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Abstract. Visual impairment hampers an individual’s quotidian rou-
tine, diminishing the standard of life and interaction with the imme-
diate environment. Moreover, people leveraging conventional canes face
manifold challenges while commuting. This problem gets compounded
when people need to access their mobile phones simultaneously. Thus, to
ameliorate their experience, we excogitate a cost-effective device named,
“Blindophile”, meaning Blind lover, to make mobile phone accessibil-
ity effortless. Serving as a ubiquitous input device, Blindophile enables
the visually impaired people to trigger the desired event on their mo-
bile phone by performing gestures. Coupled with easy adaptability and
recharging capabilities, Blindophile boasts of a hands-free mode to ac-
cess mobile phones. With a paramount focus on design and accuracy, we
also re-engineered a machine-learning algorithm to accomplish various
functions of the mobile phone efficiently.
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1 Introduction

The immanence of smartphones has changed our lives in multitudinous ways;
from rudimentary applications like messaging, calling, playing music and track-
ing location to some convoluted functions like paying bills, booking cabs, ordering
food, and much more. At present, it is almost unfathomable to survive without
a smartphone. Despite the availability of a myriad of features, it is a formidable
task for visually impaired people to access them with ease. Although various ap-
plications aim to alleviate the problems associated with navigation [8, 11], they
do not tackle the problems of smartphone assistance. Advancement of technol-
ogy in this era has not been able to fully address some of the key concerns. For
instance, concurrent usage of smartphone [3] and cane becomes challenging as
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Fig. 1. Prototype of Blindophile

visually impaired people cannot interact directly with the user interfaces of mo-
bile apps. Also, the cost associated with smartphones brings in the question of
affordability. Existing solutions like virtual assistants and TalkBack applications
[4] leverage speech synthesis and voice recognition for smartphone accessibility.
Some of the apps like Google Assistant [10] and Siri [5] are capable of trigger-
ing certain smartphone functions through voice commands, avoiding physical
interaction. However, they come with their share of the downsides. These ap-
plications fail to maintain the privacy [2] and confidentiality of the information
as they require every command to be spoken out loud and clear. Moreover, the
noise present in the background also interferes with these commands. According
to our internal study, due to the noise in surroundings, 1 out of 5 commands
are misinterpreted by these apps, thus, engendering a lack of accuracy in per-
forming the desired action. It has also been reported that these applications are
prone to miscommunication in the form of language barriers, which happens
when the host applications do not support the user’s vernacular. For efficient
working, these virtual assistants demand uninterrupted network connection and
thus, any hindrance or unavailability of the network can make them unusable.

As a result, we have presented our work on the cane itself as it is a ubiquitous
device for visually impaired people. However, we have significantly transformed
the usual cane to add functionalities that promise an enriching experience. Ges-
tures, being simple and easy to perform, reflect normal human tendencies. Some
of the gestures like turning, tapping, rotating, etc. can delineate corresponding
actions. Blindophile allows smartphone accessibility using gestures made through
the cane. It ensures that even a neophyte can learn the working without much
ado and that the normal cane usage is not hampered or intervened by the specific
gestures regarding smartphone accessibility.
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We would like to stress upon the fact that while coming up with this light-
weight, low-cost and rechargeable device, as shown in Fig. 1, design considera-
tions were taken into account. We have employed the Inertial Measurement Unit
Module (IMU), which consists of an accelerometer and gyroscope, to fetch the
values of cane acceleration and gyration, produced by the gestures along all three
axes. We have made use of Raspberry Pi Zero Microprocessor to implement the
Machine Learning (ML) model. Since the microprocessor accepts only digital
inputs, we have used an Arduino Nano microcontroller to convert analogue ges-
tures into digital format. We have also incorporated a Bluetooth Low Energy
Module (BLE) for the communication part between the microprocessor and the
smartphone. In addition to this, we have used a LiPo battery as a power source
to the cane. We have made sure that the components chosen are lightweight
and fast in processing. Overall, the cost of Blindophile comes around 50 USD.
It weighs around 350 grams and supports 10+ hours of uninterrupted use on a
single charge.

