
 10

Modeling the “Tragedy of the Commons” Archetype
in Enterprise Computer Security

Shalom N. Rosenfeld1, Ioana Rus2 and Michel Cukier3

1Department of Electrical and Computer Engineering, University of Maryland at College Park,

College Park, Maryland 20742, USA
shalom@umd.edu

2Fraunhofer USA Center for Experimental Software Engineering Maryland,

4321 Hartwick Road Suite 500, College Park, Maryland 20742, USA
irus@computer.org

3Center for Risk and Reliability, Department of Mechanical Engineering,

University of Maryland at College Park, College Park, Maryland 20742, USA
mcukier@umd.edu

Abstract: The purpose of this study is to understand observed

behavior and to diagnose and find solutions to issues encountered
in organizational computer security using a systemic approach,
namely system archetypes. In this paper we show the feasibility of
archetypes application and the benefits of simulation. We
developed a model and simulation of some aspects of security
based on system dynamics principles. The system dynamics
simulation model can be used in support of decision-making,
training, and teaching regarding the mitigation of computer
security risks. In this paper, we describe the archetype “Tragedy of
the Commons”, in which an organization’s efforts at improvements
fail to consider the consumption of a shared resource, and we show
the relevance of this archetype in the context of security. We
describe a scenario where this archetype can help in diagnosis and
understanding, and present simulation of “what-if” scenarios
suggesting how an organization might remedy problems observed
and maximize its gains from security efforts.

Keywords: software and computer system security, attacks,
countermeasures, human factors, system dynamics, system
archetypes, system and process modeling and simulation.

1. Introduction

All companies who use computer systems intensively must
protect the security properties of their assets against
malicious actions. They must employ various
countermeasures to mitigate the risk of attacks, including
various actions for reduction of vulnerabilities, as well as for
detection of attacks and tolerance of intrusions. Identifying
the security risks and knowing what is the most effective
and efficient combination of countermeasures are very
difficult tasks, because an organizational computer system is
complex, with many actors and interactions and an inherent
uncertainty and unpredictability. In addition, there are
resource constraints, as well as trade-offs between security
on one hand and other operational properties or business
goals on the other hand.

To support the challenging decision-making process of
designing an appropriate security strategy, we developed a
quantitative executable model of an organization’s
operational computer security. Like all models, this is an
abstraction of the real system, focused on representing the

security-significant aspects of the system and associated
processes. The model targets and represents the perspective
of the person who must make decisions regarding actions to
be taken for security assurance and security-related risk
mitigation. The user of the model will first identify the
underlying security problem that causes an unwanted
observed behavior. Then, he/she can set different values for
the model parameters, corresponding to different system
usage, vulnerabilities, attacks, and defense profiles. The
simulator can be run and different “what-if” scenarios can
be executed. Simulation will help a security manager,
security engineer, or system administrator answer questions
such as: if my environment is characterized by these values,
then what methods and tools should be selected and applied
to manage security risks and satisfy the users’ needs of my
system? How will the selected actions work together? What
is their effectiveness and cost efficiency? To what changes is
my environment most sensitive? If I make specific changes
in my security strategy, what will be their impact? What
changes if my system gets attacked more/less or if the time
to exploit changes? Should I hire more system
administrators? Should I spend more on training them?

We propose using modeling and simulation of aspects of
organizational computer security from a system’s
perspective, using the systems dynamics approach described
by [1]. We take into account that control actions and
reactions on any side of this system might have not only a
local effect, but could also affect the rest of the system, often
resulting in feedback loops. These effects manifest over time
with different delays. The properties of the system (security
being one of them) will emerge from its structure and all the
interactions between its components. We show how
archetypes (or patterns of behavior) can bring a systems
perspective towards studying an organization’s security
aspects. The model aims first at understanding security risk
reduction in computer systems, then at diagnosing such
systems and identifying their weaknesses, as well as
prospectively examining the effectiveness of different
solutions.

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

 11

This paper is structured as follows. Section 2 discusses
the notion of archetypes in computer security, exemplifying
with one possible instance of the “Tragedy of the Commons”
archetype. Section 3 describes how a simulation model can
be used to illustrate the archetypal behavior. Section 4
describes the use of simulation for diagnosis, analysis, and
comparison of alternative solutions. Section 5 presents
related work, and Section 6 concludes this study.

2. Archetypes and the “Tragedy of the
Commons”

2.1 Archetypes

Archetypes are a concept related to systems thinking,
developed in the mid 1980s in an attempt to describe
complex behavior and to convey ideas in an easier, more
efficient manner. Archetypes are frequently-observed
patterns of systems behavior and are a “natural vehicle for
clarifying and testing mental models” about systems or
situations [2]. The systems literature describes ten distinct
archetypes, as listed in [3]. In fact, [4] argues that all of
these can be categorized into one of four “core generic”
archetype classes (Underachievement, Relative
Achievement, Out-of-Control, and Relative Control), but
then acknowledges that the more common description of
archetypes, i.e. that of [2], [3], and [5], is more intuitive and
easier to grasp and apply to simulation, so it is used here.
(We thus speak of the archetypes “Tragedy of the
Commons” and “Limits to Growth”, rather than the class
Underachievement, for example; or “Shifting the Burden”
and “Eroding Goals” vs. the Out-of-Control class.) For the
most part, archetypes have been applied in business or
industrial processes. There has recently been some work
performed at MIT regarding systems thinking and
archetypes in systems safety [6], but in computer security
this is a new idea.
 Here, we use archetypes for understanding and modeling
security aspects (needs, problems, actions) in the context of
an enterprise that uses computers/information technology
systems for running its business and needs to ensure the
security of its systems. Our focus in this paper is on the
application of the common archetypes to computer security;
however, an archetype is only useful as it lends insight to a
particular situation. In approaching particular scenarios in
computer security, we keep in mind that other, specialized
archetypes may be discovered here. This would not be
surprising, as [6] uncovered several field-specific archetypes
in industrial safety. In this paper, however, we limit
ourselves to the archetypes most commonly discussed in the
literature, in particular those described by [3].

