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Abstract – Engineers and researchers in the automobile 
industry have tried to design and build safer automobiles, but 
traffic accidents are unavoidable. Patterns involved in 
dangerous crashes could be detected if we develop a 
prediction model that automatically classifies the type of 
injury severity of various traffic accidents. These behavioral 
and roadway patterns are useful in the development of traffic 
safety control policy. We believe that to obtain the greatest 
possible accident reduction effects with limited budgetary 
resources, it is important that measures be based on scientific 
and objective surveys of the causes of accidents and severity 
of injuries. This paper presents some models to predict the 
severity of injury that occurred during traffic accidents using 
three machine-learning approaches. We considered neural 
networks trained using hybrid learning approaches, decision 
trees and a concurrent hybrid model involving decision trees 
and neural networks. Experiment results reveal that among 
the machine learning paradigms considered the hybrid 
decision tree-neural network approach outperformed the 
individual approaches. 

I. INTRODUCTION AND RELATED RESEARCH 
 

The costs of fatalities and injuries due to traffic 
accidents have a great impact on society. In recent years, 
researchers have paid increasing attention at determining 
the factors that significantly affect driver injury severity in 
traffic accidents.  

Abdelwahab et al. studied the 1997 accident data for the 
Central Florida area [2]. The analysis focused on vehicle 
accidents that occurred at signalized intersections. The 
injury severity was divided into three classes: no injury, 
possible injury and disabling injury. They compared the 
performance of Multi-layered Perceptron (MLP) and 
Fuzzy ARTMAP, and found that MLP classification 
accuracy is higher than Fuzzy ARTMAP. Levenberg-
Marquardt algorithm was used for MLP training and 
achieved 65.6 and 60.4 percent classification accuracy for 
the training and testing phases, respectively. Fuzzy 
ARTMAP achieved a classification accuracy of 56.1 
percent.  

Yang et al. used neural network approach to detect safer 
driving patterns that have less chances of causing death 
and injury when a car crash occurs [17]. They performed 
the Cramer’s V Coefficient test [18] to identify significant 
variables that cause injury to reduce the dimensions of the 
data. Then, they applied data transformation method with a 
frequency-based scheme to transform categorical codes 
into numerical values. They used the Critical Analysis 
Reporting Environment (CARE) system, which was 
developed at the University of Alabama, using a 
Backpropagation (BP) neural network. They used the 1997 
Alabama interstate alcohol-related data, and further studied 
the weights on the trained network to obtain a set of 
controllable cause variables that are likely causing the 
injury during a crash. The target variable in their study had 

two classes: injury and non-injury, in which injury class 
included fatalities. They found that by controlling a single 
variable (such as the driving speed, or the light conditions) 
they could reduce fatalities and injuries by up to 40%. 

 Sohn et al. applied data fusion, ensemble and clustering 
to improve the accuracy of individual classifiers for two 
categories of severity (bodily injury and property damage) 
of road traffic accident [15]. The individual classifiers used 
were neural network and decision tree. They applied a 
clustering algorithm to the dataset to divide it into subsets, 
and then used each subset of data to train the classifiers.  
They found that classification based on clustering works 
better if the variation in observations is relatively large as 
in Korean road traffic accident data. 

Mussone et al. used neural networks to analyze vehicle 
accident that occurred at intersections in Milan, Italy [12]. 
They chose feed-forward MLP using BP learning. The 
model had 10 input nodes for eight variables (day or night, 
traffic flows circulating in the intersection, number of 
virtual conflict points, number of real conflict points, type 
of intersection, accident type, road surface condition, and 
weather conditions). The output node was called accident 
index, which was calculated as the ratio between the 
number of accidents for a given intersection and the 
number of accidents at the most dangerous intersection. 
Results showed that the highest accident index for running 
over of pedestrian occurs at non-signalized intersections at 
nighttime. 