Moreover, our solution supports all Android phones having Bluetooth func-
tionality thus, making it affordable for most people. Blindophile is capable of ac-
curately recognizing five different gestures for disparate users and setups. For the
implementation of the machine learning algorithm, we have used the k-Nearest
Neighbors model (kNN) [15] as the base. We have optimized this algorithm to
ensure that the gestures are recognized with utmost precision and accuracy. The
Machine Learning pipeline comprises:

1. An elementary methodology to glean data-set of gestures
2. Tools for training our model
3. Code to run the model on the trained data

Based on our discussions with the visually impaired, we also came up with an
Android App, which triggers actions based on the gestures performed through
the cane. To provide different flavours of customization, the gestures and corre-
sponding actions are kept user-programmable. We discuss the technical aspects
of Blindophile in Section 3.

2 DESIGN CONCEPTS

This segment presents the concepts augmenting our system architecture, and
the corresponding challenges encountered while designing the system.

2.1 Understanding the Design Framework

Gestures provide numerous substantial advantages in comparison to other means
of cane-based interaction (e.g. buttons, trackpad, and joystick [16]). Installing
buttons or trackpads on a cane necessitates the user to alter the grip or the
normal usage, making the task burdensome. On the other hand, gestures can
be extremely intuitive. Even a beginner can learn to operate Blindophile within
5-7 minutes of training, thus ensuring a short learning curve. Besides, unlike
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buttons, seamless addition and reprogramming of gestures are feasible without
any physical modification of the cane.

Earlier works had also proposed similar wearable technologies (e.g., smart
glasses [12], smart gloves [14], smart watches [13], etc.) leveraging touch or ges-
tures. However, the resultant devices were quite expensive and did not cater to
the target audience. Moreover, it becomes onerous to employ touch-based in-
teraction mode in addition to holding the cane and some other object. This is
where the need of Blindophile arises. The cane is sufficiently capable and does
not require any additional hardware.

2.2 Design Limitations and Ramifications

We discuss four key limitations that lend complexity to the design aspect. Prag-
matically speaking, the device must robustly detect a decent number of gestures.
It should ensure that the gestures do not intervene with the normal usage of
the cane, and are recognizable for disparate users and environments. Second,
a battery-driven device needs to consume low power to sustain at least a day
without recharging. This limits us to using a relatively low-power microproces-
sor model. Third, as the cane is a ubiquitous device, it should be light-weight
and portable. This requirement eliminates the possibility of directly mounting a
phone or a large battery on the cane.

3 System Description

The principal objective of our system was to revamp smartphone accessibility.
We effectuated this by gleaning data, consisting of disparate gestures, requisite
for training and deploying the ML model to predict gestures on the cane. To
this end, we designed a system encompassing the following critical components.

3.1 Components of Blindophile

Blindophile is composed of seven key components as shown in Fig. 2: 1) White
Cane, 2) Inertial Measurement Unit (IMU), 3) Arduino Nano Microcontroller,
4) Bluetooth Low-Energy (BLE) module, 5) Rechargeable Battery, 6) Raspberry
Pi Zero Microprocessor, and 7) On-off switch. White Cane forms the base for
the other components. The IMU consists of an accelerometer and a gyroscope.
The BLE module, as a communication link to the smartphone, facilitates the
transmission of predicted gestures, and Arduino Nano is used as an analogue to
digital converter. The power to the above elements is provided by a recharge-
able battery of 1000 mAh capacity. The microprocessor runs the entire machine
learning pipeline.

3.2 Gestures supported by Blindophile

Fig. 3 enlists the proposed gestures with their explanation. The gestures designed
by us facilitate easy and quick learning. They allow differentiation from the
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Fig. 2. Components of Blindophile

normal usage of the cane, for instance, we have used a pressure tap instead
of a single tap. We have also ensured that easy improvisation of new gestures
or substitution of existing ones is plausible. Moreover, if a new gesture is to
be added, then the training of new data points describing that gesture can be
performed quickly and simply.

3.3 Requisites for Data Preprocessing

For training, we have used 360 Pressure Taps, 240 Right Turns, 187 Left Turns,
200 Right Rotations and 200 Left Rotations in total. Our volunteers performed
each gesture with the cane. Different values, labelled with the corresponding ges-
tures, were captured by the sensor and stored in the database. Some portentous
points that we considered for data collection are given below:

1. To make gesture recognition easy and accurate, variations in the orientation
of the cane were included in the training set for all gestures.