In this paper we present one archetype that we modeled,
namely “Tragedy of the Commons.” In [7], [8], and [9], we
have previously considered the following archetypes vis-à-
vis computer security: “Escalation”, “Shifting the Burden”,
and “Escalation” combined with “Limits to Growth”,
respectively.

 2.2 “Tragedy of the Commons”

The concept of a “Tragedy of the Commons” was originally
proposed by [10] over three decades ago; it has since proven
useful in many other fields and been incorporated into the
systems and archetype literature (see [2], [3], [4], and [5]).
In this archetype, the “Commons” are an uncontrolled
resource available to many users, who can use (or
“consume”) it without each other’s knowledge or
permission. The Commons can accommodate up to a certain
capacity without loss of yield for its consumers. The
“Tragedy” occurs when this capacity is exceeded; this can
happen in two ways. In the first, each user consumes a small
portion of the Commons, but the number of users eventually
exceeds the Commons’ optimal capacity. ([2] gives the
example of too many cars limiting the flow of traffic on a
highway.) In the second, there are few users, but in time
each user begins to consume more and more of the
Commons. (See [2] as well for an example regarding several
automobile designers, each making increasing demands on
the car battery.) In either case, until the optimal capacity is
exceeded, additional consumption or use of the Commons
leads to additional yields. Beyond this point of consumption,
however, the yields begin to lessen. Each individual user of
the Commons does not understand why their gains per effort
are no longer as high, and may try to compensate by raising
their efforts, further increasing consumption of the
Commons and worsening the Tragedy. This may culminate
in a total destruction of the Commons, or simply a peak and
then decline in the gains from the Commons.

As described in [4], a partial solution to this Tragedy
occurs if the Commons capacity can be raised. However,
once the Commons capacity is fixed to some finite value,
consumption will increase until a Tragedy occurs. Thus, the
only true solution to this Tragedy is if the system is viewed
as a whole, identifying the Commons, its limits, and its
consumers. At that point, either the consumers must come to
some agreement among themselves regarding proper use of
the Commons, or a superior must place restrictions on its
use.

The notion of human resources as Commons is not
entirely new; in fact, [3] cites the example of one
information technology department being “shared” by two
different divisions of a company. Similarly, we describe a
company’s computer support staff as its Commons.

2.3 Illustrated Behavior

For a simple but plausible illustration in computer security,
we paint a scenario in which a hypothetical company’s
computer system (or just “system”) is continually falling
prey to successful simple attacks, known as “kiddy-scripts.”
These attacks are launched by novice attackers (or “script-
kiddies”), and generally only succeed if the system contains
vulnerabilities such as software that is not up-to-date or an
inadequate security policy.
 Suppose that upon investigating the problem, the
company’s technology-related management realizes that it
has neglected having software patches applied on a regular
basis. (In this scenario, we assume that the software has

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

 12

been completely unpatched until the beginning of the run, so
additional patching will help significantly, but ignoring the
patches will not lead to any further harm.) We suppose that
these managers now demand that the staff begin spending X
hours per day on patches. On finding this move yields
significant gains, the demand on the support staff will be
increased to X+1 within the next few days. This continues,
with additional gains leading to additional
efforts/demands/consumption, and so on. There certainly
does reach a saturation point beyond which further
allocation of time for patching will accomplish nothing, but
this is again beyond the scope of our illustration of this
archetype, so we assume this point is not reached during our
time period. Alternatively, the management may conclude
that significant increases in security are available if the
support staff does a good job of system administration and
enforcing the company’s security policy, as described in
[11]. These tasks include, to name a few: scanning for and
fixing configuration vulnerabilities, which are effectively
“doors” to the system that were inadvertently left open;
applying proper access control to prevent unauthorized use;
and monitoring the users to prevent them from unsafe
practices such as downloading viruses and using “weak”
passwords which are easily guessed. We group all of these
tasks and all others that require no additional software or
hardware per se, only a great deal of attention paid by the
support staff (or system administrators) to what is already in
place under the title of “enforcement actions.” We thus
suppose that the management initially demands Y hours per
day of enforcement actions from the support staff. In several
days’ time, the managers find that the system’s security has
risen, and thus the demand is increased to Y+2 hours per
day. Again, this leads to added performance, leading to
added demands/efforts.

A third possibility is that the management decides to
begin demanding both patches and enforcement actions, in
quantities equal to the sum of the previous two cases.
Meanwhile, the hapless support staff has a finite capacity of
hours in the day it can spend on any given task. Well before
its absolute maximum capacity however, there reaches a
point where it is stretched beyond optimal capacity. Once
demands beyond optimal capacity are placed on the support
staff, especially if the demands are being made for different
goals, the support staff is stressed and must now spend a
nontrivial amount of time answering the non-stop requests
from each directive from management, demanding its
immediate attention. Thus, the gains it can provide a
particular demand begin to decrease.
 Throughout the systems literature, the possibility is
acknowledged that the Commons could be consumed to the
point of its total collapse, such as complete depletion of a
natural resource; the analogy here would be the support
staff’s becoming disgruntled and ultimately resigning. For
now, however, we assume the support staff, even if pushed
beyond peak efficiency, is still operating in a “normal”
mode and providing some gains.

The management does not realize that the Commons of
the support staff is not capable of sustaining all of the

demands placed upon it, and are thus puzzled when the
increases in security are not as steep as they had once been;
the system’s security may even level off and decline. These
effects are displayed in an influence diagram in Figure 1.

