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Abstract 
 
This paper presents a comparative study of three 
popular, Evolutionary Algorithms (EA); Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO) 
and Differential Evolution (DE) for optimal tuning of 
Proportional Integral (PI) speed controller in 
Permanent Magnet Synchronous Motor (PMSM) 
drives. A brief description of all the three algorithms 
and the definition of the problem are given.  

1. Introduction 
 
     Optimization is one of the most discussed topics in 
engineering and applied research. Many engineering 
problems can be formulated as optimization problems 
for example Economic Dispatch problem, Pressure 
Vessel Design, VLSI design etc. these problems when 
subjected to a suitable optimization algorithm helps in 
improving the quality of solution. Due to this reason 
the Engineering community has shown a significant 
interest in optimization algorithms. In particular there 
has been a focus on Evolutionary algorithms for 
obtaining the global optimum solution to the problem, 
because in many cases it is not only desirable but also 
necessary to obtain the global optimal solution. 
Evolutionary algorithms have also become popular 
because of their advantages over the traditional 
optimization techniques (decent method, quadratic 
programming approach, etc).   
Some important differences of EAs over classical 
optimization techniques are as follows: 

 Evolutionary algorithms start with a 
population of points whereas the classical 
optimization techniques start with a single 
point. 

 No initial guess is needed for EAs however a 
suitable initial guess is needed in most of the 
classical optimization techniques. 

 EAs do not require an auxiliary knowledge 
like differentiability or continuity of the 
problem on the other hand classical 

optimization techniques depend on the 
auxiliary knowledge of the problem. 

 The generic nature of EAs makes them 
applicable to a wider variety of problems 
where as classical optimization techniques are 
problem specific. 

Some common EAs are Genetic Algorithms (GA), 
Evolutionary Programming (EP), Particle Swarm 
Optimization (PSO), Differential Evolution (DE) etc. 
these algorithms have been successfully applied for 
solving numerical bench mark problems and real life 
problems. Several attempts have been made to compare 
the performance of these algorithms with each other [1] 
- [3], etc. In this study we investigate the performance 
of PSO, DE and GA for optimizing the PI speed 
controller gains of the Permanent Magnet Synchronous 
Motor (PMSM).  
The PMSM is of great concern for researchers and 
industrialists due to its advantages over other electric 
motors like induction motor, DC motor etc. The 
research potential of the drive is especially towards 
development of speed controller so that performance of 
the PMSM is optimized. In this paper we have used 
PSO, GA and DE off-line to determine the controller 
parameters (optimum value) based on speed error and 
its derivative of the PMSM.  
The remaining of the paper is organized as follows: In 
Section 2 a brief overview of GA, PSO and DE is 
presented; Section 3 gives the mathematical model of 
PMSM, results are given in section 4. Finally the paper 
concludes with Section 5. Pseudo code of all the three 
algorithms is given in Appendix A. 
 
2. Evolutionary Algorithms used for 
comparison  
 
Evolutionary algorithms may be termed as general 
purpose algorithms for solving optimization problems. 
Each EA is assisted with special operators that are 
based on some natural phenomenon. These algorithms 
are iterative in nature and in each iteration the 
operators are invoked to reach to optimal (or near 
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optimal) solution. A brief description of the three EA 
used in this study is given in the following subsections: 
 
2.1. Genetic algorithms 
 
Genetic algorithms are perhaps the most commonly 
used EA for solving optimization problems. The 
natural phenomenon which forms the basis of GA is 
the concept of survival of the fittest. GAs were first 
suggested by John Holland and his colleagues in 1975 
[4]. The main operators of GA are Selection, 
Reproduction and Mutation. GAs work with a 
population of solutions called chromosomes. The 
fitness of each chromosome is determined by 
evaluating it against an objective function. The 
chromosomes then exchange information through 
crossover or mutation. More detail on the working of 
GAs may be obtained from Goldberg [5] etc.   
 
2.2. Particle Swarm Optimization 
 
Particle swarm optimization (PSO) was first suggested 
by Kennedy and Eberhart in 1995 [6]. The mechanism 
of PSO is inspired from the complex social behavior 
shown by the natural species. For a D-dimensional 
search space the position of the ith particle is 
represented as Xi = (xi1,xi2,..xiD). Each particle 
maintains a memory of its previous best position Pi = 
(pi1, pi2… piD) and a velocity Vi = (vi1, vi2,…viD) along 
each dimension . At each iteration, the P vector of the 
particle with best fitness in the local neighborhood, 
designated g, and the P vector of the current particle 
are combined to adjust the velocity along each 
dimension and a new position of the particle is 
determined using that velocity. The two basic 
equations which govern the working of PSO are that of 
velocity vector and position vector are given by: 

)()( 2211 idgdidididid xprcxprcvv −+−+= ω  (1)                                                                  

ididid vxx +=                                                       (2)                                                

The first part of equation (1) represents the inertia of 
the previous velocity, the second part is tells us about 
the personal thinking of the particle and the third part 
represents the cooperation among particles and is 
therefore named as the social component. Acceleration 
constants c1, c2 and inertia weight ω are predefined by 
the user and r1, r2 are the uniformly generated random 
numbers in the range of [0, 1]. 
 
