
Feature Selection and Intrusion Detection using
Hybrid Flexible Neural Tree

Yuehui Chen and Ajith Abraham

School of Information Science and Engineering
Jinan University, Jinan 250022, P.R.China

Email: yhchen@ujn.edu.cn

School of Computer Science and Engineering
Chung-Ang University, Seoul, Republic of Korea

Email: ajith.abraham@ieee.org

Abstract. Current Intrusion Detection Systems (IDS) examine all data
features to detect intrusion or misuse patterns. Some of the features
may be redundant or contribute little (if anything) to the detection pro-
cess. The purpose of this study is to identify important input features
in building an IDS that is computationally efficient and effective. This
paper proposes an IDS model based on general and enhanced Flexible
Neural Tree (FNT). Based on the pre-defined instruction/operator sets,
a flexible neural tree model can be created and evolved. This framework
allows input variables selection, over-layer connections and different ac-
tivation functions for the various nodes involved. The FNT structure
is developed using an evolutionary algorithm and the parameters are
optimized by particle swarm optimization algorithm. Empirical results
indicate that the proposed method is efficient.

1 Introduction

Intrusion detection is classified into two types: misuse intrusion detection and
anomaly intrusion detection. Misuse intrusion detection uses well-defined pat-
terns of the attack that exploit weaknesses in system and application software
to identify the intrusions. Anomaly intrusion detection identifies deviations from
the normal usage behavior patterns to identify the intrusion.

Various intelligent paradigms namely Neural Networks [1], Support Vector
Machine [2], Neuro-Fuzzy systems [3], Linear genetic programming [4] and Deci-
sion Trees [7] have been used for intrusion detection. Various data mining tech-
niques have been applied to intrusion detection because it has the advantage
of discovering useful knowledge that describes a user’s or program’s behavior
from large audit data sets. This papers proposes a Flexible Neural Tree (FNT)
[5] for selecting the input variables and detection of network intrusions. Based
on the pre-defined instruction/operator sets, a flexible neural tree model can be
created and evolved. FNT allows input variables selection, over-layer connec-
tions and different activation functions for different nodes. In our previous work,
the hierarchical structure was evolved using Probabilistic Incremental Program

Evolution algorithm (PIPE) with specific instructions. In this research, the hier-
archical structure is evolved using tree-structure based evolutionary algorithm.
The fine tuning of the parameters encoded in the structure is accomplished using
particle swarm optimization (PSO). The proposed method interleaves both op-
timizations. Starting with random structures and corresponding parameters, it
first tries to improve the structure and then as soon as an improved structure is
found, it fine tunes its parameters. It then goes back to improving the structure
again and, fine tunes the structure and rules’ parameters. This loop continues
until a satisfactory solution is found or a time limit is reached. The novelty of
this paper is in the usage of flexible neural tree model for selecting the important
features and for detecting intrusions.

2 The Flexible Neural Tree Model

The function set F and terminal instruction set T used for generating a FNT
model are described as S = F

⋃
T = {+2, +3, . . . , +N}

⋃{x1, . . . , xn}, where
+i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i arguments.
x1,x2,. . .,xn are leaf nodes’ instructions and taking no other arguments. The out-
put of a non-leaf node is calculated as a flexible neuron model (see Fig.1). From
this point of view, the instruction +i is also called a flexible neuron operator
with i inputs.

In the creation process of neural tree, if a nonterminal instruction, i.e., +i(i =
2, 3, 4, . . . , N) is selected, i real values are randomly generated and used for
representing the connection strength between the node +i and its children. In
addition, two adjustable parameters ai and bi are randomly created as flexible
activation function parameters. For developing the IDS, the flexible activation

function f(ai, bi, x) = e
−(

x−ai
bi

)2 is used. The total excitation of +n is netn =∑n
j=1 wj ∗ xj , where xj(j = 1, 2, . . . , n) are the inputs to node +n. The output

of the node +n is then calculated by outn = f(an, bn, netn) = e−(netn−an
bn

)2 .
The overall output of flexible neural tree can be computed from left to right by
depth-first method, recursively.
Tree Structure Optimization. Finding an optimal or near-optimal neural
tree is formulated as a product of evolution. In this study, the crossover and
selection operators used are same as those of standard GP. A number of neural
tree mutation operators are developed as follows:

(1) Changing one terminal node: randomly select one terminal node in the neural
tree and replace it with another terminal node;

(2) Changing all the terminal nodes: select each and every terminal node in the
neural tree and replace it with another terminal node;

(3) Growing: select a random leaf in hidden layer of the neural tree and replace
it with a newly generated subtree.

