
978-1-4244-2328-6/08/$25.00 © 2008 IEEE

Web Caching and Prefetching: What, Why, and How?

Sarina Sulaiman, Siti
Mariyam Shamsuddin

1 Soft Computing Research
Group, Faculty of

Computer Science and
Information System,
Universiti Teknologi

Malaysia, Johor,
Malaysia.

sarina@utm.my,
mariyam@utm.my

Ajith Abraham
Centre for Quantifiable

Quality of Service in
Communication Systems,
Norwegian University of
Science and Technology,

Trondheim, Norway.
ajith.abraham@ieee.org

Shahida Sulaiman
School of Computer

Sciences, Universiti Sains
Malaysia,11800 USM,

Penang, Malaysia
shahida@cs.usm.my

Abstract

The demand for Internet content rose dramatically

in recent years. Servers became more and more
powerful and the bandwidth of end user connections
and backbones grew constantly during the last decade.
Nevertheless users often experience poor performance
when they access web sites or download files. Reasons
for such problems are often performance problems
which occur directly on the servers (e.g. poor
performance of server-side applications or during
flash crowds) and problems concerning the network
infrastructure (e.g. long geographical distances,
network overloads, etc.). Web caching and prefetching
have been recognized as the effective schemes to
alleviate the service bottleneck, minimize the user
access latency and reduce the network traffic. In this
paper, we express the discussion on what is the Web
caching and prefetching, why we have to opt its and
how to pertain of these two technologies.

1. Introduction

Due to the increase of processing capabilities of the
single machines connected to the Internet, new and
more demanding services have been developed.
Multimedia, electronic mail, computer or video
conferencing, and, last but not least, very easy to use
graphical front ends to the wealth of information
accessible via the World Wide Web (WWW) stressed

the Internet to its limits. The WWW can be considered
as a large distributed information system where users
can access to shared data objects. Its usage is
inexpensive, and accessing information is faster using
the WWW than using any other means. Also, the
WWW has documents that appeal to a wide range of
interests, for example news, education, scientific
research, sports, entertainment, stock market growth,
travel, shopping, weather and maps.

However, the recent increase in popularity of the
WWW has led to a considerable increase in the amount
of traffic over the Internet. As a result, the Web has
now become one of the primary bottlenecks to network
performance. When objects are requested by a user
who is connected to a server on a slow network link,
there is generally considerable latency noticeable at the
client end. Even if the Internet backbone capacity
increases as 60% per year, the demand for bandwidth is
likely to exceed supply for the foreseeable future as
more and more information services are moved onto
the Web [3]. In order to reduce access latencies, it is
desirable to store copies of popular objects closer to
the user. A loose definition of caching is the movement
of Web content closer to the users [1]. Caching popular
objects at locations close to the clients has been
recognized as one of the effective solutions to alleviate
Web service bottlenecks, reduce traffic over the
Internet and improve the scalability of the WWW
system.

The paper is structured as follows. What and why
Web caching is presented in Section 2 that describes on
reasons to use Web caching. In Section 3, we show the

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 8, 2008 at 18:12 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

Web caching works and Section 4 its architectures.
Subsequently, we discuss on cache replacement
algorithms in Section 5. In Section 6 and 7 we converse
on Web prefetching and how to measure performance
for Web optimization. Finally, Section 8 gives the
concluding remark of our study.

2. What and Why Web caching?

Web caching is the temporary storage of Web
objects (such as HTML documents) for later retrieval.
There are three significant advantages to Web caching:
reduced bandwidth consumption (fewer requests and
responses that need to go over the network), reduced
server load (fewer requests for a server to handle), and
reduced latency (since responses for cached requests
are available immediately, and closer to the client
being served). Together, they make the Web less
expensive and better performing.

Caching can be performed by the client application,
and is built in to most Web browsers. There are a
number of products that extend or replace the built-in
caches with systems that contain larger storage, more
features, or better performance. In any case, these
systems cache net objects from many servers but all for
a single user.

