
The academic literature suggests that the extent of
exporting by multinational corporation subsidiaries
(MCSs) depends on their strategic role in the multina-
tional corporation (MNC), their age and size, and whether
their products are targeted at niche or commodity mar-
kets. In particular, it is claimed that MNCs seek to invest in
a particular country if its resources adopt a vertically
integrated structure, if the country grants regional or
global sales mandates to their subsidiaries, or if it has
been established in a host market for a longer time and is
thus more likely to promote subsidiary exports. Our aim in
this article is to model the complex export pattern behav-
ior of multinational corporation subsidiaries in Malaysia
using a Takagi–Sugeno fuzzy inference system. The pro-
posed fuzzy inference system (FIS) is optimized by using
neural network learning and evolutionary computation.
Empirical results clearly show that the proposed
approach could model the export behavior reasonably
well compared to a direct neural network approach.

Introduction

Malaysia has been pursuing an economic strategy of
export-led industrialization (Ariff & Hill, 1985; Doraisami,
1996; Gomez & Jomo, 1997). To facilitate this strategy, for-
eign investment is courted through the creation of an attrac-
tive incentive package. This primarily entails taxation
allowances and more liberal ownership rights for investments
(Jomo, 1998; Levitt, 1983). The quest to attract foreign direct

investment (FDI) has proved to be highly successful. Of the
manufacturing projects that were approved by the Ministry of
International Trade and Industry in the mid-1990s, 25.6%
were wholly Malaysian-owned, 43.0% were international
joint ventures between Malaysian and foreign investors, and
31.5% were wholly foreign owned ventures (Lyles,
Salaiman, Barden, & Kechik, 1999). The bulk of investment
has gone into export-oriented manufacturing industries.

Several specific subsidiary features identified in the inter-
national business literature are particularly relevant when
seeking to explain multinational corporation (MNC) sub-
sidiary export behavior. The location factors attracting FDI
to the country, the subsidiary’s functional roles, size, and
age, and whether subsidiary products are targeted at niche or
broader markets, have all been perceived to be determinants
of export behavior. In this article, we are concerned with the
manner in which the structure and strategy of MNCs that
have invested in Malaysia affect the export intensity of their
subsidiaries. Prior to going into the details of the study, it is
important to explain that there are two related aspects of
export behavior. One aspect is the probability of a firm exp-
orting at all. The other aspect is the relationship between the
percentage of total sales exported and the size of the firm.
According to the literature, larger firms are more likely to
export. However, there is no clear relationship between size
of the firm and export intensity. For example, Bonnaccorsi
(1992) found that, although larger firms were more likely to
export, there was no significant difference between the
export intensity of small, medium, or large firms. Wolff and
Pett (2000) also found no significant difference in export
intensity between small, medium, and large firms. They
argued that the type of resources available is a key factor,
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specifically, that with the appropriate type of resource, a
small firm can use the same competitive patterns utilized by
larger firms with the same effectiveness. Wagner (2001)
notes that for any industry or country, greater firm size is not
necessary or sufficient.

In this article, we concentrate on the subsidiary’s strategic
role and size and their influences on export behavior. Multi-
national corporation subsidiaries (MCSs) strategic role is
statistically expressed through their manufactured product,
resources, tax protection, involvement strategy, financial
independence, and suppliers’ relationship with a multina-
tional corporation. The size of MCSs is statistically pre-
sented through their customers and markets.

To model an export pattern behavior is obviously a multi-
objective problem. Solving multi-objective problems is,
generally, a very difficult goal because the objectives often
conflict across a high-dimension problem space and conse-
quently may require extensive computational resources. For
this research, we have used the EvoNF framework, which is
an integrated computational framework to optimize a fuzzy
inference system using neural network learning and evolu-
tionary computation (Abraham, 2002a). The hierarchical
evolutionary search framework could adapt the membership
functions (MF; shape and quantity), rule base (architecture),
fuzzy inference mechanism (T-norm and T-conorm opera-
tors), and the learning parameters of neural network learning
algorithms. In addition to evolutionary learning (global
search), neural learning could be considered as a local search
technique to optimize the parameters of the rule antece-
dent/consequent parameters and the parameterized fuzzy
operators.