In the upper-center loop, increased efforts (i.e. demanding
more staff-hours per day from the support staff) for patches
cause increased gains in security from patches, increasing
the motivation for additional efforts. Similarly, in the loop
beneath it, increased efforts for enforcement actions produce
gains in security, encouraging further efforts/demands. Each
of these two loops, if viewed independently, would be
described as reinforcing loops, which should increase
indefinitely if nothing else influences the system.

Unfortunately, something else does indeed influence the
system, and that is represented by the arcs to the left of the
main loops: all efforts contribute to a rise in total activity,
which depends on additional use of the Commons (in our
case, the support staff); while there may be some delay
(double hatch mark), ultimately the demands on the support
staff beyond its optimal capacity will results in a reduced
gain per individual activity (i.e. a given demand for more
enforcement or patches).

 Figure 1. Influence diagram for a “Tragedy of the
Commons” situation

Of course, if the support staff has a high capacity, it will
take much longer for the point of optimality to be surpassed,
and thus the gains per effort can remain higher for longer.
Another pattern observable, therefore is as follows:
increased efforts add to total activity, which reduces the gain
per individual activity if the support staff’s optimal capacity
has been exceeded; this decreases the gain from enforcement
and/or patches. At some point, it is believed that
diminishing gains will lead to reduced efforts: this forms a
“balancing loop”, which will push towards the equilibrium
of efforts matching the support staff’s optimal capacity.

3. Proposed Model

To consider the quantitative strengths of the various
influences in the above archetypes, and to see the results of
changes and possible prognoses, computer simulation is
used, as is recommended by [2]. The continuous simulation
technique of the Extend simulation environment [12] was
used. An overview of Extend can be found in [13], where
Extend is described as providing “an integrated structure for
building simulation models and developing news simulation

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

 13

tools.” Moreover, “model builders can user Extend’s pre-
built modeling components to quickly build and analyze
systems without programming.” The description provided
here of our simulation model is excerpted from [14], which
contains full details. The entities modeled consist mostly of
those mentioned above: “attempted attacks”, “staff size”,
“security-related efforts”, “countermeasures and
vulnerabilities”, with human factors related to the
management (or decision-makers regarding security
investments), the support staff, and the attackers. As the
model is applied to different specific contexts, this will
allow data from those systems to contribute to tailoring and
increasing the accuracy of the model. Using the model will
reveal the data needs for executing it for a given system,
thus guiding security measurement. For our current
numerical values, we have incorporated empirical findings
such as:

• The cyber security bulletins from [15]. For instance, in
the first two years since its release, Microsoft Windows
2000 Server averaged 0.09 bulletins per day at the
Critical or Important level. For Windows 2003 Server,
the average was 0.04 per day. We used an average of
these two values to describe the rate at which an
unpatched system becomes steadily more vulnerable to
attack.

• The FBI’s annual computer security survey [16]. For
example, out of the 600+ corporate, academic, and
governmental organizations responding to the poll, 65%
observed a virus on their systems last year, but only 25%
observed a denial-of-service attack, making the former
significantly more prevalent. It is thus assumed that
between a countermeasure designed specifically against
viruses and one designed specifically against denial-of-
service attacks, the former will defeat a larger number of
attacks typically seen on the Internet.

• “Honeypot” or “honeynet” research and analysis (such as
[17] and [18]), which gives us some idea of how many
attacks per day tend to be attempted against an average
system.

For data unavailable in the literature, experts’ judgment
was used in assigning values. Thus, given these parameters,
the current numerical results of the simulation reflect a
combination of literature data where available and well-
educated estimates where data were not available. Further
benefit resides in the overall trends in behavior displayed by
the simulation, which are used for problem-solving below.

3.1 Model Description

To see some quantitative results of the above “Tragedy of
the Commons” scenario, an Extend model was built
simulating a system containing on the order of 200
machines, sustaining 100 simple attacks per day. A certain
percentage of simple attacks are modeled as exploiting
vulnerabilities in the system’s software; the better-patched
the software has been, the less of these will succeed.
Similarly, a certain percentage of simple attacks are
designed to exploit user mistakes, poorly configured servers,
and the like; therefore, a certain percentage of attacks will

not succeed if proper enforcement actions are in place. Note
that even if our simulation indicates “40% of the attempted
attacks succeeded”, the system’s users may not observe for
100 attempted attacks, 40 separate failures, as many of these
attempts might target a small set of specific vulnerabilities
and exploit them in the same way. Similarly, no single task
(or even patching combined with enforcement actions)
should be expected to reduce the attack success rate to 0 by
itself, as there are enough different types of attacks that any
single security action or countermeasure can be defeated. (In
real life, therefore, an organization would be wise to
augment its patches and enforcement actions with
countermeasures such as a firewall or antivirus software, but
they are omitted in this archetype demonstration.) We use
the percentage of successful attacks only as a measure of the
system’s vulnerabilities. For a given execution of the
simulation, we specify some rule of how many staff-hours
per day of efforts are demanded for each security-related
task (such as applying software patches or enforcement
actions). Given the optimal capacity of the support staff (as
specified in the model), these demands are translated into
actual staff efforts for each task, whereupon the staff efforts
determine the quality (or lack-of-vulnerability) of the
system’s software and configuration. These daily measures
of quality determine what percentage of each day’s
attempted attacks do not succeed; the remaining attacks are
deemed “successful”, and their tally is viewed as the
model’s output. Analyzing this output of “successful attacks
per day” can give us a greater understanding of what the
(often unforeseen) effects of our input choices have been; it
also allows us to compare alternative scenarios run with
different input values. The model was executed for the
equivalent of 6 months (real time) with different scenarios.
(Each execution of this type runs in under 30 seconds.)