2. Each gesture was approximately centred within the 1.5-seconds window be-
cause we found that all the gestures could be performed within this time,
thereby marking the boundaries of each gesture.

3. To ensure that the normal usage of the cane is not hampered, we added some
negative examples in our training set to compensate for the false positive
results. For instance, we added single tap gestures and made sure that they
are not recognized as a gesture.

3.4 ML Workflow

A machine learning pipeline was employed to understand the machine learning
workflow. For Blindophile, since a stream of continuous data values is taken from
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Fig. 3. Various gestures defined in the system

the IMU module, therefore, detection of the corresponding gesture sometimes
becomes difficult in real-time. Our internal studies indicate that a gesture can
be completed in less than 1.5 seconds. Thus, we introduced the concept of “buffer
period” which is nothing but the processor’s attention time up to 1.5 seconds for
each gesture. It is possible that to recognize more than one gesture, the respective
buffer periods overlap and to avoid this, we fabricated a trigger mechanism that
fuses a 150 ms sliding window between the overlapping buffer periods. For every
150 ms sliding window:

1. The IMU remains on standby.
2. The processor runs the ML prediction algorithm. This involves 2 steps-

(a) Featurization: Conversion of the unprocessed/raw data obtained from
the IMU into attributes/features fit for the ML model,

(b) Application of the classification algorithm, backed by ensemble learning,
to classify the categorized data into one of the gestures.

3. The recognized gesture is communicated to the smart device via the BLE
module within 30 ms. Hence out of the assigned 150 ms standby time, the
ML prediction must be completed in a maximum time frame of 120 ms.

The Process Flow of Blindophile is illustrated in Fig. 4. As our classification
algorithm, we choose the kNN method [15]. The algorithm must work for both,
gestures performed while moving or resting. To achieve this, the input of kNN
i.e., the raw sensor data is carefully sampled and then converted into a feature
set. This data comprises three dimensions each from the accelerometer and the
gyroscope. For a buffer period of 1.5 seconds, at 100 Hz IMU sampling frequency,
the raw data for each prediction instance consists of 150 (1.5 x 100) values in



Blindophile: Mobile Assistive Gesture-Empowered Ubiquitous Input Device 7

each of the 6 dimensions. The primary features used to draw distinctions include
5 values: count of values, range of values, rate of change of values over time,
deviation span, and change in phase. Hence, in total, we have computed 30 (6 x
5) features for each training sample. After the input data is ready, we move to
the implementation part. To apply kNN [15], we split the data around 70%-30%
between training and testing stages and tweaked the hyper-parameters. As a
result, the size of the model became 27 KB and achieved an accuracy of 94.96%.

Fig. 4. Process Flow of Blindophile

3.5 Android Application

We designed an Android App intending to simplify access to the tasks like read-
ing out notifications, time, location, and answering and declining calls, call-backs
to missed calls, etc. via gestures. Initially, we configured the following gestures-

1. Pressure Tap (P-T): make a call to the last person from a missed call
2. Right Turn (R-T): readout the current location
3. Left Turn (L-T): answer a phone call
4. Right Rotate (R-R): readout the current time and the date
5. Left Rotate (L-R): manage multimedia control
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When the ML algorithm predicts the gesture, its corresponding hash value
needs to be communicated with the connected smartphone to trigger some ac-
tion. To facilitate this, we developed a typical Bluetooth terminal application
capable of converting the received hash signals from the Blindophile into re-
spective smartphone functions. This application also allows reprogramming any
loaded gesture to some user-defined action as per need.

4 Evaluation

To assess the performance of Blindophile, we collected 90 instances for each of
the 5 gestures from 15 participants. We measured accuracy using: 1) precision,
the frequency of correctly recognised instances of the gestures 2) recall, the
frequency of the times when the gesture performed was recognised correctly.
The below-given confusion matrix, in the form of the heatmap (Fig. 5), presents
our results. In the table, each cell value depicts the frequency for a gesture in
the nth row being recognised as a gesture in the mth column. We reached the

Fig. 5. Confusion matrix for gesture recognition using kNN

following conclusions-

First, Blindophile recognizes pressure-tap (P-T) with a precision value of 1 (all 90
instances are recognised correctly). Second, our model sporadically mispredicts
a left rotation (L-R) as a left turn (L-T) or a right rotation (R-R). Despite a
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relatively low precision value, left rotate (L-R) still achieves a recall value of
86%. Overall, Blindophile achieves a precision of 0.97 and a recall of 0.91 across
all the gestures.