Dia et al. used real-world data for developing a multi-
layered MLP neural network freeway incident detection 
model [5]. They compared the performance of the neural 
network model and the incident detection model in 
operation on Melbourne’s freeways. Results showed that 
neural network model could provide faster and more 
reliable incident detection over the model that was in 
operation on Melbourne’s freeways. They also found that 
failure to provide speed data at a station could significantly 
deteriorate model performance within that section of the 
freeway. 

Shankar et al. applied a nested logic formulation for 
estimating accident severity likelihood conditioned on the 
occurrence of an accident [14]. They found that there is a 
greater probability of evident injury or disabling 
injury/fatality relative to no evident injury if at least one 
driver did not use a restraint system at the time of the 
accident. 

Kim et al. developed a log-linear model to clarify the 
role of driver characteristics and behaviors in the causal 
sequence leading to more severe injuries. They found that 
alcohol or drug use and lack of seat belt use greatly 
increase the odds of more severe crashes and injuries [8]. 

Abdel-Aty et al. used the Fatality Analysis Reporting 
System (FARS) crash databases covering the period of 
1975-2000 to analyze the effect of the increasing number 



 

of Light Truck Vehicle (LTV) registrations on fatal angle 
collision trends in the US [1]. They investigated the 
number of annual fatalities that resulted from angle 
collisions as well as collision configuration (car-car, car-
LTV, LTV-car, and LTV-LTV). Time series modeling 
results showed that fatalities in angle collisions will 
increase in the next 10 years, and that they are affected by 
the expected increase in the percentage of LTVs in traffic.   

Bedard et al. applied a multivariate logistic regression to 
determine the independent contribution of driver, crash, 
and vehicle characteristics to drivers’ fatality risk [3]. They 
found that increasing seatbelt use, reducing speed, and 
reducing the number and severity of driver-side impacts 
might prevent fatalities. 

Evanco conducted a multivariate population-based 
statistical analysis to determine the relationship between 
fatalities and accident notification times [6]. The analysis 
demonstrated that accident notification time is an 
important determinant of the number of fatalities for 
accidents on rural roadways. 

Ossiander et al. used Poisson regression to analyze the 
association between the fatal crash rate (fatal crashes per 
vehicle mile traveled) and the speed limit increase [13]. 
They found that the speed limit increase was associated 
with a higher fatal crash rate and more deaths on freeways 
in Washington State.  

Furthermore, some researchers studied the relationship 
between drivers’ age, gender, vehicle mass, impact speed 
or driving speed measure with fatalities [4, 9, 10, 11, 16]. 

This paper investigates application of neural networks, 
decision trees and a hybrid combination of decision tree 
and neural network to build models that could predict 
injury severity. We also briefly report on our unsuccessful 
attempt at applying support vector machines to the 
problem. The remaining parts of the paper are organized as 
follows. In Section 2, more details about the problem and 
the pre-processing are presented, followed, in Section 3, by 
a short description the different machine learning 
paradigms used. Performance analysis is presented in 
Section 4 and finally some discussions and conclusions are 
given towards the end. 

II. ACCIDENT DATA SET 

A. Description of Dataset 
 
This study used data from the National Automotive 

Sampling System (NASS) General Estimates System 
(GES) [21]. The GES datasets are intended to be a 
nationally representative probability sample from the 
annual estimated 6.4 million accident reports in the United 
States. The dataset for the study contains traffic accident 
records from 1995 to 2000, a total number of 417,670 
cases. According to the variable definitions for the GES 
dataset, this dataset has drivers’ only records and doesn’t 
include passengers’ information. It includes labels of year, 
month, region, primary sampling unit, the number 
describing the police jurisdiction, case number, person 
number, vehicle number, vehicle make and model; inputs 
of drivers’ age, gender, alcohol usage, restraint system, 
eject, vehicle body type, vehicle age, vehicle role, initial 
point of impact, manner of collision, rollover, roadway 
surface condition, light condition, travel speed, speed limit 

and the output injury severity. The injury severity has five 
classes: No Injury, Possible Injury, Non-incapacitating 
Injury, Incapacitating Injury, and Fatal Injury. In the 
original dataset, 70.18% of the cases have output of no 
injury, 16.07% of the cases have output of possible injury, 
9.48% of the cases have output of non-incapacitating 
injury, 4.02% of the cases have output of incapacitating 
injury, and 0.25% of the cases have fatal injury.  