3.2 Model Behavior

In the first scenario simulated, patches alone are used; a
certain number xi of staff hours are demanded initially for
patches, and that number rises linearly with time, up to xf
staff hours at day 180, where xf is still less than the optimal
capacity of the support staff. (This is a quantitative
description of behavior we assume to be realistic.) In the
second scenario, enforcement actions alone are used, with
an initial demand of yi staff hours for enforcement actions,
increasing linearly over 180 days to yf. Again, at no point do
the demands for enforcement actions exceed the support
staff’s optimal threshold. In the third scenario, the two
previous scenarios are implemented simultaneously,
beginning with net demand (i.e. staff-hours demanded for
all tasks) zi = xi + yi and ending with demand zf = xf + yf.
We have used the values xi = 0.84, yi = 1.2, zi = 2.0, and xf =
6.6, yf = 11, zf = 17.6, believing these to be realistic
descriptions of a transition from very modest security efforts
vis-à-vis patches and/or enforcement actions to a full effort.
To measure the effectiveness of efforts in the first two
scenarios, we measure percentage of attacks unsuccessful.
Figure 2 shows the results of scenarios one (patches) and
two (enforcement actions), each one executed by itself. Note

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

 14

that in our current model, effective software patching can
lead to many more unsuccessful attacks than can effective
enforcement actions; the goal of this archetype description is
not to compare one against the other, but rather to note the
overall shape of each trend and see what happens when they
are combined.

Figure 2. Percentage of attacks unsuccessful for the two
countermeasures used individually

Figure 3 shows the results of scenario three, in which
both efforts are made (and increased) simultaneously,
without regard for the optimal output of the support staff.
Thus, the total burden on the sysadmin is larger than it had
been in each scenario of Figure 2.

Figure 3. Percentage of unsuccessful attacks, both Patches
and Enforcement used simultaneously

In scenario three, at some point (actually around day 90
here, though the effects are not felt for several more weeks),
the optimal capacity of the support staff is slowly exceeded.
Additional efforts are still made, but the support staff
demand-beyond-optimal-capacity effect is engaged, reducing
the number of effective staff-hours supplied to patches and
enforcement. As a result, the gains from each begin to peak
and then decline. For enforcement, which did not possess
very aggressive growth when implemented independently,
the percentage of unsuccessful attacks plateaus, and then
descends quite rapidly. For patches, which witnessed a
sharp increase in success over the last six months when run
alone, the plateau and fall do not come until almost the end
of the simulation (day 158), but they come nonetheless.

4. Discussion and Other Scenarios

4.1 Lessons and Alternate Scenarios for “Tragedy of
the Commons”

From Figure 3, it can be learned that the effects of a
combination of security-related tasks cannot easily be
predicted only from the history of each one used in isolation.
There must be one managing body considering all the
demands being made on the Commons, then developing and

enforcing a policy that leads to maximum overall gains from
its use; such a policy will involve limiting consumption.
 Armed with this knowledge, a manager can then ask what
the optimal allocation of the Commons will be, and again
simulation can help provide an answer. For any proposed
“what-if” course of action, the model can be re-run with the
appropriate change in input values; the (possibly
counterintuitive) results of each proposed solution can then
be studied to reduce risk before any changes are actually
implemented in the real-world computer system. If the
above scenario three represented our “problem” or
“baseline” scenario, we consider “solution” scenarios four,
five, and six. In these latter scenarios, the ratio of demand
between patches and enforcement actions is modified for
improved performance. The solution scenarios differ in how
to manage the quantity of total effort demanded.

Scenario four is that of on “optimal” solution: the
manager has near-perfect knowledge of the system, makes
no additional demands once the optimal staff load has been
reached, and allocates hours between the two tasks with this
in mind.

Of course, the optimal scenario four assumed that this
magical value of “optimal staff load” is known. More
realistically, scenario five (“one day delay”) acknowledges
that it is not known in advance, but a manager keeping a
close watch of the results (i.e. unsuccessful attacks) could
implement the following (somewhat counterintuitive) rule:
if, at any day, a decline in unsuccessful attacks is seen, from
the next day on, make no further demands, i.e. leave the
staff demands at their current levels. In the language of [4],
any combination of several “mental barriers” might prevent
a rule such as this from being implemented: the manager
may not understand that the decline is being caused by
excess demands; there may be an instinctive fear response to
increase demands when problems appear; the decline may
be too small to be observable; and the manager might not
change course because he/she refuses to acknowledge the
decline, rationalizing that “it was just one bad day.” Given
all of these difficulties, a more likely response is that of
scenario six, where a delay greater than one day is present
before additional demands are halted, i.e. if, at any day,
unsuccessful attacks are less today than they were θ days
ago, then make no further demands from the next day on.
We consider θ = 3 to be reasonably optimistic.

We simplify by plotting only the total percentage of
attacks unsuccessful for each scenario. The results of
scenarios “baseline”, “optimal”, “one day delay”, and “three
day delay” are shown in Figure 4.

