
OPTIMAL TUNING OF PI SPEED CONTROLLER USING NATURE
INSPIRED HEURISTICS

Millie Pant1, Radha Thangaraj1 and Ajith Abraham2

1Department. of Paper Technology, IIT Roorkee, India
2Center of Excellence for Quantifiable Quality of Service,

Norwegian University of Science and Technology, Norway
millifpt@iitr.ernet.in, t.radha@ieee.org, ajith.abraham@ieee.org

Abstract

This paper presents a comparative study of three
popular, Evolutionary Algorithms (EA); Genetic
Algorithms (GA), Particle Swarm Optimization (PSO)
and Differential Evolution (DE) for optimal tuning of
Proportional Integral (PI) speed controller in
Permanent Magnet Synchronous Motor (PMSM)
drives. A brief description of all the three algorithms
and the definition of the problem are given.

1. Introduction

 Optimization is one of the most discussed topics in
engineering and applied research. Many engineering
problems can be formulated as optimization problems
for example Economic Dispatch problem, Pressure
Vessel Design, VLSI design etc. these problems when
subjected to a suitable optimization algorithm helps in
improving the quality of solution. Due to this reason
the Engineering community has shown a significant
interest in optimization algorithms. In particular there
has been a focus on Evolutionary algorithms for
obtaining the global optimum solution to the problem,
because in many cases it is not only desirable but also
necessary to obtain the global optimal solution.
Evolutionary algorithms have also become popular
because of their advantages over the traditional
optimization techniques (decent method, quadratic
programming approach, etc).
Some important differences of EAs over classical
optimization techniques are as follows:

 Evolutionary algorithms start with a
population of points whereas the classical
optimization techniques start with a single
point.

 No initial guess is needed for EAs however a
suitable initial guess is needed in most of the
classical optimization techniques.

 EAs do not require an auxiliary knowledge
like differentiability or continuity of the
problem on the other hand classical

optimization techniques depend on the
auxiliary knowledge of the problem.

 The generic nature of EAs makes them
applicable to a wider variety of problems
where as classical optimization techniques are
problem specific.

Some common EAs are Genetic Algorithms (GA),
Evolutionary Programming (EP), Particle Swarm
Optimization (PSO), Differential Evolution (DE) etc.
these algorithms have been successfully applied for
solving numerical bench mark problems and real life
problems. Several attempts have been made to compare
the performance of these algorithms with each other [1]
- [3], etc. In this study we investigate the performance
of PSO, DE and GA for optimizing the PI speed
controller gains of the Permanent Magnet Synchronous
Motor (PMSM).
The PMSM is of great concern for researchers and
industrialists due to its advantages over other electric
motors like induction motor, DC motor etc. The
research potential of the drive is especially towards
development of speed controller so that performance of
the PMSM is optimized. In this paper we have used
PSO, GA and DE off-line to determine the controller
parameters (optimum value) based on speed error and
its derivative of the PMSM.
The remaining of the paper is organized as follows: In
Section 2 a brief overview of GA, PSO and DE is
presented; Section 3 gives the mathematical model of
PMSM, results are given in section 4. Finally the paper
concludes with Section 5. Pseudo code of all the three
algorithms is given in Appendix A.

2. Evolutionary Algorithms used for
comparison

Evolutionary algorithms may be termed as general
purpose algorithms for solving optimization problems.
Each EA is assisted with special operators that are
based on some natural phenomenon. These algorithms
are iterative in nature and in each iteration the
operators are invoked to reach to optimal (or near

Eighth International Conference on Intelligent Systems Design and Applications

978-0-7695-3382-7/08 $25.00 © 2008 IEEE

DOI 10.1109/ISDA.2008.69

420

optimal) solution. A brief description of the three EA
used in this study is given in the following subsections:

2.1. Genetic algorithms

Genetic algorithms are perhaps the most commonly
used EA for solving optimization problems. The
natural phenomenon which forms the basis of GA is
the concept of survival of the fittest. GAs were first
suggested by John Holland and his colleagues in 1975
[4]. The main operators of GA are Selection,
Reproduction and Mutation. GAs work with a
population of solutions called chromosomes. The
fitness of each chromosome is determined by
evaluating it against an objective function. The
chromosomes then exchange information through
crossover or mutation. More detail on the working of
GAs may be obtained from Goldberg [5] etc.