2.3. Differential Evolution 
 
Differential Evolution was proposed by Storn and Price 
[7]. It is a population based algorithm like genetic 
algorithms using the similar operators; crossover, 

mutation and selection. The main difference in 
constructing better solutions is that genetic algorithms 
rely on crossover while DE relies on mutation operator 
[8]. DE works as follows: First, all individuals are 
initialized with uniformly distributed random numbers 
and evaluated using the fitness function provided. Then 
the following will be executed until maximum number 
of generation has been reached or an optimum solution 
is found.  
For a D-dimensional search space, each target 
vector gix , , a mutant vector is generated by 

 )(* ,,,1, 321 grgrgrgi xxFxv −+=+                         (3)                                

where },....,2,1{,, 321 NPrrr ∈ are randomly chosen 
integers, must be different from each other and also 
different from the running index i. F (>0) is a scaling 
factor which controls the amplification of the 
differential evolution )( ,, 32 grgr xx − . In order to 

increase the diversity of the perturbed parameter 
vectors, crossover is introduced [9]. The parent vector 
is mixed with the mutated vector to produce a trial 
vector 1, +gjiu , 
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where j = 1, 2,……, D; ]1,0[∈jrand ; CR is the 
crossover constant takes values in the range    [0, 1] 
and ),.....,2,1( Djrand ∈ is the randomly chosen index. 

Selection is the step to choose the vector between the 
target vector and the trial vector with the aim of 
creating an individual for the next generation. 
 
3. Permanent Magnet Synchronous Motor 
(PMSM) 
 
3.1. Mathematical model of PMSM 
 
The PMSM drive model consists of a PWM converter, 
a PWM inverter, a PMSM speed controller and a 
voltage controller. The PMSM drive receives power 
from three-phase AC supply and runs a mechanical 
load at regulated speed. The drive is developed so that 
it injects minimum current harmonics into the utility 
supply system and drives mechanical load with 
minimum ripples in torque and speed.  The developed 
model of the drive system is used for design in voltage, 
current and speed controllers. 
The mathematical model of PMSM in d-q 
synchronously rotating reference frame can be obtained 
from synchronous machine model. The PMSM can be 
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represented by the following set of nonlinear equations 
[10]: 
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where s

dv , s
qv  are the q, d-axis voltages, dL , qL are 

the q, d-axis inductances, s
di , s

qi  are the q, d-axis 

currents, R is the stator resistance per phase, fψ  is the 
constant flux linkage due to rotor permanent magnet, 

rω  is the rotor speed,  J is the moment of inertia, P 
represents  number of poles, p is the differential 
operator, Te is the electromagnetic torque, lT  is the 
load torque, B is the viscous coefficient.  
 
3.2. PI speed controller 
 
The PI speed controller is the simplest speed controller 
in comparison to any other speed controller. The 
general block diagram of the PI speed controller is 
shown in Figure 1. The input of the PI controller is 
given below, 
 
e(t) =  ωref - ωact                                                                                       (8) 
 
where ωref -- Desired (reference) speed of the motor 
          ωact – actual speed of the motor 
 

 
Figure 1 Block diagram of PI speed controller 

 
The output of the PI controller is torque command 
which limited by a torque limiter with specified values 
corresponding to the motor’s rating. The output of the 
speed controller at nth instant is expressed as follows: 
 

( ) ( 1) ( 1){ ( ) ( ) } ( )n n p n n i nT T K e t e t K e t− −= + − +   (9) 
           
where T(n) is the torque output of the speed controller at 
the nth instant. 
Kp and Ki are proportional and integral gain constants  
e (t)(n-1) is the speed error at (n-1)th instant. 
 
The reference current generator decides the pulse width 
and triggers the inverter circuits so that required 
voltage will be applied to the motor. The motor speed 
can be observed by tacho generator and feedback to PI 
controller. 
 