 Figure 4. Results of “What-if” scenarios

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

 15

Several trends can be observed here. Firstly, all of the
scenarios other than baseline avoid the Tragedy to a large
degree and thus do not experience a decrease towards the
end of the simulation period. Secondly, note that the three
alternative scenarios (optimal, one day delay, three day
delay) all involve ceasing further demands by approximately
day 90, and yet gains continue to rise: once the company
begins doing a good job with patches and enforcement, a
constant effort will increase gains over time. A saturation
point will most probably be reached at some point in the
future, but that is not considered here; a description of that
situation is addressed by the “Limits to Growth” archetype
described in [9]. Thirdly, it is not surprising that the longer
the delay to action, the less the plot will look like “optimal”
and the more it will look like “baseline.” Lastly, even in the
“optimal” scenario, the greatest gain reached is
approximately 80% attacks unsuccessful. While this value is
impressive, we might also turn back to Figure 2, which
considered the gains of using each task individually. If we
were to sum the two plots of Figure 2 at day 180, we would
arrive at a supremum of over 90%. Indeed, if the Commons
were infinite, then the gains due to two tasks performed
simultaneously would be equal to the sum of each task’s
individual gains. Realistically, however, the best we can do
is to acknowledge the Commons as finite and optimize
accordingly; this is reflected in the “optimal” 80% of Figure
4.
 Here we have presented only one instance of “Tragedy of
the Commons” as it can occur on the enterprise security
level. This archetype has also been used in other fields of
computing, for example, resource allocation between
processes in centralized system design. Another instance on
the enterprise level that may be modeled in future work is
that of common memory, processing power and the like,
where security-related tasks such as encryption and virus
scanning can consume the Commons.

4.2 Applying Archetypes and Simulation

We have thus shown the feasibility of using known system
archetypes for explaining situations that can occur within an
organization with respect to its computer security. In our
modeling of such situations, both the system’s technological
aspects and human factors are taken into account. Each
archetype describes a "story", explaining symptoms that can
be observed while examining relevant variables (in our case,
for example, the “attacks unsuccessful" served as an
indicator of a chosen security strategy’s effectiveness).
While one archetype alone may not depict a broad picture of
the entire system’s behavior, a combination of archetypes
can do so. Depending on a specific organization’s
characteristics, a particular known archetype may or may
not present itself. Furthermore, besides the generic system
archetypes referenced in this paper, security-specific
archetypes (as mentioned in the introduction to Section 2)
may be identified in a given organization. It is up to the
analyst of each given system to determine what lessons of
system dynamics are applicable to his/her concrete situation.
Here, the paradigm of system thinking and archetypes is

offered as a tool to analysts who may include, for example,
security engineers, managers, and security policy makers.
The other tool proposed here is that of simulation: once
archetypes are used to identify the cause of an undesirable
outcome, simulation can then be used to consider the results
of different proposed solutions. Used in this way,
simulation can thus support decision making in selecting
and implementing the most effective security strategy; by
modeling dollar-value costs for phenomena such as
successful attacks or staff-hours of security labor (see [9]
and [14]), the most cost-efficient strategy can be determined
and chosen as well.

 4.3 Simulating Other Organizational Contexts

The scenarios presented above were executed for a
hypothetical organization. For practical use of the simulator,
it has to be run in the context specific to the organization
under study. For making the model and the simulator
applicable to different contexts, we parameterized the model
and the simulator. The context can be varied by changing
the values for these parameters. The parameters reflect the
profile of company, system size (i.e. number of machines),
system vulnerability factor, the attack profile, and the
countermeasure strategy.

In addition to the context parameters, the model and
simulator also have another set of parameters, namely input
parameters, whose values are varied for executing different
scenarios for a chosen context, corresponding to different
candidate solutions. Examples of such input parameters are
staff size, delays for making changes, and change quantities.

 For executing the simulator for a specific organization
and system, the simulator has to be calibrated first to that
specific environment (by setting the context parameters to
specific values). Different scenarios can be then executed by
setting the values for the input parameters. The Extend
simulation environment that we used provides features such
as sensitivity analysis, for one or more parameters at a time.

As described in [14], the current version of the simulator
has a graphical user interface containing sliders and
switches through which the user of the simulator can set the
desired values of the input parameters. The values of the
context parameters are set (and can be adjusted) in an Excel
spreadsheet that is automatically read at the beginning of
the simulation. The outputs of the simulation from one run
or multiple consecutive runs can be recorded as graphs (as
shown in figures above), or exported to Excel and processed
after the simulation. They can be processed for example for
comparing outputs of different scenarios using multiple
decision variables (e.g., number of attacks and effort/cost
invested in security) and supporting decisions regarding the
most desirable security strategy, according to the criteria
established for the organization under study.

The value of the simulation’s output depends on the
quality of its inputs. For the illustration in this paper we
used values taken from the literature and experts’ opinions.
To obtain maximum gain from simulation, a company must
have its own specific values with which to run the
simulation. The list of parameters of the model can

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

 16

constitute a start for defining what the organization should
collect as part of their security measurement activity.

5. Related Work

5.1 Security Validation

Traditional, non-quantitative approaches to security
validation, such as [19] and [20], have focused on
prescribing procedures for system design. Actually, in
selecting the entities to be represented in our model, we
followed the security concepts and relationships from [20],
and then extended it with dynamic, behavioral, and
quantitative aspects.
 Where quantitative methods have been used, they have
either been quite formal, such as [21], proving how certain
security properties hold given a specified set of assumptions;
quite informal, using a “red team” of experts (e.g. [22])
trying to compromise a system; or risk-oriented, assessing
the risks to which an organization is exposed (e.g. [23]).
Risk assessment is also included in [24], which describes
guidelines for initiating, implementing, maintaining, and
improving information security management in an
organization or in information security governance that
delivers certifications like the Certified Information Security
Manager (CISM) certification. An alternative approach has
been to try to probabilistically quantify an attacker’s
behavior and its impact on a system’s ability to provide
certain security-related properties. Attempts have been made
to build models that take into account both the attacker and
the system being validated. A general 9-state model of an
intrusion-tolerant system is proposed by [25] to describe
security exploits by considering attack impacts; the system
state is represented in terms of failure-causing events.
 [26] proposes a combination of state-level modeling,
formal logic, and Bayesian analysis to quantify system
survivability. The authors first model the network nodes and
links of a networked system using state machines, and then
faults are injected in the models. The third step consists of
specifying a survivability property, e.g., the system enters a
faulty state, using a temporal logic. This is used to generate
a scenario graph, which is then used for evaluating the
overall system reliability or the latency using Bayesian
networks. [27] proposes modeling known vulnerabilities in a
system using a “privilege graph” similar to the scenario
graph described above. By combining a privilege graph with
assumptions concerning an attacker’s behavior, the authors
then obtain an “attack state graph.” Parameter values for
such a graph have been obtained empirically; once obtained,
an attack state graph can be analyzed using standard
Markov techniques to obtain probabilistic measures of
security. [28] uses a probabilistic model for validating an
intrusion-tolerant system that combined intrusion tolerance
and security, allowing the designers to make choices that
maximize the intrusion tolerance before they implement the
system.