In the next section, what is known so far is explained, i.e.,
the influence of the subsidiary’s strategic role and the MCS’s
size in relation to its exporting. In the following section,
neural networks and some theoretical foundations of neuro-
fuzzy modeling are introduced with algorithm details of the
proposed EvoNF approach to model the export behavior pre-
sented in the section thereafter. Then, the experimentation
results based on data provided by Malaysian MCSs are
given in the next-to-last section with concluding remarks
shared in the final section.

What Is Known

Subsidiary’s Strategic Role

The traditional view of the MNC hierarchy involves the
notion that the parent company should maintain tight control
of the roles of its subsidiaries. However, the modern
approach to subsidiary management embraces the idea that
subsidiary managers may take strategic initiatives beyond
the mandate of the subsidiary. An MNC subsidiary operating
in the global market may be encouraged to be proactive in
developing its activities (Delany, 2000), which has imp-
lications for export behavior. Pearce (1989) identifies three
major types of subsidiary, each with particular roles and
with different implications for export behavior: truncated

miniature replica subsidiaries, rationalized producer subsidi-
aries, and world product mandate subsidiaries.

Stopford and Wells (1972) identified the truncated minia-
ture replica as the first stage of internationalization. Mul-
tidomestic subsidiaries result from what Caves (1982)
defines as horizontal integration. Such subsidiaries perform
functions, including production, in essentially the same way
as the parent. They are usually intended to service the mar-
kets in which they are located, possibly protected by tariffs
(Pearce, 1989; White & Pointer, 1984). The domestic focus
of their production implies they cannot exploit sufficient
economies of scale to be internationally competitive and
hence, are unlikely to have a capacity for exporting. Because
of this limited export opportunity, the multidomestic is
likely to be a net importer as there will most likely be some
imported components for which economies of scale, or the
need to protect core technology from diffusion to competi-
tors, require production in the parent plant (D’Cruz, 1986).

Many scholars have noted a tendency over the past 30
years for MNCs with mulitdomestic strategies being restruc-
tured to fulfil a different, more specialized role in a global
strategy (Birkinshaw, 1996; Bowman et al., 2000; D’Cruz,
1986; Gallagher, 1988; Levitt, 1983; Pearce, 1989). Two types
of specialization have been identified: rationalization–
integration and world product mandate. 

Rationalization–integration occurs when a subsidiary
produces a limited part of the MNC’s production, possibly
one not relevant to the demand of the country in which it is
located (Wagner, 2001). Caves (1982) refers to this kind of
structure as “vertical integration.” These subsidiaries,
termed rationalized producers, may specialize in production
of particular component parts or may perform a complete
stage in a vertically integrated production process. Delany
(2000) classifies this as an intermediate, enhanced mandate,
where the subsidiary does not have control of the entire
value chain for an MNC, but is involved in a number of its
activities. The aim is to achieve production by making opti-
mum use of the distinctive productive capabilities of differ-
ent locations accessible to the multinational corporation
(Pearce, 1992). Each facility is worldscale and concentrates
on becoming a low-cost producer of those parts or processes
for which it is responsible (D’Cruz, 1986). The rationalized
producer structure is particularly relevant where transporta-
tion costs are low relative to selling price and where market
requirements are relatively standardized across the world
(D’Cruz, 1986). Subsidiary exports occur automatically
because production is taken up by the MNC. Much of the
subsidiary’s output will serve foreign markets; whereas
much of the inputs will be derived from other specialized
suppliers among the parent’s other subsidiaries (Pearce,
1992). Vertical integration stimulates cross-border exch-
ange; it should result in a relatively high intensity of exports.

The second role for a subsidiary in a globally organized
MNC, a regional mandate is where the site has full responsi-
bility for the development, manufacturing and marketing,
including export marketing, of one or more product lines
(Birkinshaw, 1996; Bonin & Peron, 1986; Crokell, 1986;
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Delany, 2000; Roth and Morrison, 1992; Rugman &
Douglas, 1996). The opportunity to sell its products any-
where in the region or the world implies that the subsidiary
can establish a world-scale production facility and operate at
a competitive unit cost level (D’Cruz, 1986). A large part of
the output of this subsidiary will contribute to the net exports
of the host country.