2.2. Particle Swarm Optimization

Particle swarm optimization (PSO) was first suggested
by Kennedy and Eberhart in 1995 [6]. The mechanism
of PSO is inspired from the complex social behavior
shown by the natural species. For a D-dimensional
search space the position of the ith particle is
represented as Xi = (xi1,xi2,..xiD). Each particle
maintains a memory of its previous best position Pi =
(pi1, pi2… piD) and a velocity Vi = (vi1, vi2,…viD) along
each dimension . At each iteration, the P vector of the
particle with best fitness in the local neighborhood,
designated g, and the P vector of the current particle
are combined to adjust the velocity along each
dimension and a new position of the particle is
determined using that velocity. The two basic
equations which govern the working of PSO are that of
velocity vector and position vector are given by:

)()(2211 idgdidididid xprcxprcvv −+−+= ω (1)

ididid vxx += (2)

The first part of equation (1) represents the inertia of
the previous velocity, the second part is tells us about
the personal thinking of the particle and the third part
represents the cooperation among particles and is
therefore named as the social component. Acceleration
constants c1, c2 and inertia weight ω are predefined by
the user and r1, r2 are the uniformly generated random
numbers in the range of [0, 1].

2.3. Differential Evolution

Differential Evolution was proposed by Storn and Price
[7]. It is a population based algorithm like genetic
algorithms using the similar operators; crossover,

mutation and selection. The main difference in
constructing better solutions is that genetic algorithms
rely on crossover while DE relies on mutation operator
[8]. DE works as follows: First, all individuals are
initialized with uniformly distributed random numbers
and evaluated using the fitness function provided. Then
the following will be executed until maximum number
of generation has been reached or an optimum solution
is found.
For a D-dimensional search space, each target
vector gix , , a mutant vector is generated by

)(* ,,,1, 321 grgrgrgi xxFxv −+=+ (3)

where },....,2,1{,, 321 NPrrr ∈ are randomly chosen
integers, must be different from each other and also
different from the running index i. F (>0) is a scaling
factor which controls the amplification of the
differential evolution)(,, 32 grgr xx − . In order to

increase the diversity of the perturbed parameter
vectors, crossover is introduced [9]. The parent vector
is mixed with the mutated vector to produce a trial
vector 1, +gjiu ,

⎩
⎨
⎧= +

+
gji

gji
gji x

vu
,

1,
1, if

if
)(
)(

CRrand
CRrand

j

j
>
≤

 and
or

)(
)(

rand
rand

jj
jj

≠
=

where j = 1, 2,……, D;]1,0[∈jrand ; CR is the
crossover constant takes values in the range [0, 1]
and),.....,2,1(Djrand ∈ is the randomly chosen index.

Selection is the step to choose the vector between the
target vector and the trial vector with the aim of
creating an individual for the next generation.

3. Permanent Magnet Synchronous Motor
(PMSM)

3.1. Mathematical model of PMSM

The PMSM drive model consists of a PWM converter,
a PWM inverter, a PMSM speed controller and a
voltage controller. The PMSM drive receives power
from three-phase AC supply and runs a mechanical
load at regulated speed. The drive is developed so that
it injects minimum current harmonics into the utility
supply system and drives mechanical load with
minimum ripples in torque and speed. The developed
model of the drive system is used for design in voltage,
current and speed controllers.
The mathematical model of PMSM in d-q
synchronously rotating reference frame can be obtained
from synchronous machine model. The PMSM can be

421

represented by the following set of nonlinear equations
[10]:

)*(1
rler BTT

J
p ωω −−= (4)

s
q

s
dqdfe iiLLPT))((

22
3 −+= ψ (5)

)
2

(1 s
d

s
qdr

s
d

d

s
d viLPRi

L
pi +⎟

⎠
⎞

⎜
⎝
⎛+−= ω (6)

)
22

(1
fr

s
q

s
ddr

s
q

d

s
q

PviLPRi
L

pi ψωω ⎟
⎠
⎞

⎜
⎝
⎛−+⎟

⎠
⎞

⎜
⎝
⎛−−=

 (7)
where s

dv , s
qv are the q, d-axis voltages, dL , qL are

the q, d-axis inductances, s
di , s

qi are the q, d-axis

currents, R is the stator resistance per phase, fψ is the
constant flux linkage due to rotor permanent magnet,

rω is the rotor speed, J is the moment of inertia, P
represents number of poles, p is the differential
operator, Te is the electromagnetic torque, lT is the
load torque, B is the viscous coefficient.