Our task was to develop machine learning based 
intelligent models that could classify the severity of 
injuries (5 categories) more accurately. This can in turn 
lead to greater understanding of the relationship between 
the factors of driver, vehicle, roadway, and environment 
and driver injury severity. Accurate results of such data 
analysis can provide crucial information for the road 
accident prevention policy. 
 
B. Data Preparation 

 
The input and output variables are considered for the 

model building. There are no conflicts between the 
attributes since each variable represents its own 
characteristic. The variables are already categorized and 
are represented by numbers. The manner in which the 
collision occurred has 7 categories: not collision, rear-end, 
head-on, rear-to-rear, angle, sideswipe same direction, and 
sideswipe opposite direction. For these 7 categories the 
distribution of the fatal injury is as follows: 0.56% for not 
collision, 0.08% for rear-end collision, 1.54% for head-on 
collision, 0.00% for rear-to-rear collision, 0.20% for angle 
collision, 0.08% for sideswipe same direction collision, 
0.49% for sideswipe opposite direction collision. Since 
head-on collision has the highest percent of fatal injury; 
therefore, the dataset was narrowed down to head-on 
collision only. Head-on collision has a total of 10,386 
records. There are 160 records of head-on collision with 
fatal injury; all of these 160 records have the initial point 
of impact categorized as front. 

The initial point of impact has 9 categories: no 
damage/non-collision, front, right side, left side, back, 
front right corner, front left corner, back right corner, back 
left corner. The head-on collision with front impact has 
10,251 records; this is 98.70% of the 10,386 head-on 
collision records. We have therefore decided to focus on 
front impact only and removed the remaining 135 records. 
Travel speed and speed limit will not be used in the model 
because there are too many records with unknown value; 
for 67.68% of records the travel speed during accident and 
local speed limit were unknown. This means that the 
remaining input variables are: drivers’ age, gender, alcohol 
usage, restraint system, eject, vehicle body type, vehicle 
role, vehicle age, rollover, road surface condition, light 
condition.  

Vehicle age with values 37, 41, 46 and 56 each has only 
one record and these were the only records representing 
such old cars. These four records were therefore deleted 
from the dataset since they were clear outliers. Thus, 
finally, the dataset for modeling had 10,247 records. There 
were 5,171 (50.46%) records with no injury, 2138 
(20.86%) records with possible injury, 1721 (16.80%) 
records with non-incapacitating injury, 1057 (10.32%) 
records with incapacitating injury, and 160 (1.56%) 
records with fatal injury. We have separated each output 



 

class and used one-against-all approach. This approach 
selects one output class to be the positive class, and all the 
other classes are combined to be the negative class. We set 
the output value of the positive class to 1, and the 
(combined) negative class(es) to 0. We divided the datasets 
randomly into 60%, 20%, and 20% for training, cross-
validation, and testing respectively.   

 
III. MACHINE LEARINING PARADIGMS 

A. Hybrid Learning Artificial Neural Networks 

Multilayer perceptron with backpropagation training is one 
of the standard neural network architectures. Basically, BP 
is a gradient descent technique to minimize the error E for 
a particular training pattern. For adjusting the weight ( ijw ) 

from the i-th input unit to the j-th output, in the batched 
mode variant, the descent is based on the gradient E∇  

(
ij�w

�E ) for the total training set: 
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The gradient gives the direction of the error E. The 
parameters ε and α are the learning rate and the 
momentum respectively. A good choice of both the 
parameters is required for training success and speed. 
Unfortunately there does not exist a practical approach that 
would allow successful automatic selection of best values 
of these parameters for a given dataset. Similarly there 
exist only few basic approaches to the selection of the 
optimal number of nodes in the hidden layer. We had 
therefore to establish these parameters experimentally. 
Empirical research [19] has shown that the BP used for 
training neural networks has the following problems: 

• BP often gets trapped in a local minimum mainly 
because of the random initialization of weights. 