Subsidiary’s Size

Several theoretical reasons can be proffered to justify the
proposition that firm size is related to export intensity (Calof,
1994). First, internationalization requires a variety of res-
ources, such as experienced personnel, financial resources,
and international contacts. Resource scarcity limits the ability
of smaller firms to reach advanced stages of internationaliza-
tion (Dunning, 1988). Second, smaller firms may be risk-
averse, because of insufficient information and the grave
impact of international errors (Calof, 1994). Third, from an
international life-cycle perspective, firms are likely to under-
take growth within their domestic market first.At some point,
when the opportunities for domestic growth become limited,
the firm will commence exporting. By this stage, they will
have grown larger. Consequently, exports are expected to be
associated with larger and older firms. Various empirical
studies have found evidence of such relationships (Calof,
1994). Fourth, economies of scale render a firm more com-
petitive and therefore assist it in creating capacity to pursue
export opportunities.

These arguments, however, have been disputed, even in
their application to locally owned firms. Moen (1999) found
that although small and large companies can vary in terms of
competitive advantage, a smaller firm size does not automat-
ically lead to a less competitive company in global markets,
especially in the manufacturing and technology industries.
Bonnaccorsi (1992) argues that a combination of acquiring
export services from outside firms, hiring staff with export-
ing experience, investing in networks with international
linkages, minimizing the entry costs by imitating strategies
of successful exporters and using the relatively low-risk
export entry mode, can minimize the disadvantage of being
relatively small. Indeed, firms that produce niche products
may be expected to exhibit greater export intensity, because
the domestic niche market becomes exhausted relatively
more quickly. For example, small high-technology firms
may become exporters at the very beginning of their life
cycle because the domestic market does not offer sufficient
opportunities for growth (Bonnaccorsi, 1992; Moen, 1999).

The most recent attempt to clarify the relationship bet-
ween firm size and export performance (focusing on manu-
facturing firms) was carried out by Verwaal and Donkers
(2002) who argue that the firm size–export intensity rela-
tionship is moderated by the size of export relationships.
They define an export relationship as “the series of transac-
tions in time with a particular foreign buyer.” The size of the
export relationship refers to the volume of export transac-
tions. They posit that the inconsistency of previous findings

regarding firm size and export intensity arises from disre-
garding the size of export relationships. Their results indi-
cate that this factor does significantly moderate the firm
size–export intensity relationship. Specifically, they found
that when the export relationship size is large, an insignifi-
cant or negative relationship between firm size and export
intensity is found, whereas in the case of small export rela-
tionships, a positive relationship between firm size and
export intensity was found (Verwaal & Donkers, 2002).

However, the perspectives outlined in the above literature
were developed mainly in relation to domestic firms. Not all
of these theoretical justifications apply equally to subsidiaries
of multinational corporations. Resource scarcity may be less
pertinent, because the subsidiary can utilize the resources,
including knowledge, of the parent. However, MNCs that
invest in a foreign market are likely to expect subsidiary man-
agement to pursue the local market opportunities before they
consider export markets (Andersson & Fredriksson, 1996).

Artificial Neural Networks

The study of artificial neural networks (ANNs) originated
in attempts to understand and construct mathematical mod-
els for neurobiology and cognitive psychology, and their
current development continues to shed light in these areas.
Although significant advances have been achieved in the
area of conventional expert systems for mimicking human
intelligence, there is still a long way to go for the current
computational techniques before realizing the capability of
carrying out certain man-dependent tasks.