Caching can also be utilized in the middle, between
the client and the server as part of a proxy. Proxy
caches are often located near network gateways to
reduce the bandwidth required over expensive
dedicated Internet connections. These systems serve
many users (clients) with cached objects from many
servers. In fact, much of the usefulness (reportedly up
to 80% for some installations) is in caching objects
requested by one client for later retrieval by another
client. For even greater performance, many proxy
caches are part of cache hierarchies, in which a cache
can inquire of neighboring caches for a requested
document to reduce the need to fetch the object
directly.

Finally, caches can be placed directly in front of a
particular server, to reduce the number of requests that
the server must handle. Most proxy caches can be used
in this fashion, but this form has a different name
(reverse cache, inverse cache, or sometimes httpd
accelerator) to reflect the fact that it caches objects for
many clients but from (usually) only one server [2].

3. How Web caching works?

All caches have a set of rules that they use to
determine when to serve an object from the cache, if it
is available. Some of these rules are set in the protocols

(HTTP 1.0 and 1.1), and some are set by the
administrator of the cache (either the user of the
browser cache, or the proxy administrator).

Generally speaking, these are the most common
rules that are followed for a particular request [2]:

1. If the object's headers tell the cache not to keep the
object, it will not. Also, if no validator is present,
most caches will mark the object as uncacheable.

2. If the object is authenticated or secure, it will not be
cached.

3. A cached object is considered fresh (that is, able to
be sent to a client without checking with the origin
server) if:

i. It has an expiry time or other age-controlling
directive set, and is still within the fresh period.

ii. a browser cache has already seen the object, and
has been set to check once a session.

iii. a proxy cache has seen the object recently, and it
was modified relatively long ago.

Fresh documents are served directly from the cache,
without checking with the origin server.

4. If the object is stale, the origin server will be asked
to validate the object, or tell the cache whether the
copy that it has is still good.

Together, freshness and validation are the most
important ways that a cache works with content. A
fresh object will be available instantly from the cache,
while a validated object will avoid sending the entire
object over again if it has not changed.

4. Web caching architectures / deployment
schemes

Caching can happen at various levels for example
the Web browser of a user, the user’s hard disk, servers
located in the institution in which the user is employed,
the institution’s Internet Service Provider (ISP), the
regional Internet hub, the national Internet hub or at the
global level. Caching can be accomplished by Web
browsers; by specialized caches known as proxy caches
and by Web servers (see Figure 1). Many popular Web
browsers cache the Web pages browsed by the user.
Very often such browsers enable the users to view the
content downloaded earlier, by pressing a back button.
In this case, the Web page is fetched from the
browser’s cache instead of fetching it again from the

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 8, 2008 at 18:12 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

original source on the Web, thereby avoiding
unnecessary downloads.

Figure 1. Web caching and prefetching can be

implemented at three cache levels; on the
client side, at the proxy server and also the

website [3].

Features of these three kinds of web cache can be
generalized as follows [4]:

In the client: Web caches can be built into most Web
browsers. A first level cache for web users is generally
implemented within a browser. Because this cache
only uses some of the main memory, or a small disk
space for storage, the size of a browser’s cache is
small. However, since the browser cache is the closest
cache to the end user, a short response time is provided
to the user if the requested objects are cached. Since
this kind of cache is embedded into the browser, the
benefits of having cache objects cannot be shared
by other users.

Between the client and the server: A second level
cache is usually provided within proxy cache servers
using a local hard disk on the gateway server for
storage. Proxy caches are often located near network
gateways to reduce the bandwidth required over
expensive dedicated Internet connections. This kind of
cache can be used to store a significant number of files
from many web servers and, as an additional benefit,
permits many users to share the resource from the
nearest proxy servers or their neighbor caches. As a
result, this type of cache leads to wide area bandwidth
savings, improved latency, and increases the
availability of the static Web documents.

Near the servers: A reverse cache or inverse cache is
placed directly in front of a particular web server. In
contrast to a general proxy cache, the reverse cache
only handles Web documents from one Web server.
This is an attractive solution to reduce the workload
of a busy web server’s by caching its static
documents so that the original server can be dedicated
to providing service through generating dynamic pages.