The presented models vary from high-level models with 9
states [25] to much more detailed models [26], [27], [28].
The model that we have presented has an intermediate level

of abstraction. Our model is also more generic in its
inclusion of other human elements like users and system
administrators. Finally, with the exception of [27]’s model,
which uses some data collected experimentally to assess
certain parameter values, the other models are not developed
to easily be linked to empirical data.

5.2 Related Security Simulators

Cyberciege [29], [30], developed by the Naval Postgraduate
School, is a computer game with a very engaging user
interface and virtual world, intended for training students to
understand security engineering. Cyberciege focuses on
detailed access control, user-by-user, for a small number of
users. Each piece of hardware is hand-selected from a list of
fictional brands, and physical security measures are then
implemented on a user-by-user basis. The determination of
whether an attack succeeds is by comparing asset
desirability and how well standard procedures have been
followed. Cyberciege’s level of detail models the role of an
individual security officer who might oversee a dozen
computers at most, while our model abstracts one level
higher, to the manager who oversees several hundred
machines. Many of the tasks we include under “enforcement
actions”, for example, are performed in detail in Cyberciege.

In a similar vein, [31] describes a security simulator
available on their website (http://all.net/games/index.html).
This simulator gives examples of how a single attack of
varying sophistication might succeed against different
computers with different countermeasures. The defender
strength, i.e. to what degree the defender does the right
thing, is specified as a percentage by the user before running
the simulator. If an attack succeeds, the dollar loss due to
the attack is estimated based on the attacker profile, e.g.
how much will a successful attack by a private investigator
cost? Our approach attempts to add in more empirical data.
Additionally, our work extends the “defender strength” idea
by allowing for strengths of each countermeasure: a system
may have a 90% effective firewall but only a 70% effective
IDS. Furthermore, rather than specify a value for defender
strength, the user of our model inputs managerial decisions
such as how much effort is allocated to which security tasks
and how skilled the staff is – the model then uses these
inputs to determine the resulting defense strength for each
countermeasure.

5.3 Related Empirical Studies

For sources of empirical data, we have security-incident
anecdotes such as [32] and corporate surveys such as [16].
Hypothesized behavior of an individual attacker is
empirically described by [33], but more data are needed on
describing the aggregated effect of multiple attackers.
Therefore, most data on attacks are gathered from analyzing
“honeypots” or “honeynets”, systems designed to be
attacked. Such studies include [17], [34], [35], and [36], as
well as our own laboratory’s [18] and [37]. A great deal of
this work is ongoing and will continue to yield additional
empirical data.

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

 17

To help meet the dearth of empirical data regarding
security, nine teams are collaborating on the projects
DETER and EMIST [38]. DETER involves building a
massive (currently approximately 200 machines, intended to
reach 1000 machines) “researcher- and vendor-neutral”
network testbed for emulating various types of attacks,
countermeasures, and network topologies. Meanwhile, the
EMIST project seeks to formalize methodologies for
measuring these effects. Combined, these projects should
provide a wealth of useful, unbiased, and well-accepted
emulated attack data. Both studies will enrich our model
with quantifiable values, e.g. honeynet findings might show
that 20 buffer-overflow attacks of a certain type are
attempted each day, and the DETER/EMIST findings would
tell us that the attack will succeed 80% of the time if the
network has Topology A but only 60% of the time with
Topology B.

Regarding user factors, [39] uses surveys to understand
Internet usage, and [40] conducts studies with test websites
to investigate users’ privacy behaviors online. The authors
of these papers have indicated that their future work will
analyze user behavior regarding network security, which
should be applicable to our user model.

As far as the interaction of economics and computer
security, [41] considers the effects of public disclosure
regarding security breaches on a company’s stock prices.
[42], [43], and [44] use economic analysis in determining
how much security investment is worthwhile for a company,
given its priorities; however, details are not provided as to
what should be done specifically with the investments. This
provides the connection point to our model.

Economic requirements are also used to lead to
assumptions or specifications for related computer security,
e.g. determining the subjective cost and total welfare
regarding network routing [45] or requirements on trusted
platforms placed by digital rights management [46], [47].

6. Conclusions

We have shown in this paper how a system archetype can be
used in computer security to aid understanding and
diagnosis, and making decisions for risk mitigation.
Moreover, systems thinking, combined with simulation, can
assist an organization in placing its efforts in the places that
will give the most “leverage” to their goals, and in
diagnosing and solving problems. We have specifically
shown that even if the results are known for two different
courses of action, combining the actions can produce vastly
different results.