Human brains provide proof of the existence of ANNs that
can succeed at those cognitive, perceptual, and control tasks
in which humans are successful. Rough arguments from neu-
robiology suggest that the cycle time of an individual human
neuron is 10�3 seconds (1 millisecond) for a clock rate of less
than 1 KHz. This compares with the current computers oper-
ating on a cycle time of 10�9 seconds for a clock rate of about
1 GHz, a factor more than a million (106). Nevertheless, the
brain is capable of computationally demanding perceptual
acts (e.g., recognition of faces, speech) and control activities
(e.g., body movements and body functions) that are now only
on the horizon for computers. The advantage of the brain is
its effective use of massive parallelism: the parallel comput-
ing structure and the imprecise information processing capa-
bility. The basic processing element in the nervous system is
the neuron. Tree-like networks of nerve fiber called dendrites
are connected to the cell body or soma, where the cell nucleus
is located. Extending from the cell body is a single long fiber
called the axon, which eventually branches into strands and
substrands, and are connected to other neurons through
synaptic junctions, or synapses. The transmission of signals
from one neuron to another at synapses is a complex chemi-
cal process in which specific transmitter substances are re-
leased from the sending end of the junction. The effect is to
raise or lower the electrical potential inside the body of the
receiving cell. If the potential reaches a threshold, a pulse is
sent down the axon—we then say the cell has “fired.” In a
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simplified mathematical model of the neuron, the effects of
the synapses are represented by weights that modulate the ef-
fect of the associated input signals, and the nonlinear charac-
teristic exhibited by neurons is represented by a transfer func-
tion, which is usually the sigmoid, Gaussian, trigonometric
functions, etc. The neuron impulse is then computed as the
weighted sum of the input signals, transformed by the trans-
fer function. The learning capability of an artificial neuron is
achieved by adjusting the weights in accordance to the cho-
sen learning algorithm.

Artificial neural networks have been developed as gener-
alizations of mathematical models of biological nervous sys-
tems. They have the advantageous capabilities of learning
from training data, recalling memorized information, and
generalizing to the unseen patterns.Artificial neural networks
are characterized by the network architecture, the connection
strength between pairs of neurons (weights), node properties,
and updating rules. The updating or learning rules control
weights and/or states of the processing elements (neurons). It
can learn by adapting its weights to changes in the surround-
ing environment, can handle imprecise information, and gen-
eralize from known tasks to unknown ones. Each neuron is an
elementary processor with primitive operations, like sum-
ming the weighted inputs coming to it and then amplifying or
thresholding the sum. Parallel implementations of ANNs
offer an attractive way of speeding up both the learning and
recall phases. Parallel mapping of ANN models have been
implemented on various hardware platforms and processor
topologies for different ANN architectures.

Back-Propagation Neural Network

The perceptron is a single layer neural network whose
weights and biases could be trained to produce a correct target
vector when presented with the corresponding input vector. The
simple perceptron is just able to handle linearly separable or lin-
early independent problems. For those nonlinear problems, it is,
however required that the network should have an appropriate
intermediate representation of the input patterns by introducing
nonlinear hidden layers. Back-propagation neural network
(BPNN) utilizes the delta rule for the learning process. Back
propagation is an abbreviation for the backwards propagation
of error. With the delta rule, as with other types of back propa-
gation, learning is a supervised process that occurs with each
cycle or epoch (i.e., each time the network is presented with a
new input pattern) through a forward activation flow of outputs,
and the backwards error propagation of weight adjustments.
More simply, when a neural network is initially presented with
a pattern it makes a random “guess” as to what it might be. It
then sees how far its answer was from the actual one and makes
an appropriate adjustment to its connection weights.

The network is initially randomized to avoid imposing
any of our own prejudices about an application on the net-
work. The training patterns can be thought of as a set of
ordered pairs {(x1, y1), (x2, y2), . . . , (xP, yP)} where xi repre-
sents an input pattern and yi represents the output pattern
vector associated with the input vector xi. The process of

training the network then proceeds according to the follow-
ing algorithm, which is derived as a natural result of finding
the gradient of the error surface (in weight space) of the
actual output produced by the network with respect to the
desired result (Abraham & Nath, 2000).

1. Select the first training vector pair from the training pair
vectors. Call this the vector pair (x, y).

2. Use the input vector x, as the out put from the input
layer of processing elements.

3. Compute the activation to each unit on the subsequent
layer.

4. Apply the appropriate activation function, which we
denote as f (neth) for the hidden layer and as f(net0) for
the output layer, to each unit on the subsequent layer.

5. Repeat steps 3 and 4 for each layer in the network.
6. Compute the error, , for this pattern p across all K

output layer units by using the formula: 

7. Compute the error, , for all J hidden layer units by
using the recursive formula:

8. Update the connection weight values to the hidden layer
by using the equation: .
Where is a small value used to limit the amount of
change allowed to any connection during a single pat-
tern training cycle.

9. Update the connection weight values to the output layer
by using the equation:

.