The common kinds of caching include browser and
proxy caching, active Web caching, adaptive Web
caching and push caching. However, another current
types of intelligent caching; intelligent Web caching
[5], mobile environment for intelligent genetic search
and proxy caching [6] and hybrid cache-index
forwarding for mobile WWW [7]. A summary of Web
caching architectures is depicted in Table 1.

Table 1. Summary of Web caching

architectures
Architecture Description Advantage Disadvantage

Proxy
(known as
forward
proxy
caching)

Deployed at
the edge of
the network

Easy to deploy Single point
of failure

- Reverse
proxy
caching

Deployed
near origin

Server farm
management

Single point
of failure

- Transparent
proxy
caching

Intercepting
HTTP
request

Eliminate
single point of
failure

Violates end-
to-end
statement

Active Web
caching

Applets;
Caching for
dynamic
documents

Caching
dynamic
documents
and
personalized
cache

Issues of
privacy

Adaptive
Web caching

Optimizing
global data
distribution.
Consists of
multiple,
distributed
caches
which
dynamically
join and
leave cache
groups;
CGMP,
CRP

Tackling
“hotspot”
phenomenon

Assumption:
Deployment
of cache
clusters across
administrative
boundaries is
not an issue.

Push caching To keep
cached data
close to
those clients
requesting
that
information.
(concept of
Mirror site)

Targeted
providers

Assumption:
Ability to
launch caches
which may
cross
administrative
boundaries

Intelligent
Web
Caching

Applying
neural
network and
network
analysis.

Adaptable to
environment

High
computational
Applied on 3-
tier design

Mobile
Environment
for Intelligent
Genetic

Implementat
ion of
mobile
agents with

Efficient
search for
group of
people share

Spend a lot of
time for
fetching
documents

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 8, 2008 at 18:12 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

Search and
Proxy
Caching

genetic
search and
proxy
caching
algorithms

interests in
some subject

from the
Internet onto
the local disk

Hybrid
cache-index
forwarding
for mobile
WWW

Hybrid
MowgliWW
W and
CINDEX
schemes to
send the
caching data
information
on mobile
hosts per
document to
the base
station and
transfers all
of the cache-
index data
from the old
base station
to the new
one during
the handover
phase

Supports for
high mobility
of mobile
hosts and
provides a
high cache hit
ratio.

Does not
suffer from
wireless
network
delays,
because the
cache-index
transmission
is performed
not by the
mobile host
but by the
base station

5. Cache replacement algorithms

The efficiency of proxy caches is influenced to a
significant extent by document placement/replacement
algorithms. Cache placement algorithms try to place
documents within a cache whereas cache replacement
algorithms replace documents from a cache. Such
algorithms are beneficial only if they can improve the
hit ratio. In contrast to cache replacement, the subject
of cache placement has not been well researched [8].

Cache replacement algorithms often aim to
minimize various parameters such as the hit ratio, the
byte hit ratio, the cost of access and the latency. The
most widely used cache replacement algorithms [8]
include Least Recently Used (LRU), Least Frequently
Used (LFU), LRU-Min, LRU-Threshold, SIZE, Lowest
Latency First, Hyper-G, Greedy-Dual-Size (GDS),
Hybrid, Lowest Relative Value (LRV), LNC-R-W3,
Size-adjusted LRU (SLRU), Least Unified-Value
(LUV), Hierarchical Greedy Dual (HGD) and Smart
Web Caching. Several of these attempted to maximize
the hit ratio. These happened depend on evaluation of
the cache replacement algorithms performance. A
summary of cache replacement algorithms is explained
in Table 2.

There are several ways to categorize cache
replacement algorithms [9]. Aggarwal et al. [10]
suggested traditional algorithms, key based algorithms
and cost based algorithms as approaches. The
differences between these three categorizes are the

ways the replacement algorithms retrieve or replace the
objects from caches either the least number of times to
cache or least frequently retrieve from the cache or
based on primary key or use the cost function.