System dynamics simulation is thus a very valuable tool
for enterprise computer security, and can be used in the
following way:

An organization identifies the indicators whose evolution
needs to be studied for assessing achievement of its goals
(“attacks unsuccessful” in the example presented here) or
existence of problems. If the trends of these indicators point
to an archetypal behavior, then the simulation
corresponding to that archetype (or archetypal combination,

see [9]) is selected and the simulator is calibrated to the
organizational context, as described in section 4.3. After the
observed behavior is reproduced by simulation, different
what-if scenarios will be executed in order to determine how
to fix the problems identified by the archetypes. Different
solutions will be simulated by varying the values of the
simulation parameters. As with any simulation modeling,
the results depend on the data used for developing and
calibrating the model: the data used for model development
were drawn from the current literature and experts’
opinions, gathered by our interviews, for average
information systems. The model is then tuned with
calibration data provided by the individual organization
using it.

The simulation model can also be used for training of
students and less-experienced security personnel, who can
simulate and analyze the effects of potential actions without
affecting the real system. This learning by doing is enabled
by the knowledge encoded in the model; thus the model
serves as a tool for knowledge transfer from experts to the
less-experienced.

In sum, the archetype and simulation results presented
here show the value of systems dynamics modeling for
enterprise security. Monitoring behavior for a long enough
time allows observation of the genuine, long-term trends.
Combined with a systems approach, this supports proper
diagnosis, understanding, and solution-finding for observed
problems. We illustrated the value of applying systems
thinking in modeling the domain of enterprise security; the
value of thinking in terms of links, delays, and feedback
loops; and of keeping in mind that something happening
locally in one part of the system might have an unexpected,
possibly delayed, global effect. We also showed the benefits
of simulation, which supports execution of “what-if”
scenarios. The number values assumed in our discussions
were for a hypothetical situation to illustrate some
archetypal trends, but the patterns outlined here are
expected to hold in other contexts as well.

Acknowledgment

This material is based upon work supported by the National
Science Foundation under Grant No. 0237493.

 References

[1] J. W. Forrester. Industrial Dynamics, The Wright-
Allen Press, Cambridge, 1961.

[2] P. Senge, A. Kleiner, C. Roberts, R. Ross, and B.
Smith. The Fifth Discipline Fieldbook, Doubleday,
New York, 1994.

[3] W. Braun. “The System Archetypes”, 2002. Available
at: wwwu.uni-klu.ac.at/gossimit/pap/sd/wb_sysarch.pdf

[4] E. F. Wolstenholme. “Toward the Definition and Use
of a Core Set of Archetypal Structures in System
Dynamics”, System Dynamics Review, vol. 19, no. 1,
pp. 7-26, 2003.

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

 18

[5] P. M. Senge. The Fifth Discipline: The Art and
Practice of the Learning Organization, Doubleday
Currency, New York, 1990.

[6] K. Marais and N. Leveson. “Archetypes for
Organizational Safety”. In Proceedings of the
Workshop on Investigation and Reporting of Incidents
and Accidents (IRIA), 2003.

[7] S. N. Rosenfeld, I. Rus, and M. Cukier. “Modeling and
Simulation of the Escalation Archetype in Computer
Security”. In Proceedings of the 2006 Symposium on
Simulation and Software Security (SSSS), 2006.

[8] S. N. Rosenfeld, I. Rus, and M. Cukier. “Modeling the
Symptomatic Fixes Archetype in Computer Security”.
In Proceedings of the 30th Annual International
Computer Software and Applications Conference
(COMPSAC), 2006.

[9] S. N. Rosenfeld, I. Rus, and M. Cukier. “Archetypal
Behavior in Computer Security”, to appear in Journal
of Systems and Software, 2007.

[10] G. Hardin. “The Tragedy of the Commons”. Science,
vol. 162, pp. 1243-1248, 1968.

[11] D. Danchev. “Reducing ‘Human Factor’ Mistakes”.
WindowSecurity.com, 2003.
www.windowsecurity.com/articles/Reducing_Human_
Factor_Mistakes.html

[12] Imagine That, Inc. Extend (Version 6.07), CD-ROM,
Windows 98/ME/NT4/2K/XP, San Jose, CA, 2005.

[13] D. Krahl. “The Extend Simulation Environment”. In
Proceedings of the 2000 Winter Simulation
Conference, pp. 280-289, 2000.

[14] S. N. Rosenfeld. “System Dynamics Modeling and
Simulation of Enterprise Computer Security”. Master’s
thesis, University of Maryland at College Park, 2006.

[15] CERT (United States Computer Emergency Readiness
Team). “Technical Cyber Security Alerts”, 2007.
http://www.us-cert.gov/cas/techalerts

[16] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and R.
Richardson. “Eleventh Annual CSI/FBI Computer
Crime and Security Survey”. Computer Security
Institute, San Francisco, 2006.

[17] M. Dacier, F. Pouget, and H. Debar. “Honeypots:
Practical Means to Validate Malicious Fault
Assumptions”. In Proceedings of the 10th IEEE Pacific
Rim International Symposium on Dependable
Computing (PRDC), pp. 383-388, 2004.

[18] S. Panjwani, S. Tan, and K. Jarrin. “An Experimental
Evaluation to Determine if Port Scans are Precursors to
an Attack”. In Proceedings of the International
Conference on Dependable Systems and Networks
(DSN), Yokohama, Japan, pp. 602-611, 2005.

[19] U.S. Department of Defense. “Department of Defense
Trusted Computer System Evaluation Criteria”
(“Orange Book”). DOD 5200.28-STD, Library No.
S225,7ll (November), 1985.
http://www.radium.ncsc.mil/tpep/library/rainbow/5200
.28-STD.html

[20] ISO/IEC. International Standards (IS) 15408-1:1999,
15408-2:1999, and 15408-3:1999, “Common Criteria
for Information Technology Security Evaluation”:
Parts 1-3, Version 2.1, (August) (CCIMB-99-031,
CCIMB-99-032, and CCIMB-99-033).

[21] C. Landwehr. “Formal Models for Computer Security”,
Computer Surveys, vol. 13, no. 3, September 1981.