10. Repeat steps 2 to 9 for all vector pairs in the training set.
Call this one training epoch.

Steps 1 to 10 are to be repeated for as many epochs as it
takes to reduce the sum of squared error to a minimal value
according to the formula

It has been proven that BPNN with sufficient hidden lay-
ers can approximate any nonlinear function to arbitrary
accuracy. This makes BPNN a good candidate for signal
prediction, forecasting, and system modeling systems. In the
batched mode variant the descent is based on the gradient
�E for the total training set.

The letters, � and � are the learning rate and momentum,
respectively. A good choice of both the parameters are
required for training success and speed of the ANN.

Neuro-fuzzy modeling is based on a combination of neural
networks and fuzzy models (Jang, 1992). It is a way of creat-
ing a fuzzy model “from data by some kind of learning method
that is motivated by learning procedures used in neural net-
works” (Bezdek, Dubois, & Prade, 1999, Part II, Chapter 5).
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A fuzzy inference system (FIS) can utilize human exper-
tise by storing its essential components in rule base and data-
base, and perform fuzzy reasoning to infer the overall output
value. The derivation of if–then rules and corresponding MF
depends heavily on the researcher’s a priori knowledge about
the system under consideration. However, there is no system-
atic way of transforming experiences of knowledge of human
experts to the knowledge base of a FIS. There is also a need
for adaptability or some learning algorithms to produce out-
puts within the required error rate (Abraham, 2001).

On the other hand, the ANN learning mechanism does not
rely on human expertise. Due to the homogenous structure
of ANN, it is hard to extract structured knowledge from
either the weights or the configuration of the ANN. The
weights of the ANN represent the coefficients of the hyper-
plane that partition the input space into the strategic role and
size of the MCS with different output values. If we can visu-
alize this hyperplane structure from the training data then the
subsequent learning procedures in an ANN can be reduced.
However, in reality, the a priori knowledge is usually obt-
ained from human experts. It is most appropriate to express
the knowledge as a set of fuzzy if–then rules and it is not
possible to encode it into an ANN (Petrovic-Lazarevic,
Abraham, & Coghill, 2002). Table 1 summarizes the com-
parison of FIS and ANN.

The drawbacks pertaining to these two approaches seem
largely complementary. Therefore, it is natural to consider
building an integrated system combining the concepts of FIS
and ANN modeling (Abraham, 2001).

Some of the popular fuzzy inference methods are the
Takagi–Sugeno–Kang (TSK) FIS (Kasabov, 1998) and the
Mamdani FIS (Abraham, 2002b).

In a TKS fuzzy inference system the conclusion of a
fuzzy rule is constituted by a weighted linear combination of
the crisp inputs rather than a fuzzy set.

For a first-order TSK model, a common rule set with two
fuzzy if–then rules is represented

Rule 1: If x is A1 and y is B1, then f1 � p1x � q1y � r1

Rule 2: If x is A2 and y is B2, then f2 � p2x � q2y � r2

where x and y are linguistic variables and A1, A2, B1, B2 are
corresponding fuzzy sets and p1, q1, r1 and p2, q2, r2, are lin-
ear parameters. The TSK fuzzy controller usually needs a
smaller number of rules, because their output is already a
linear function of the inputs rather than a constant fuzzy set.

Most fuzzy systems employ the inference method propo-
sed by Mamdani in which the rule consequence is defined by
fuzzy sets and has the following structure (Abraham, 2001).

If x is A1 and y is B1 then z1 � C1

An Integrated Computational Framework 

The Role of a Fuzzy Inference System for Explaining the
Export Behavior of Multinational Corporation Subsidiary 

We propose an integrated computational framework, def-
ined as architecture of EvoNF (Abraham, 2002a), to optimize
FIS by using a neural network learning technique and evolu-
tionary computation. The proposed framework could adapt to
Mamdani, Takagi–Sugeno, or other FIS. The architecture and
the evolving mechanism can be considered as general frame-
work for adaptive fuzzy systems. That is a FIS can change
their MF (quantity and shape), rule base (architecture), fuzzy
operators, and learning parameters according to different
environments without human intervention.