4. Optimization of PI gains using GA, PSO and 

DE 
 
GA, PSO and DE are utilized off-line to determine the 
controller parameters (Kp and Ki) based on speed error 
and its derivative of the PMSM shown Figure 2.  
The performance of the PMSM varies according to PI 
controller gains and is judged by the value of ITAE 
(Integral Time Absolute Error). The performance index 
ITAE is chosen as objective function. The purpose of 
stochastic algorithms is to minimize the objective 
function or maximize the fitness function, where 
fitness function is )1/(1 +ITAE . As in [11], if more 
than 5% overshoot occurs in starting speed response a 
75% of the penalty is imposed to the fitness value. All 
particles of the population are decoded for Kp and Ki. 
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Figure 2 Speed controller of PMSM using PI with evolutionary tuning 
 
 
4.1. Experimental Settings  
 
PMSM parameters [11]: 
Continuous stall current   3.40 A 
Torque constant    0.75 Nm/A 
Phase resistance   2.55 Ω 
Phase inductance   5.15 mH 
Number of poles   8 
Moment of inertia of motor 0.062 x 10-3 kg-m2 
Total load inertia   1.914 x 10-3 kg-m2 
Damping friction   0.0041 N-m/rad. 
 

 
Parameter setting for the optimization algorithms: 
As mentioned earlier, each EA requires certain sets of 
parameters which are defined in the beginning of the 
algorithm. Since all the three algorithms are stochastic 
in nature, more than one execution is needed to reach 
to a solution. A maximum of 25 iterations was fixed for 
all the three algorithms. 
 
Computer Settings 
All the three algorithms were implemented using Turbo 
C++ on a PC compatible with Pentium IV, a 3.2 GHz 
processor and 2 GB of RAM. 
 

 
4.2. Simulation results 
 
Table 1 shows the results of DE and PSO algorithms in 
terms of control parameters Kp, Ki and the fitness 
function value. The fitness values for 1st and 25th 
generation are shown in Figure 3 and 4 respectively. 
 

Table 1 Comparison Results PSO, DE and GA 

Algo 
rithm Kp Ki Fitness 

value 

Run 
time 
(sec) 

GA 
[11] 0.0360 0.0032 0.0179 ---- 

PSO 0.075816 0.004873 0.22494 35 

DE 0.075543 0.002725 0.39032 36 
 
 

 
Figure 3 Fitness values corresponding to population at 

1st generation 
 

GA settings 
[11] 

PSO settings DE settings 

Population 
size: 20 
CR: 0.7 
MR: 0.005 
 

Swarm size: 20. 
Inertia weight 
(w): linearly 
decreasing  
(0.9-0.4) 
Acceleration 
constants:  
c1 = c2 = 2.0. 
 

Population 
size: 20 
crossover 
constant: 
 CR= 0.5 
Scaling 
parameter : 
F = 0.5. 
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Figure 4 Fitness values corresponding to population at 

25th generation 
 

5. Discussion and Conclusion 
 

The present study considers off-line adjustment of PI 
gains which is not considering the parameter variations 
in the motor and other controllers due to external 
disturbance like temperature variation, supply voltage, 
etc. we investigated the performance of GA, PSO and 
DE for the off-line tuning of PI gains on the basis of 
average fitness function value obtained and the CPU 
time taken during the execution of these programs. 
From the numerical results presented in Table 1, DE 
comes out as a clear winner in terms of both fitness 
function value (which is of maximization type) and 
average CPU time when considered all the algorithms 
individually. The second place goes to PSO and finally 
on the third place is GA. Thus as a concluding remark 
we would like to add that while solving real life 
problems using EA, it would be better to make a 
comparison of two or more techniques in order to reach 
to final solution. 
 
 
Appendix A Pseudo codes of algorithms used in 
this study 
 

(1) Pseudo code for Genetic Algorithm  
 
Begin 

Initialize the population 
For each individual calculate the fitness value. 
For i = 1 to maximum number of generations 
 Do Selection, Crossover, Mutation 

 End for 
End. 
 
 
 

 

(2) Pseudo code for Particle Swarm optimization 
 
Step1: Initialization. 
  For each particle i in the population: 
  Step1.1: Initialize X[i] with Uniform distribution. 
  Step1.2: Initialize V[i] randomly. 
  Step1.3: Evaluate the objective function of X[i], and 
assigned the value to fitness[i]. 
  Step1.4: Initialize Pbest[i] with a copy of X[i]. 
  Step1.5: Initialize Pbest_fitness[i] with a copy of 
fitness[i]. 
  Step1.6: Initialize Pgbest with the index of the particle 
with the least fitness. 
Step2: Repeat until stopping criterion is reached: 
  For each particle i: 
  Step 2.1: Update V[i] and X[i] according to equations 
(1) and (2). 
  Step2.2: Evaluate fitness[i]. 
  Step2.3: If fitness[i] < Pbest_fitness[i] then Pbest[i] 
=X[i], Pbest_fitness[i] =fitness[i]. 
  Step2.4: Update Pgbest by the particle with current least 
fitness among the population. 
 

(3) Pseudo code for Differential Evolution 
 
Initialize the population 
Calculate the fitness value for each particle 
Do 
For i = 1 to number of particles 
 Do mutation, Crossover and Selection 
End for. 
Until stopping criteria is reached. 
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