in order to generate solutions with a well distri-
bution on the Pareto frontier. Numerical experiments
performed on unconstrained as well as constrained mul-
tiobjective optimization test problems show that the
approach presented here is able to converge very fast
and provide a very good distribution of solution along
the Pareto frontier. The approach uses a parameter
whose setting gives a better or a worse distribution.
The value of this parameter is set based on some ex-
perimental tests but one of our future research plans is
to find a better way to deal with setting the right value
for this parameter.
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