We propose a 5-tier evolutionary search procedure
wherein the MF, rule base (architecture), fuzzy inference
mechanism (T-norm and T-conorm operators), learning
parameters, and finally the type of inference system (Mam-
dani, Takagi–Sugeno, etc.) are adapted according to the
environment. Figure 1 illustrates the interaction of various
evolutionary search procedures. For every FIS, there exists a
global search of learning algorithm parameter, inference
mechanism, rule base, and MF in an environment decided by
the problem. Thus, the evolution of FIS will evolve at the
slowest time scale while the evolution of the quantity and
type of MF will evolve at the fastest rate. The function of the
other layers could be derived similarly.

Hierarchy of the different adaptation layers (procedures)
will rely on the prior knowledge. For example, if there is more
prior knowledge about the architecture than the inference
mechanism, then it is better to implement the architecture at a
higher level. If we know that a particular FIS will best suit the
problem, we could also minimize the search space. For fine-
tuning the FIS all the node functions are to be parameterized.

Parameterization of membership functions. A fuzzy infer-
ence system is completely characterized by its MF. For
example, a generalized bell MF is specified by three para-
meters (p, q, r) and is given by:

Bell (x, p, q, r) �
1

1 � ` x � r
p
` 2q
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TABLE 1. Complementary features of artificial neural networks (ANN)
and fuzzy inference systems (FIS).

ANN FIS

Black box Interpretable
Learning from scratch Making use of linguistic knowledge

FIG. 1. General computational framework of EvoNF.



Parameterization of T-norm operators. T-norm is a fuzzy
intersection operator, which aggregates the intersection of
two fuzzy sets A and B while T-conorm operators compute
fuzzy union of two fuzzy sets A and B. The Schweizer and
Sklar’s T-norm and T-conorm operator can be expressed as:

T � norm T(a, b, p) �

T � conorm S(a, b, p) �

It is observed that

limp→ 0 T(a, b, p) � ab
limp → � T(a, b, p) � min{a, b}

which correspond to two of the most frequently used T-
norms in combining the membership values on the premise
part of a fuzzy if–then rule.

Figures 2 and 3 give a general idea of how the parameter
p affects the T-conorm and T-norm operators for two bell-
shaped membership functions.

Chromosome modeling and representation. The antece-
dent of a fuzzy rule defines a local region, while the conse-
quent the behavior within the region via various con-
stituents. Basically, the antecedent part remains the same
regardless of the inference system used. A different conse-
quent describes a constituent’s result in different FIS. For
applying evolutionary algorithms, problem representation
(chromosome) is very important as it directly affects the pro-
posed algorithm. Referring to Figure 1 each layer (from
fastest to slowest) of the hierarchical evolutionary search
process has to be represented in a chromosome for success-

1 � [max50, ((1 � a �p) � (1 � b �p) � 1)6]�1
p

[max50, (a�p � b�p � 1)6]�1
p

ful modeling of EvoNF. A typical chromosome of the
EvoNF would appear as shown in Figure 4 and the detailed
modeling process is as follows.

Layer 1. The simplest way is to encode the number of MF
per input variable and the parameters of the MF. Figure 5
depicts the chromosome representation of n bell MF speci-
fied by its parameters p, q, and r. The optimal parameters of
the MF located by the evolutionary algorithm will be fine-
tuned later by the neural network-learning algorithm. A sim-
ilar strategy could be used for the output MF in the case of a
Mamdani FIS. Experts may be consulted to estimate the MF
shape-forming parameters to estimate the search space of the
MF parameters.
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FIG. 4. Chromosome structure of the EvoNF model.

FIG. 5. Chromosome representing n MF for every input/output variable
coding the parameters of a bell-shape MF.

FIG. 2. Effects of changing p of T-conorm operator.

FIG. 3. Effects of changing p of T-norm operator.



We used the angular coding method proposed by Cordón,
Herrera, Hoffmann, and Magdalena (2001) for representing
the rule consequent parameters of the Takagi–Sugeno
inference system. Rather than directly coding the consequent
parameters, the “transformed” parameters represent the
direction of the tangentai � arctan pi. The range for the para-
meters ai is the interval (�90°, �90°), such that the
parameters pi can assume any real value. A single input
Takagi–Sugeno system Y � p1 X � p0 defines a straight line.
The real value p1 is simply the gradient between this line and
the X-axis. Parameter p0 determines the offset of the straight
line (intercept) along the Y-axis. Angular coding is advanta-
geous, because the value of p0 varies between different rules
and it is difficult to use some fixed interval to exploit the
search space. The procedure is illustrated in Figure 6.