3.2. PI speed controller

The PI speed controller is the simplest speed controller
in comparison to any other speed controller. The
general block diagram of the PI speed controller is
shown in Figure 1. The input of the PI controller is
given below,

e(t) = ωref - ωact (8)

where ωref -- Desired (reference) speed of the motor
 ωact – actual speed of the motor

Figure 1 Block diagram of PI speed controller

The output of the PI controller is torque command
which limited by a torque limiter with specified values
corresponding to the motor’s rating. The output of the
speed controller at nth instant is expressed as follows:

() (1) (1){ () () } ()n n p n n i nT T K e t e t K e t− −= + − + (9)

where T(n) is the torque output of the speed controller at
the nth instant.
Kp and Ki are proportional and integral gain constants
e (t)(n-1) is the speed error at (n-1)th instant.

The reference current generator decides the pulse width
and triggers the inverter circuits so that required
voltage will be applied to the motor. The motor speed
can be observed by tacho generator and feedback to PI
controller.

4. Optimization of PI gains using GA, PSO and

DE

GA, PSO and DE are utilized off-line to determine the
controller parameters (Kp and Ki) based on speed error
and its derivative of the PMSM shown Figure 2.
The performance of the PMSM varies according to PI
controller gains and is judged by the value of ITAE
(Integral Time Absolute Error). The performance index
ITAE is chosen as objective function. The purpose of
stochastic algorithms is to minimize the objective
function or maximize the fitness function, where
fitness function is)1/(1 +ITAE . As in [11], if more
than 5% overshoot occurs in starting speed response a
75% of the penalty is imposed to the fitness value. All
particles of the population are decoded for Kp and Ki.

422

Figure 2 Speed controller of PMSM using PI with evolutionary tuning

4.1. Experimental Settings

PMSM parameters [11]:
Continuous stall current 3.40 A
Torque constant 0.75 Nm/A
Phase resistance 2.55 Ω
Phase inductance 5.15 mH
Number of poles 8
Moment of inertia of motor 0.062 x 10-3 kg-m2
Total load inertia 1.914 x 10-3 kg-m2
Damping friction 0.0041 N-m/rad.

Parameter setting for the optimization algorithms:
As mentioned earlier, each EA requires certain sets of
parameters which are defined in the beginning of the
algorithm. Since all the three algorithms are stochastic
in nature, more than one execution is needed to reach
to a solution. A maximum of 25 iterations was fixed for
all the three algorithms.

Computer Settings
All the three algorithms were implemented using Turbo
C++ on a PC compatible with Pentium IV, a 3.2 GHz
processor and 2 GB of RAM.

4.2. Simulation results

Table 1 shows the results of DE and PSO algorithms in
terms of control parameters Kp, Ki and the fitness
function value. The fitness values for 1st and 25th
generation are shown in Figure 3 and 4 respectively.

Table 1 Comparison Results PSO, DE and GA

Algo
rithm Kp Ki Fitness

value

Run
time
(sec)

GA
[11] 0.0360 0.0032 0.0179 ----

PSO 0.075816 0.004873 0.22494 35

DE 0.075543 0.002725 0.39032 36

Figure 3 Fitness values corresponding to population at

1st generation

GA settings
[11]

PSO settings DE settings

Population
size: 20
CR: 0.7
MR: 0.005

Swarm size: 20.
Inertia weight
(w): linearly
decreasing
(0.9-0.4)
Acceleration
constants:
c1 = c2 = 2.0.

Population
size: 20
crossover
constant:
 CR= 0.5
Scaling
parameter :
F = 0.5.

423

Figure 4 Fitness values corresponding to population at

25th generation

5. Discussion and Conclusion

The present study considers off-line adjustment of PI
gains which is not considering the parameter variations
in the motor and other controllers due to external
disturbance like temperature variation, supply voltage,
etc. we investigated the performance of GA, PSO and
DE for the off-line tuning of PI gains on the basis of
average fitness function value obtained and the CPU
time taken during the execution of these programs.
From the numerical results presented in Table 1, DE
comes out as a clear winner in terms of both fitness
function value (which is of maximization type) and
average CPU time when considered all the algorithms
individually. The second place goes to PSO and finally
on the third place is GA. Thus as a concluding remark
we would like to add that while solving real life
problems using EA, it would be better to make a
comparison of two or more techniques in order to reach
to final solution.