(4) Pruing: randomly select a function node in the neural tree and replace it
with a terminal node.

x1

xn

x2 +n

ω
 1

ω n

f(a,b) yω
 2

+

x1

x3x2

x1 x2 x3 x3 x2 x1 x3x2

x3x2

Output layer

Second hidden

layer

First hidden layer

Input layer

6

+3

+3 +2 +3

x1
+2

Fig. 1. A flexible neuron operator (left), and a typical representation of the FNT
with function instruction set F = {+2, +3, +4, +5, +6}, and terminal instruction set
T = {x1, x2, x3} (right)

Parameter Optimization with PSO. The Particle Swarm Optimization (PSO)
conducts searches using a population of particles which correspond to individuals
in evolutionary algorithm (EA). A population of particles is randomly generated
initially. Each particle represents a potential solution and has a position repre-
sented by a position vector xi. A swarm of particles moves through the problem
space, with the moving velocity of each particle represented by a velocity vector
vi. At each time step, a function fi representing a quality measure is calculated
by using xi as input. Each particle keeps track of its own best position, which
is associated with the best fitness it has achieved so far in a vector pi. Further-
more, the best position among all the particles obtained so far in the population
is kept track of as pg. In addition to this global version, another version of PSO
keeps track of the best position among all the topological neighbors of a particle.

At each time step t, by using the individual best position, pi, and the global
best position, pg(t), a new velocity for particle i is updated by

vi(t + 1) = vi(t) + c1φ1(pi(t)− xi(t)) + c2φ2(pg(t)− xi(t)) (1)

where c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed
random number in [0,1]. The term vi is limited to the range of ±vmax. If the
velocity violates this limit, it is set to its proper limit. Changing velocity this
way enables the particle i to search around its individual best position, pi, and
global best position, pg. Based on the updated velocities, each particle changes
its position according to the following equation:

xi(t + 1) = xi(t) + vi(t + 1). (2)

Procedure of the general learning algorithm. The general learning proce-
dure for constructing the FNT model can be described as follows.

1) Create an initial population randomly (FNT trees and its corresponding
parameters);

2) Structure optimization is achieved by the neural tree variation operators as
described in subsection 2.

3) If a better structure is found, then go to step 4), otherwise go to step 2);
4) Parameter optimization is achieved by the PSO algorithm as described in

subsection 2. In this stage, the architecture of FNT model is fixed, and it is
the best tree developed during the end of run of the structure search. The
parameters (weights and flexible activation function parameters) encoded in
the best tree formulate a particle.

5) If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step 6); otherwise go
to step 4);

6) If satisfactory solution is found, then the algorithm is stopped; otherwise go
to step 2).

3 Feature Selection and Classification Using FNT
Paradigms

The Data Set. The data for our experiments was prepared by the 1998 DARPA
intrusion detection evaluation program by MIT Lincoln Lab and contains 24 at-
tack types that could be classified into four main categories namely Denial of
Service (DOS), Remote to User (R2L), User to Root (U2R) and Probing. The
data for our experiments contains randomly generated 11982 records having 41
features [6]. The training and test data comprises of 5092 and 6890 records re-
spectively. All the IDS models were trained and tested with the same set of data.
Since the data set has five different attack types we performed a 5-class binary
classification. The normal data belongs to class 1, Probe belongs to class 2, DOS
belongs to class 3, U2R belongs to class 4 and R2L belongs to class 5.
Feature/Input Selection with FNT. It is often a difficult task to select im-
portant variables for any problem, especially when the feature space is large. A
fully connected NN classifier usually cannot do this. In the perspective of FNT
framework, the nature of model construction procedure allows the FNT to iden-
tify important input features in building an IDS that is computationally efficient
and effective. The mechanisms of input selection in the FNT constructing proce-
dure are as follows. (1) Initially the input variables are selected to formulate the
FNT model with same probabilities; (2) The variables which have more contri-
bution to the objective function will be enhanced and have high opportunity to
survive in the next generation by a evolutionary procedure; (3) The evolution-
ary operators i.e., crossover and mutation, provide a input selection method by
which the FNT should select appropriate variables automatically.
Modeling IDS using FNT with 41 Input-Variables. For this simulation,
the original 41 input variables are used for constructing a FNT model. A FNT
classifier was constructed using the training data and then the classifier was
used on the test data set to classify the data as an attack or normal data. The
instruction sets used to create an optimal FNT classifier is S = F

⋃
T= {+5,

. . ., +20}
⋃{x1,x2, . . . , x41}. Where xi(i = 1, 2, . . . , 41) denotes the 41 features.