• BP usually generalizes quite well to detect the global 
features of the input but after prolonged training the 
network will start to recognize individual input/output 
pair rather than settling for weights that generally 
describe the mapping for the whole training set. 

The second popular training algorithm for neural networks 
is Scaled Conjugate Gradient Algorithm (SCGA). Moller 
[20] introduced it as a way of avoiding the complicated 
line search procedure of conventional conjugate gradient 
algorithm (CGA). According to the SCGA, the Hessian 
matrix is approximated by 
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where E' and E" are the first and second derivative 
information of global error function E (wk). The other 
terms pk, �k and �k represent the weights, search direction, 
parameter controlling the change in weight for second 
derivative approximation and parameter for regulating the 
indefiniteness of the Hessian. In order to get a good 
quadratic approximation of E, a mechanism to raise and 
lower �k is needed when the Hessian is positive definite. 

Detailed step-by-step description can be found in [20]. 
In order to minimize the above-mentioned problems due 

to BP training, we used a combination of BP and SCG for 
training.  

B. Decision Trees 

The decision tree model consists of a hierarchy of 
univariate binary decisions [7]. Each internal node in the 
tree specifies a binary test on a single variable, branch 
represents an outcome of the test, each leaf node represent 
class labels or class distribution. The decision tree 
algorithm operates by choosing the best variable for 
splitting the data into two groups at the root node, 
partitioning the data into two disjoint branches in such a 
way that the class labels in each branch are as 
homogeneous as possible, and splitting is recursively 
applied to each branch, and so forth. Once a maximal tree 
is generated, it examines smaller trees obtained by pruning 
away branches of the maximal tree. Once the maximal tree 
is grown and a set of sub-trees is derived from it, the 
decision tree algorithm determines the best tree by testing 
for misclassification error rates.  

 

Fig. 1. Hybrid concurrent decision tree-ANN model for accident data 

 

Fig. 2. Decision tree structure 

C. Support Vector Machines (SVM) 

SVMs are kernel-based learning algorithms in which only 
a fraction of the training examples are used in the solution 
(these are called the support vectors), and where the 
objective of learning is to maximize a margin around the 
decision surface. The flexibility of kernel functions allows 



 

the SVM to search a wide variety of hypothesis spaces. 
The basic idea of applying SVMs to pattern classification 
can be stated briefly as: first map the input vectors into one 
feature space (possibly with a higher dimension), either 
linearly or nonlinearly, which is relevant with the selection 
of the kernel function; then within the feature space, seek 
an optimized linear division, i.e. construct a hyperplane 
which separates two classes.  

D. Hybrid Decision Tree-ANN (DTANN) 

Figure 1 illustrates the hybrid decision tree-ANN 
(DTANN) model for predicting drivers’ injury severity. 
We used a concurrent hybrid model where traffic accidents 
data are fed to the decision tree to generate the node 
information. Terminal nodes are numbered left to right 
starting with 1. All the data set records are assigned to one 
of the terminal nodes, which represent the particular class 
or subset. The training data together with the node 
information were supplied for training ANN. Figure 2 
illustrates a decision tree structure. For the hybrid decision 
tree–ANN, we used the same hybrid learning algorithms 
and parameters setting as we used for ANN (except for the 
number of hidden neurons). Experiments were performed 
with different number of hidden neurons and models were 
selected with the highest classification accuracy for the 
output class.  