Appendix A Pseudo codes of algorithms used in
this study

(1) Pseudo code for Genetic Algorithm

Begin

Initialize the population
For each individual calculate the fitness value.
For i = 1 to maximum number of generations
 Do Selection, Crossover, Mutation

 End for
End.

(2) Pseudo code for Particle Swarm optimization

Step1: Initialization.
 For each particle i in the population:
 Step1.1: Initialize X[i] with Uniform distribution.
 Step1.2: Initialize V[i] randomly.
 Step1.3: Evaluate the objective function of X[i], and
assigned the value to fitness[i].
 Step1.4: Initialize Pbest[i] with a copy of X[i].
 Step1.5: Initialize Pbest_fitness[i] with a copy of
fitness[i].
 Step1.6: Initialize Pgbest with the index of the particle
with the least fitness.
Step2: Repeat until stopping criterion is reached:
 For each particle i:
 Step 2.1: Update V[i] and X[i] according to equations
(1) and (2).
 Step2.2: Evaluate fitness[i].
 Step2.3: If fitness[i] < Pbest_fitness[i] then Pbest[i]
=X[i], Pbest_fitness[i] =fitness[i].
 Step2.4: Update Pgbest by the particle with current least
fitness among the population.

(3) Pseudo code for Differential Evolution

Initialize the population
Calculate the fitness value for each particle
Do
For i = 1 to number of particles
 Do mutation, Crossover and Selection
End for.
Until stopping criteria is reached.

References

[1] J. Vesterstrom, R. Thomsen, “A Comparative study

of Differential Evolution, Particle Swarm
optimization, and Evolutionary Algorithms on
Numerical Benchmark Problems,” In Proc. IEEE
Congr. Evolutionary Computation, Portland, OR,
Jun. 20 – 23, (2004), pg. 1980 – 1987.

[2] A. Khosla, S. Kumar and K. R. Ghosh, “A
Comparison of Computational Efforts between
Particle Swarm Optimization and Genetic
Algorithm for Identification of Fuzzy Models”,
Annual Meeting of the North American Fuzzy
Information Processing Society, pp. 245 – 250,
2007.

[3] E. Elbeltagi, T. Hegazy and D. Grierson,
“Comparison among five evolutionary-based
optimization algorithms”, Anvanced Engg.
Informatics, Vol. 19, pp. 43 – 53, 2005.

424

[4] Holland, J. H., “Adaptation in Natural and Artificial
Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial
Intelligence,” Ann Arbor, MI: University of
Michigan Press.

[5] Goldberg, D., “Genetic Algorithms in Search
Optimization and Machine Learning,” Addison
Wesley Publishing Company, Reading,
Massachutes.

[6] Kennedy, J. and Eberhart, R., “Particle Swarm
Optimization,” IEEE International Conference on
Neural Networks (Perth, Australia), IEEE Service
Center, Piscataway, NJ, 1995, pg. IV: 1942-1948.

 [7] R. Storn and K. Price, “Differential Evolution – a
simple and efficient adaptive scheme for global
optimization over continuous spaces”, Technical
Report, International Computer Science Institute,
Berkley, 1995.

[8] D. Karaboga and S. Okdem, “A simple and Global

Optimization Algorithm for Engineering
Problems: Differential Evolution Algorithm”,
Turk J. Elec. Engin. 12(1), 2004, pp. 53 – 60.

 [9] R. Storn and K. Price, “Differential Evolution – a
simple and efficient Heuristic for global
optimization over continuous spaces”, Journal
Global Optimization. 11, 1997, pp. 341 – 359.

[10] Rajesh Kumar, R. A Gupta and Bhim Singh,
“Intelligent Tuned PID Controllers for PMSM
Drive - A Critical Analysis,” IEEE Int.
conference, PEDES, 2006, pp. 2055-2060.

[11] A. N. Tiwari, “Investigations on Permanent
Magnet Synchronous Motor Drive”, Ph.D thesis,
IIT Roorkee, 2003.

425