Table 2. Summary of cache replacement
algorithms

Algorithm

/Policy

Description Advantage Disadvantage

LRU Least
Recently
Used
documents
are removed
first

Efficient for
uniform
objects and
simple to
implement

Only consider
time factor

LFU Least
Frequently
Used
documents
are
removed
first

Simplicity Only consider
time factor. May
keep obsolete
documents
indefinitely

SIZE Big
documents
are
removed
first

High request
hit rates

May keep small
documents
indefinitely;
Low byte hit
rate

GDS Advancem
ent of
SIZE.
Using an H
value to
remove
obsolete
small
documents

Overcome
drawbacks of
SIZE

Does not take
into account the
delays included
by the network
and the
frequency at
which
documents are
accessed

LRV Using
relative
value to
estimate
objects in
cache
repository

Includes
access
statistics for
all objects.
The
replacement
decision are
made in
constant time

Needs
additional data
to be kept in
memory. The
cost model does
not include
access latencies
for the objects.

Smart Web
Caching

Using
neural
network to
estimate
cache
object
priority.
Applied
with LRU

Cache space
efficient;
Considering
multiple
performance
factor

High
computational
power

6. Web prefetching

In the context of Web caching, the term prefetching
refers to the operation of fetching information from
remote Web servers even before it is requested.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 8, 2008 at 18:12 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

Objects such as images and hyperlinked pages that are
cited in a Web page (say a HTML page) may be
fetched well before they are actually called for. It
should be noted that a tradeoff occurs. Web objects are
prefetched assuming they will be requested in the near
future. An accurate selection of such objects would
lead to a reduction in the access latency, whereas
inaccurate picks would only result in wasted
bandwidth.

Prefetching techniques gain significance due to the
fact that there are limits on the performance betterment
that may be obtained by applying just plain caching
[11, 12, 13]. As noted by Douglis et al. [12], the rate of
change of Web objects puts a barrier on the gains that
may be obtainable by employing a proxy cache is
limited to about 50% (under their workloads)
irrespective of its design. This in effect means that one
out of two documents will not be found in the cache.
Prefetching is a means to overcome this restriction of
plain Web caching strategies (that do not employ it)
and often complements such strategies.

According to Lam and Ngan [14] instead of using
caching, they study the effectiveness of using
prefetching to resolve the problems in handling
dynamic web pages. Prefetching is a proactive caching
scheme since a page is cached before the receipt of any
page request for the page. In addition to the problem of
which pages to be prefetched, another equally
important question is when to perform the prefetching.
To resolve the prediction and timing problems, they
explore the temporal properties of the dynamic web
pages and the timing issues in accessing the pages to
determine which pages to be prefetched and the best
time to prefetch the pages to maximize the cache hit
probability of the prefetched page. If the required
pages can be found in the cache validly, the response
times of the requests can be greatly reduced. The
proposed scheme is called temporal prefetching (TPF)
in which the researcher prioritizes prefetching requests
based on the predicted usability of the to-be prefetched
pages.

6.1 Web prefetching examples

It is easy to visualize the following three prefetching
instances (see Figure 2): prefetching between Web
clients and Web servers, prefetching between Web
clients and proxy caches, and prefetching between
proxy caches and Web servers.

6.2 Web prefetching schemes

Cho [15] provides an interesting approach by
considering the speed and moving direction of the
mobile user.

Figure 2. Prefetching possibilities

These two aspects are important elements of the
movement pattern. The speed provides about the
velocity with which a user changes locations.
Moreover, the size of the user’s area is largely
dependent on the speed.

Whenever the user crosses the borders of the current
zone, new prefetching zones is computed. Depending
on the speed in the moment that the user leaves the
scope of a zone, the new one considers more or less
adjacent network cells. Frequency prefetching method
[16] analyzes mobility pattern of user accumulated
during fixed period. Informations that is worth being
used to the future with this are prefetched. Frequency is
based on the speed. If predict with data that is
accumulated during given period, there is problem to
itself. To solve this problem, some factors should be
added, and Yoo et al. [17] propose Frequency, Interest
and Popularity (FIP) scheme that mobile users have
preference.

Dar et al. [18] propose to invalidate the set of data
that is semantically furthest away from the current user
context. This includes the current location, but also
moving behaviors like speed, direction of the user. Ye
et al. [19] make use of predefined routes to detect the
regions of interest for which data is required. In such a
way they have location information for the whole
ongoing trip and do not have to compute the target
areas while on the move.