Table 1. The important features selected by the FNT algorithm

Class Important variables

Class 1 x3, x11, x21, x40

Class 2 x1, x3, x12, x18, x20, x21, x23, x26, x27, x31, x37, x41

Class 3 x1, x8, x10, x11, x16, x17, x20, x12, x23, x28, x29, x31

Class 4 x11, x14, x17, x28, x29, x32, x36, x38

Class 5 x1, x3, x11, x12, x13, x18, x20, x22, x25, x38

+
4

11 213 40xx x x

+

x31
x23

10

+
3

x37

x20 x1x18
+
3 x21 x27x12 x22 x26

x3 x41x20

+

x8
x20

10

+
3

x1

x22 x16x17x28 x23x29 x10 x31x11

Fig. 2. The evolved FNT for class 1, 2 and 3 with 41 input variables.

The optimal FNTs for classes 1-5 are shown in Figures 2-3. It should be noted
that the important features for constructing the FNT model were formulated in
accordance with the procedure mentioned in the previous section. These impor-
tant variables are shown in Table 1. Table 2 depicts the detection performance
of the FNT by using the original 41 variable data set.

For comparison purpose, a neural network classifier trained by PSO algorithm
were constructed using the same training data sets and then the neural network
classifier was used on the test data set to detect the different types of attacks.
All the input variables were used for the experiments and the results are shown
in Table 2.

Table 2. Detection performance using FNT and NN classification models

Attack Class FNT NN

Normal 99.19% 95.69%

Probe 98.39% 95.53%

DOS 98.75% 90.41%

U2R 99.70% 100%

R2L 99.09% 98.10%

8

x14 x17x28x29 x36x38 x11 x32

+8

x38 x13x12

x11

+
2

x1

x18 x3x22

x25

+
2

x20

Fig. 3. The evolved FNT for class 4 and 5 with 41 input variables.

4 Conclusions

In this paper we presented a Flexible Neural Tree (FNT) model for Intrusion
Detection Systems (IDS) with a focus on improving the intrusion detection per-
formance by reducing the input features. We have also demonstrated the per-
formance using different reduced data sets. As evident from Tables 1 and 2, the
proposed flexible neural tree approach seems to be very promising. The FNT
model was able to reduce the number of variables to 4, 12, 12, 8 and 10 (using
41 input variables) for classes 1-5 respectively. Using 41 variables, FNT model
gave the best accuracy for the detection of most of the classes (except U2R).
The direct NN classifier outperformed the FNT approach for U2R attack only.

References

1. M. Debar, D. Becke, and A. Siboni. ”A Neural Network Component for an Intru-
sion Detection System”. Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy, 1992.

2. S. Mukkamala, A.H. Sung and A. Abraham, ”Intrusion Detection Using Ensemble
of Soft Computing Paradigms”, Advances in Soft Computing, Springer Verlag,
Germany, pp. 239-248, 2003.

3. K. Shah, N. Dave, S. Chavan, S. Mukherjee, A. Abraham and S. Sanyal, ”Adap-
tive Neuro-Fuzzy Intrusion Detection System”, IEEE International Conference on
ITCC’04, Vol. 1, pp. 70-74, 2004.

4. A. Abraham, Evolutionary Computation in Intelligent Web Management, Evolu-
tionary Computing in Data Mining, A. Ghosh and L. Jain (Eds.), Studies in Fuzzi-
ness and Soft Computing, Springer Verlag Germany, Chapter 8, pp. 189-210, 2004.

5. Y. Chen, B. Yang, J. Dong, and A. Abraham, ”Time-series Forcasting using Flexible
Neural Tree Model”, Information Science, In press.

6. KDD cup 99, http://kdd.ics.uci.edu/database/kddcup99/kddcup.data 10 percent.gz

7. S. Chebrolu, A., Abraham, J. P., Thomas, Feature Detection and En-
semble Design of Intrusion Detection Systems. Computers and security,
(http://dx.doi.org/10.1016/j.cose.2004.09.008) In press.

8. Barbara D., Couto J., Jajodia S. and Wu N., ADAM: A Testbed for Exploring the
Use of Data Mining in Intrusion Detection. SIGMOD Record, 30(4), pp. 15-24, 2001.

9. D. Joo, T. Hong, I. Han, The neural network models for IDS based on the asym-
metric costs of false negative errors and false positive errors, Expert Systems with
Applications, Vol. 25, pp. 69-75, 2003.