IV. PERFORMANCE ANALYSIS 

A. Neural Networks 

Hyperbolic activation function was used in the hidden 
layer and logistic activation function in the output layer. 
The models were trained with BP (100 epochs, learning 
rate 0.01) and SCGA (500 epochs) to minimize the Mean 
Squared Error (MSE). For each output class, we 
experimented with different number of hidden neurons, 
and selected the model with highest classification accuracy 
for the class. From the results of experiments, for no injury  
class the best model had 65 hidden neurons, and achieved 
training and testing performance of 63.86% and 60.45% 
respectively. For possible injury class, the best model had 
65 hidden neurons achieving it’s training and testing 
performance of 59.34% and 57.58% respectively. For non-
incapacitating injury class, the best model had 75 hidden 
neurons achieving training and testing performance of 
58.71% and 56.8% respectively. For incapacitating injury 
class, the best model had 60 hidden neurons achieving 
training and testing performance of 63.40% and 63.36% 
respectively. Finally, for fatal injury class, the best model 
had 45 hidden neurons achieving training and testing 
performance of 78.61% and 78.17% respectively. These 
results are the summary of multiple experiments as 
illustrated in Table 2. 

B. Decision Trees 

We trained each class with Gini goodness of fit measure, 
the prior class probabilities was set to equal, the stopping 

option for pruning was misclassification error, the 
minimum n per node was set to 5, fraction of objects was 
0.05, the maximum number of nodes was 1000, the 
maximum number of level in tree was 32, the number of 
surrogates was 5, we used 10 fold cross-validation, and 
generated the comprehensive results. The cross-validation 
testing ensures that the patterns found will hold up when 
applied to new data. The performances for no injury, 
possible injury, non-incapacitating injury, incapacitating 
injury and fatal injury were 67.54%, 64.39%, 60.37%, 
71.38%, and 89.46% respectively. Empirical results 
including classification matrix are illustrated in Table 1. 

C. Support Vector Machines 

We experimented with polynomial kernel and radial basis 
function kernel. For some reason, polynomial kernel was 
not that successful and hence we only focused on radial 
basis function (RBF) kernels. Table 3 illustrates the SVM 
performance for the different parameter settings and the 
accuracy of each experiment for each class. 

TABLE 1. DECISION TREE PERFORMANCE  

Injury Class DT Accuracy 
(%) 

No Injury: 67.54 

Possible Injury: 64.40 

Non-incapacitating Injury: 60.37 

Incapacitating Injury: 71.38 

Fatal Injury: 89.46 

D. Hybrid DT-ANN Approach 

From the experiment results, for no injury class the best 
model had 70 hidden neurons, with training and testing 
performance of 83.02% and 65.12% respectively. For 
possible injury class, the best model had 98 hidden neurons 
with training and testing performance of 74.93% and 
63.10% respectively. For non-incapacitating injury class, 
the best model had 109 hidden neurons with training and 
testing performance of 71.88% and 62.24% respectively. 
For incapacitating injury class, the best model had 102 
hidden neurons, with training and testing performance of 
77.95% and 72.63% respectively. For fatal injury class, the 
best model had 76 hidden neurons with training and testing  
performance of 91.53% and 90.00% respectively. These 
are the best models out of multiple experiments. Empirical 
results are presented in Table 4 and a final comparison 
between ANN, DT and DTANN is graphically illustrated 
in Figure 3. For all the output classes, the hybrid DTANN 
outperformed the ANN. For non-incapacitating injury, 
incapacitating injury, and fatal injury classes, the hybrid 
DTANN outperformed both ANN and DT. 
 