URL 1
URL 2
URL 3

Web
page

Web
client

URL 1

URL 2

URL 3

Caches

URL 1

URL 2

URL 3

Web servers

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 8, 2008 at 18:12 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

In [20], an adaptive network prefetching scheme is
proposed. This scheme predicts the files’ future access
probabilities based on the access history and the
network condition. The scheme allows the prefetching
of a file only if the access probability of the file is
greater than a function of the system bandwidth, delay
and retrieval time.

Prefetching method is a well established technique
to improve performance in tradition distributed systems
based on fixed nodes, and several papers exist about
this topic [21,22]. Some papers have also considered
the utility of this technique in the framework of mobile
computing, in general from the viewpoint of improving
the access to remote file systems; the use of mobility
prediction has been also considered for this purpose
[23,24,25,26].

7. Measuring performance for web
optimization

Measurement of the Web caching performance is
needed to establish the efficiency of a Web caching
solution [8,5,27]. Consequently, some benchmarks or
standards are necessitated which the performance of a
particular Web caching solution may be evaluated.
Such benchmarks may assist in choosing the most
suitable Web caching solution for the problem we
countenance. In this situation, a possibility for a
particular structure may beneficial for certain
applications while other applications may require some
other substitutes.

Simultaneously, some organizations may choose for
proxy based caching solutions. They may try to
overcome the problem of configuration Web browsers
by forcing the use of browsers that provide auto-
configuration. In the case of massive organizations,
they will may use of network components such as
routers and switches [8, 28]. Another alternative, they
can employ transparent caching. Some organizations
may prefer highly scalable solutions anticipating future
needs. Besides, organizations which Web sites contain
highly dynamic content might occupy Active Cache
[29] or possibly will utilize Web server accelerators.
Obviously, the subject of measurement of performance
is controlled not just to find the competence of a given
Web caching solution but also to cover evaluation of
the performance of cache consistency protocols, cache
replacement algorithms, the role of fundamental
protocols such as HTTP and TCP and etc.

7.1 Parameters for measuring Web
performance

Several metrics are commonly used when evaluating
Web caching policies [30]. These include the following
[31]:
i. Hit rate – the hit rate is generally a percentage

ratio of documents obtained through using the
caching mechanism versus the total documents
requested. In addition, if measurement focuses on
byte transfer efficiency, weighted hit rate is a
better performance measurement [32].

ii. Bandwidth utilization – an efficiency metric. A
reduction in the amount of bandwidth consumed
shows the cache is better.

iii. Response time/access time – the response time is
the time takes for a user to get a document.

The are various parameters such as user access
patterns, cache removal policy, cache size and
document size that can significantly affect cache
performance. Other common metrics that are used to
quantify the performance of Web caching solutions
proposed by Mohamed [5] including hit ratio, byte hit
ratio, response time, bandwidth saved, script size and
current CPU usage.

Performance of Web caching solutions may be
quantified by measuring parameters such as those listed
as follow [8]:
i. price
ii. throughput (e.g. the number of HTTP requests per

second generated by users, the rate at which a
product delivers cache hits etc.)

iii. cache hit ratio (the ratio of the number of requests
met in the cache to the total number of requests)

iv. byte hit ratio (the fraction of the number of bytes
served by the cache divided by the total number of
bytes sent to its clients)

v. the number of minutes until the first cache hit/miss
after a breakdown

vi. the cache age (the time after which the cache
become full)

vii. hit ratio/price (e.g. hits/second per thousand
dollars)

viii. downtime (e.g. time to recover from power
outrages or cache failures).

Techniques for measuring the efficiency and
usefulness of Web caching solutions have been
evolving slowly. This is because Web caching is a
relatively new discipline. In Web caching, theory has
advanced much faster than practice [8].

Although quantifying the performance of caching
clarifications, aspects for example client side latencies,
server side latencies, aborted requests, DNS lookup

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 8, 2008 at 18:12 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

latencies, cookies, different popularity characteristics
among servers, the type of content, network packet
losses etc must not be ignored. Many of these
parameters are often interrelated. For example, hit
ratio is affected by inadequate disk space in a cache
server, by insufficiencies in the object
placement/replacement policies, by network overload
and so on. Maximizing a single parameter alone may
not be adequate [8].