Layer 2. This layer is responsible for the optimization of
the rule base. This includes deciding the total number of
rules, representation of the antecedent and consequent parts.
The number of rules grows rapidly with an increasing num-
ber of variables and fuzzy sets. The simplest way is that each
gene represents one rule, and “1” stands for a selected and
“0” for a nonselected rule. Figure 7 displays such a chromo-
some structure representation. To represent a single rule a
position-dependent code with as many elements as the
number of variables of the system is used. Each element is a
binary string with a bit per fuzzy set in the fuzzy partition of
the variable, meaning the absence or presence of the corre-
sponding linguistic label in the rule. For a three input and
one output variable, with fuzzy partitions composed of 3, 2,
2 fuzzy sets for input variables and 3 fuzzy sets for output

variable, the fuzzy rule will have a representation as shown
in Figure 8.

Layer 3. In this layer, a chromosome represents the differ-
ent parameters of the T-norm and T-conorm operators. Real-
number representation is adequate to represent the fuzzy
operator parameters. The parameters of the operators will be
fine-tuned using gradient descent techniques.

Layer 4. This layer is responsible for the selection of
optimal learning parameters. Performance of the gradient
descent algorithm directly depends on the learning rate
according to the error surface. We used real-number repre-
sentation to represent the learning parameters. The optimal
learning parameters decided by the evolutionary algorithm
will be used to tune MF and the inference mechanism.

Layer 5. This layer basically interacts with the environment
and decides which FIS (Mamdani type and its variants,
Takagi–Sugeno type, Tsukamoto type, etc.) will be the opti-
mal according to the environment.

Once the chromosome representation, C, of the entire
EvoNF model is done, the evolutionary search procedure
could be initiated as follows:

1. Generate an initial population of N numbers of C chro-
mosomes. Evaluate the fitness of each chromosome
depending on the problem.

2. Depending on the fitness and using suitable selection
methods, reproduce a number of children for each indi-
vidual in the current generation.

3. Apply genetic operators to each child individual gener-
ated above and obtain the next generation.

4. Check whether the current model has achieved the
required error rate or the specified number of generations
has been reached. Go to Step 2.

5. End

Analysis and Results

Model Evaluation and Experimentation Results

For simulations we have used data provided from a survey
of 69 Malaysian multinational corporation subsidiaries. Each
subsidiary’s data set were represented by the subsidiary
strategic role and size with the following input variables.

Subsidiary strategic role represented by:

1. Product manufactured (1–5 scale representing fully inde-
pendent from the parent and fully dependent)

2. Resources (1–5 scale representing fully independent
from the parent and fully dependent)
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FIG. 6. Angular coding technique of rule consequent parameters of
Takagi–Sugeno inference system.

FIG. 7. Chromosome representing the entire rule base consisting of m
fuzzy rules.

FIG. 8. Chromosome representing an individual fuzzy rule (three input
variables and one output variable).



3. Tax protection (1–5 scale representing tax protection and
no tax protection)

4. nvolvement strategy (1–4 scale representing subsidiary,
subsidiary and parent, parent alone, and equal share)

5. Financial independence (1–5 scale representing fully in-
dependent from the parent and fully dependent)

6. Suppliers relationship (1–5 scale representing fully inde-
pendent from the parent and fully dependent)

Subsidiary size represented by:

7. Customers and market (1–4 scale representing the geo-
graphical distribution of the customers)

EvoNF Training

We used the popular grid partitioning method (clustering)
to generate the initial rule base. This partition strategy
requires only a small number of MF for each input. We used
90% of the data for training and the remaining 10% for test-
ing and validation purposes. The initial populations were
randomly created based on the parameters shown in Table 2.
We used a special mutation operator, which decreases the
mutation rate as the algorithm greedily proceeds in the
search space 0. If the allelic value xi of the i-th gene ranges
over the domain ai and bi the mutated gene is drawn ran-
domly uniformly from the interval [ai, bi].