 

TABLE 2. NEURAL NETWORK PERFORMANCE

No Injury Possible Injury Non-incapacitating Incapacitating Fatal Injury 

Accuracy % Accuracy % Accuracy % Accuracy % Accuracy % # 
neurons Train Test 

# 
neurons Train Test 

# 
neurons Train Test 

# 
neurons Train Test 

# 
neurons Train Test 

60 63.57 59.67 65 59.34 57.58 60 57.88 55.25 60 63.4 63.36 45 77.26 75.17 

65 63.86 60.45 70 59.56 55.15 65 57.69 54.66 65 62.23 61.32 57 74.78 70.65 

70 63.93 60.25 75 58.88 57.29 75 58.71 56.80 75 61.06 61.52 65 69.81 69.73 

75 64.38 57.43 80 58.39 56.22 80 57.78 54.13 84 63.23 58.41 75 60.19 59.62 

80 63.64 58.89 95 60.07 55.93 85 57.83 55.59 90 59.32 59.08 80 74.33 71.77 

 
TABLE 3: PERFORMANCE OF SVM USING RADIAL BASIS FUNCTION KERNEL 

 g=0.0001 
c=42.8758 

g=0.001 
c=4.6594 

g=0.5 
c=0.5 

g=1.2 
c=0.5 

g=1.5 
c=2 

g=2 
c=10 

g=0.00001 
c=100 

g=0.0001 
c=100 

g=0.001 
c=100 

No injury  
Class 0 59.76 59.80 57.95 57.65 53.62 54.12 57.34 59.76 60.46 
Class 1 60.14 60.14 60.82 55.63 55.73 55.53 62.88 60.14 60.14 

Possible injury 
Class 0 100.00 100.00 100.00 99.88 95.33 95.58 100.00 100.00 100.00 
Class 1 0.00 0.00 0.00 0.00 3.67 3.42 0.00 0.00 0.00 

Non-incapacitating 
Class 0 100.00 100.00 100.00 100.00 97.43 97.49 100.00 100.00 100.00 
Class 1 0.00 0.00 0.00 0.00 3.21 2.92 0.00 0.00 0.00 

Incapacitating 
Class 0 100.00 100.00 100.00 99.89 98.06 98.11 100.00 100.00 100.00 
Class 1 0.00 0.00 0.00 0.00 2.83 2.83 0.00 0.00 0.00 

Fatal Injury 
Class 0 100.00 100.00 100.00 100.00 99.95 99.95 100.00 100.00 100.00 
Class 1 0.00 0.00 0.00 0.00 3.33 3.33 0.00 0.00 0.00 

 
Fig. 3. Performance comparison of the different learning paradigms 

TABLE 4. TEST PERFORMANCE OF DTANN 

% Accuracy 
Injury type 

DTANN 

No Injury 65.12 

Possible Injury 63.10 

Non-Incapacitating Injury 62.24 

Incapacitating Injury 72.63 

Fatal Injury 90.00 

 

V. CONCLUSIONS 

In this paper, we studied the GES automobile accident data 
from 1995 to 2000 and investigated the performance of 
neural network, decision tree, support vector machines and 
a hybrid decision tree - neural network for predicting 
drivers’ injury severity in head-on front impact point 
collisions. The classification accuracy on the test results 
reveals that, for non-incapacitating injury, incapacitating 
injury, and fatal injury classes, the hybrid approach 
performed better than neural network, decision trees and 
support vector machines. For no injury and possible injury 



 

classes, the hybrid approach performed better than neural 
network. The no injury and possible injury classes could be 
best modeled by decision trees. 

Previous researches had focus mainly on no injury and 
injury (including fatality) classes. In this paper, we 
extended the research to possible injury, non-incapacitating 
injury, incapacitating injury, and fatal injury. Our 
experiments showed that the model for fatal and non-fatal 
injury performed better than other classes. The ability of 
predicting fatal and non-fatal injury is very important since 
drivers’ fatality has the highest cost to society 
economically and socially.  

One very important factor of causing different injury 
level is the actual speed that the vehicle was going when 
the accident happened. Our dataset doesn’t provide enough 
information on the actual speed since speed for 67.68% of 
the data records’ was unknown. If the speed was available, 
it might help to improve the models performance. From an 
intelligent systems point of view it is interesting to note 
about the failure of SVMs to model the complexity of the 
different injury classes.   
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