8. Conclusion

The Web caching and prefetching technologies are
the most popular software based solutions [33, 34].
Caching and prefetching can work individually or
combined. The blending of caching and prefetching
enables doubling the performance compared to single
caching [13]. These two techniques are very useful
tools to reduce congestion, delays and latency
problems. Consequently, basic knowledge on how
these both techniques work; architectures/deployment
scheme, placement and replacement algorithms and
lastly how to measure its performance are essential to
realize an accomplishment of the Web caching and
prefetching.

9. Acknowledgements

This work is supported by MOSTI and RMC,
Universiti Teknologi Malaysia, MALAYSIA. Authors
would like to thank Soft Computing Research Group
(SCRG) for their continuous support and fondness in
making this study a triumph.

10. References

[1] Krishnamurthy,B., and Jennifer.,R., Web Protocols and
Practice. First edition. Upper Saddle River: Addison Wesley,
2003, pp. 407-441.

[2] Web Caching, Caching Tutorial for Web Authors, 2008.
http://www.web-caching.com/mnot_tutorial/intro.html.

[3] Wang, J., A Survey of Web Caching Schemes for the
Internet. ACM Computer Communication Review, 25(9):
1999, pp.36-46.

[4] Wang, Y., A Hybrid Markov Prediction Model for Web
Prefetching, Master thesis, Department of Electrical and
Computer Engineering, University of Calgary, Alberta, 2003.

[5] Mohamed, F., Intelligent Web Caching Architecture.
Master thesis, Faculty of Computer Science and Information
System, Universiti Teknologi Malaysia, Malaysia, 2007.

[6] Cvetkovi´c, D., Peši´c, M., Petkovi´c, D., Milutinovi´c,
V., Horvat, D., KoˇCovi´c, P., and Kovaˇ cevi´c, V.,
Architecture of the Mobile Environment for Intelligent
Genetic Search and Proxy Caching. Telecommunication
Systems 18:1–3, 2001, pp. 255–270.

[7] Ahn, K. H. and Han, K. J., A Hybrid Cache-Index
Forwarding Scheme for Mobile WWW, CIC 2002, LNCS
2524, 2003, pp. 461–469.

[8] Nagaraj, S. V., Web Caching and Its Applications.
Kluwer Academic Publishers, Boston/Dordrecht/London,
2004.

[9] Podlipnig, S. and Boszormenyi, L., A Survey of Web
Cache Replacement Strategies, ACM Computing Surveys,
35(4): 2003, pp.374-398.

[10] Aggarwal, C., Wolf, J. L. and Yu, P. S., Caching on the
World Wide Web, IEEE Trans. on Knowledge and Data
Engg., 11(1):95-107, January 1999.

[11] Abrams, M., Standridge, C. R., Abdulla, G., Williams,
S., and Fox, E. A., Caching proxies: Limitations and
Potentials, In Proceedings of the 4th International WWW
Conference, Boston, MA, December 1995.

[12] Douglis, F., Feldmann, A., Krishnamurthy, B., and
Mogul, J., Rate of Change and Other Metrics: A Live Study
of the World-Wide Web, In Proceedings of the 1997 USENIX
Symposium on Internet Technologies and Systems (USITS-
97), 1997, pp. 147-158.

[13] Kroeger, T. M., Long, D.D.E., and Mogul, J.C.,
Exploring The Bounds of Web Latency Reduction from
Caching and Prefetching, in Proceedings of the USENIX
Symposium on Internet Technology and Systems, 1997, pp.
13-22.

[14] Lam K. Y., and Ngan, C.H., Temporal Pre-Fetching of
Dynamic Web Pages, Information Systems Journal, Elsevier,
Volume 31, 2006, pp. 149-169.

[15] Cho, G., Using Predictive Prefetching to Improve
Location Awareness of Mobile Information Service, Lecture
Notes in Computer Science Vol. 2331, 2002, pp. 1128-1136.