A high recall value is a yardstick for low false negatives whereas a high preci-
sion value is the same for low false positives. We drew insights into the number
of false positives and false negatives for each gesture (Fig. 6). Further, simple
computation yielded the false acceptance rate (FAR) and false rejection rate
(FRR). FAR indicates the probability of an incorrect gesture being recognized
as correct. Similarly, FRR indicates the probability of a correct gesture being re-
jected as incorrect. Overall, across all instances of the gestures (90 x 5), the FAR
turned out to be 3.77% and the FRR stood at 6.67%. These results underscored
the robustness and efficiency of Blindophile.

Fig. 6. Number of false positives and false negatives for respective gestures

Moving forward, as we understand, with more training data available for
a gesture, the prediction accuracy naturally increases. On the flip side, as the
number of target gestures increases, the accuracy decreases. We assumed k as
the number of target gestures and m as the number of training examples per
gesture. As a result, in our model, k varied from 1-5 and m varied from 1-4.
Keeping a prime focus on the extensibility of the model, we analysed the rela-
tionship between accuracy and the number of target gestures, k. We illustrated
our findings in light of Fig. 7.

Overall, our algorithm was efficient and achieved an average accuracy of
97.5% for k=1 and 81% for k=5. Essentially, the findings corroborated our hy-
potheses. Initially, the accuracy decreased as the number of target gestures was
increased. However, as evident from the graph, the accuracy soon stabilized. This
led us to conclude that the number of target gestures can be increased, as per the
requirement, without any significant impact on the performance after a certain
point. Our results also demonstrated that Blindophile can learn effectively from
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Fig. 7. Variation of accuracy with the number of target gestures

copious data. Additionally, with an increased number of training examples, we
surmise improvement in the recognition rate as well.

5 Discussions with Related Works

Visually impaired people also intend to make use of smartphones in manifold
ways [1]. However, their disability acts as an impediment, thus making the above
mentioned task daunting [3]. Nonetheless, solutions like TalkBack features on the
phone [4], VoiceOver applications, and mobile applications [11, 8] have opened
a vast array of possibilities. At the same time, considerable progress in the field
of Artificial Intelligence has led to the advent of Google Assistant [10] and Siri
[5]. Additionally, special smartphones [9] have been dedicatedly built for visually
impaired people. However, they have not been able to garner much support due
to limited availability and servicing. Recently in 2019, Samsung has also come
up with a communication app, named “Good Vibes” [7] for the deaf-blind. With
advancements in gesture recognition technology, multi-modal keypads [6] came
into being, but they had to be used independently and thus, had limited usage.
Moreover, they were expensive and required extensive maintenance and care; a
replacement had to be done if there was any problem. Furthermore, to reduce the
need for additional hardware, the concept of a smart cane came into the picture.
Henceforth, a lot of work was carried out to enhance obstacle detection [17]
and navigation capabilities using ultrasonic sensors, radars, etc. In this paper,
our main focus area has been to ease smartphone accessibility. Our solution
builds upon the previous works to develop a mobile assistive gesture-empowered
interactive cane, sporting reprogrammable features. The solution proposed by us
is complementary in nature as it can leverage the above-mentioned technologies
in concomitance.
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6 Conclusion

In summary, we introduced a device named Blindophile, a gesture-empowered
user-friendly ubiquitous cane that assists visually impaired people to use smart-
phones efficiently. Blindophile, being a low-cost, light-weight, and portable de-
vice, sports a contactless mode for smartphone accessibility and does not require
additional hardware. Our internal studies indicate that Blindophile is robust in
recognizing gestures with high accuracy for a diverse number of users and en-
vironments. Coupled with an Android app, it allows reprogramming of gestures
without physical modification of the cane. Additionally, a short learning curve
facilitates quick adaptability by the users. Based on feedback from the visually
impaired, the gesture-based cane emerges as a propitious mode for smartphone
interaction and accessibility. Overall, the cost of Blindophile comes around 50
USD. It weighs around 350 grams and supports 10+ hours of uninterrupted use
on a single charge..
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