x�i � e xi � ¢ (t, bi � xi),   if  v � 0

xi � ¢ (t, xi � ai),   if  v � 1

where � represents an unbiased coin flip p (� � 0) �
p (� � 1) � 0.5, and

defines the mutation step, where � is the random number from
the interval [0,1] and t is the current generation and tmax is the
maximum number of generations. The function computes a
value in the range [0, x] such that the probability of returning a
number close to zero increases as the algorithm proceeds with
the search. The parameter b determines the impact of time on
the probability distribution � over [0, x]. Large values of b de-
crease the likelihood of large mutations in a small number of
generations. The parameters mentioned in Table 2 were
decided after a few trial and error approaches. Experiments
were repeated 3 times and the average performance measures
are reported. Figure 9 illustrates the meta-learning approach
for training and test data combining evolutionary learning and
gradient descent technique during the 35 generations. The 35
generations of meta-learning approach created 76 if–thenTak-
agi–Sugeno-type fuzzy if–then rules compared to 128 rules
using the grid-partitioning method. Empirical results for the
test data (13 MCS) are depicted in Figure 10 (fuzzy modeled
values are indicated in *).

We also used a feed forward neural network with 12 hid-
den neurons (single hidden layer) to model the export output
for the given input variables. The learning rate and momen-
tum were set at 0.05 and 0.2, respectively, and the network
was trained for 10,000 epochs. The network parameters
were decided after a trial and error approach. The obtained
training and test results are depicted in Table 3.

¢ (t, x) � x C1 � g(1� t
tmax

)bD
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FIG. 9. Meta-learning performance (training and test performance) of EvoNF framework.

TABLE 2. Parameter settings of EvoNF framework.

Population size 40
Maximum no. of generations 35
FIS Takagi Sugeno
Rule antecedent MF 2 MF (parameterised Gaussian)

per input variable
Rule consequent parameters Linear parameters
Gradient descent learning 10 epochs
Ranked based selection 0.50
Elitism 5%
Starting mutation rate 0.50

TABLE 3. Training and test performance of the different intelligent
paradigms.

Intelligent paradigms

Export EvoNF Neural network

Output RMSE RMSE

Train Test
CCa

Train Test
CCa

0.0013 0.012 0.989 0.0107 0.1261 0.946

aCC � Correlation coefficient.
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FIG. 10. Test results showing the EvoNF designed export output (scaled values) for 13 MCSs with respect to the
desired values (in blue color).

Conclusions

In this article, we have modeled the complex export pattern
behavior of 69 Malaysian MCSs based on their strategic role
and their size to find out whether these characteristics influence
the export value. The product manufactured, resources, tax pro-
tection, involvement strategy, financial independence, and sup-
pliers’ relationship with a MNC determined the strategic role.
The MCSs’ size, however, was manifested through their cus-
tomers and markets. Each strategic role variable as well as size
variable was underpinned with a corresponding Likert scale.

We have developed an integrated computational frame-
work, defined as architecture of EvoNF, to optimize FIS by
using a neural network learning technique and evolutionary
computation. The proposed framework has adapted
Takagi–Sugeno FIS. The architecture and the evolving
mechanism were considered as a general framework for
adaptive fuzzy systems. The FIS has changed quantity and
shape of MF, rule base fuzzy operators, and learning para-
meters according to export volume requirements.

The developed EvoNF has learned the chaotic patterns
and modeled the export behavior of Malaysian MCSs by
using an optimized Takagi–Sugeno FIS. Given the approxi-
mate values of strategic role elements and a strategic size
element we have provided the actual export pattern behavior
of the MCSs. These findings justify the proposition in the
modern literature that MCS size and its strategic role are
related to its export intensity.

As illustrated in Figure 10 and Table 3, we have success-
fully adapted input variables to achieve desired output for
Malaysian MCSs.The proposed method has shown that we can
easily approximate the export behavior within the tolerance
limits. When compared to a neural network approach, EvoNF
performed better (in terms of lowest RMSE) and higher corre-
lation coefficient. Our experiment results also reveal the im-
portance of all the key input variables (six that relate to sub-
sidiary strategic role and one relating to subsidiary size) to
model the behavior within the required accuracy limits. These
techniques might be useful not only to managers in MNCs, but
also to government administrators for the long-term strategic
management of the economy. As a future research project, we

plan to incorporate more data mining techniques and improve
the modeling aspects of the export behavior.
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