[16] Choi, I.S., Applying Mobility Pattern to Location-aware
Mobile Information Services, Master Thesis, Chonbuk
National University, Korea, 2003.

[17] Yoo, J. A., Choi, I. S., and Lee, D. C., Prefetching
Scheme Considering Mobile User’s Preference in Mobile
Networks, Springer-Verlag, Berlin Heidelberg, ICCSA, 2005,
pp. 889-895.

[18] Dar, S., Franklin, M. J., Jónsson, B. T., Srivastava, D.,
and M. Tan, Semantic Data Caching and Replacement, Proc.
22nd VLDB Conf. Mumbai, Bombay, India, 1996, pp. 330-
341.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 8, 2008 at 18:12 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

[19] Ye, T., Jacobsen, H.-A., and Katz, R., Mobile
Awareness in a Wide Area Wireless Network of Info-Stations,
Proc. of MobiCom’98, 1998, pp.109-120.

[20] Jiang, Z., and Kleinrock, L., An Adaptive Network
Prefetch Scheme, IEEE Journal on Selected Areas in
Communications, 16(3):1–11, April 1998.

[21] Korner, K., Intelligent Caching for Remote File Service,
Proc.of the ICDC1990, 1990, pp.220-226.

[22] Patterson, R. Hugo, G., Garth, A., and Satyanarayanan,
M., A Status Report on Research in Transparent Informed
Prefetching, ACM SIGOPS Operating Systems Review, v.27
n.2, pp.21-34, April 1993.

[23] Liu, G., Exploitation of Location-Dependent Caching
and Prefetching Techniques for Supporting Mobile
Computing and Communications, Proc. of WIRELESS-94,
1994, pp.1-6.

[24] Liu, G.Y., and Maguire, G.Q., A Predictive Mobility
Management Scheme for Supporting Wireless Mobile
Computing, Proc. Int. Conf. ICUP-95, Tokyo, Japan, 1995,
pp.268-272.

[25] Liu, G. Y., and Maguire, G.Q., A Class of Mobile
Motion Prediction Algorithms for Wireless Mobile
Computing and Communication, Mobile Networks and
Applications, v.1 n.2, pp.113-121, Oct. 1996.

[26] Kistler, J. J., and Satyanarayanan, M., Disconnected
operation in the Coda File System, ACM Transactions on
Computer Systems v.10 n.1, pp.3-25, Feb. 1992.

[27] Kobayashi H., Yu S-Z, Performance Models of Web
Caching and Prefetching for Wireless Internet Access,
International Conference on Performance Evaluation:
Theory, Techniques and Applications, PerETTA 2000, 2000,
pp.1-8.

[28] Krishnamurthy B., and Rexford J, Web Protocols and
Practice: HTTP 1.1, Networking Protocols, Caching and
Traffic Measurement, Addison Wesley, 2001.

[29] Cao P., Zhang J., and Beach K., Active Cache:Caching
Dynamic Contents on The Web, Distributed Systems
Engineering, 6(1):1999, pp.43-50.

[30] Shi Y., Watson E., and Chen Y-S, Model-Driven
Simulation of World-Wide-Web Cache Policies, Proceedings
of the 1997 Winter Simulation Conference: 1997, pp.1045-
1052.

[31] Abrams, M., WWW:Beyond the Basics,1997.
http://ei.cs.vt.edu/~wwwbtb/fall.96/bppk/chap25/index.html.

[32] Abrams M., Standridge C.R., Abdulla G, Williams S,
and Fox EA, Caching proxies: Limitations and Potentials,

Virginia Polytechnic Institute & State University,
Blacksburg, VA, 1995.

[33] Acharjee, U., Personalized and Intelligence Web
Caching and Prefetching, Master thesis, Faculty of Graduate
and Postdoctoral Studies, University of Ottawa, Canada,
2006.

[34] Garg, A., Reduction of Latency in the Web Using
Prefetching and Caching. Doctor of Philosophy thesis,
University of California, Los Angeles, United State., 2003.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 8, 2008 at 18:12 from IEEE Xplore. Restrictions apply.