[22] J. Lowry. “An Initial Foray into Understanding
Adversary Planning and Courses of Action.” In
Proceedings DARPA Information Survivability
Conference and Exposition II (DISCEX), pp. 123-133,
2001.

[23] D. J. Landoll. The Security Risk Assessment
Handbook: A Complete Guide for Performing Security
Risk Assessments, Auerbach Publications, Boca Raton,
Florida, 2006.

[24] ISO/IEC. “Information Technology – Security
Techniques – Code of Practice for Information Security
Management”. ISO/IEC 17799, 2005.

[25] K. Goseva-Popstojanova, K. Vaidyanathan, K. Trivedi,
F. Wang, R. Wang, F. Gong, and B. Muthusamy.
“Characterizing Intrusion Tolerant Systems Using a
State Transition Model”. In Proceedings of the
DARPA Information Survivability Conference and
Exposition II (DISCEX), 2001.

[26] S. Jha and J. M. Wing. “Survivability Analysis of
Networked Systems”. In Proceedings of the 23rd
International Conference on Software Engineering
(ICSE), pp. 307-317, 2001.

[27] R. Ortalo, Y. Deswarte, and M. Kaaniche.
“Experimenting with Quantitative Evaluation Tools for
Monitoring Operational Security”, IEEE Transactions
on Software Engineering, vol. 25, no. 5, pp. 633-650,
1999.

[28] F. Stevens, T. Courtney, S. Singh, A. Agbaria, J. F.
Meyer, W. H. Sanders, and P. Pal. “Model-Based
Validation of an Intrusion-Tolerant Information
System”. In Proceedings of the 23rd Symposium on
Reliable Distributed Systems (SRDS), pp. 184-194,
2004.

[29] Naval Postgraduate School and Rivermind, Inc.
Cyberciege, (Version 1.5b), 2006. See:

 http://cisr.nips.navy.mil/cyberciege/index.htm
[30] C. E. Irvine, M. F. Thompson, and K. Allen.

“CyberCIEGE: Gaming for Information Assurance”,
IEEE Security and Privacy Magazine, 3(3), pp. 61-64,
2005.

[31] F. Cohen. “Simulating CyberAttacks, Defenses, and
Consequences”. Fred Cohen & Associates, Livermore,
California, 1999.

[32] S. Gibson. “The Strange Tale of the Denial of Service
Attacks Against GRC.com”. Gibson Research
Corporation, Laguna Hills, California, March 2002.
www.grc.com/files/grcdos.pdf

[33] E. Jonsson and T. Olovsson. “A Quantitative Model of
the Security Intrusion Process Based on Attacker
Behavior”, IEE Transactions on Software Engineering
23 (4), pp. 235-245, 1997.

[34] F. Pouget and M. Dacier. “Honeypot-Based Forensics”.
In Proceedings of the AusCERT Information
Technology Security Conference, 2004.

[35] F. Pouget, M. Dacier, and V. H. Pham. “Understanding
Threats: A Prerequisite to Enhance Survivability of
Computing Systems”. In Proceedings of the
International Infrastructure Survivability Workshop

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

 19

(IISW), in conjunction with 25th International Real-
Time Systems Symposium (RTSS), 2004.

[36] F. Pouget, M. Dacier, and V. H. Pham. “Leurre.com:
On the Advantages of Deploying a Large Scale
Distributed Honeypot Platform”. In Proceedings of the
E-Crime and Computer Conference (ECCE), 2005.

[37] R. Meyer and M. Cukier. “Assessing the Attack Threat
due to IRC Channels”. In Proceedings of the
International Conference on Dependable Systems and
Networks (DSN), 2006.

[38] R. Bajcsy, T. Benzel, M. Bishop, B. Braden, C.
Brodley, S. Fahmy, S. Floyd, W. Hardaker, A. Joseph,
G. Kesidis, K. Levitt, B. Lindell, P. Liu, D. Miller, R.
Mundy, C. Neuman, R. Ostrenga, V. Paxson, P.
Porras, C. Rosenberg, J. D. Tygar, S. Sastry, D. Sterne,
and S. F. Wu. “Cyber Defense Technology Networking
and Evaluation”, Communications of the ACM 47 (3),
pp. 58-61, 2004.

[39] R. Larose and M. S. Eastin. “A Social Cognitive
Explanation of Internet Uses and Gratifications:
Toward a New Theory of Media Attendance”. In
Proceedings of the International Communication
Association, Communication and Technology Division,
2003.

[40] R. Larose and N. Rifon. “Your Privacy is Assured – of
Being Invaded: Web Sites With and Without Privacy
Seals”. Presented at IADIS International Conference,
2003.

[41] K. Campbell, L. A. Gordon, M. P. Loeb, and L. Zhou.
“The Economic Cost of Publicly Announced
Information Security Breaches: Empirical Evidence
from the Stock Market”, Journal of Computer
Security, 11, pp. 431-439, 2003.

[42] L. A. Gordon and M. P. Loeb. “The Economics of
Information Security Investment”, ACM Transactions
on Information and System Security, 5 (4), pp. 438-
457, 2002.

[43] L. A. Gordon and M. P. Loeb. Managing
Cybersecurity Resources: A Financial Perspective,
McGraw-Hill, New York, 2005.

[44] L. Bodin, L. A. Gordon, and M. P. Loeb. “Evaluating

Information Security Investments Using the Analytic
Hierarchy Process”, Communications of the ACM, 28
(2), pp. 79-83, 2005.

[45] J. Feigenbaum, D. Karger, V. Mirrokni, and R. Sami.
“Subjective-Cost Policy Routing”. In Proceedings of
the Workshop on Internet and Network Economics,
Lecture Notes on Computer Science, vol. 3828,
Springer, Berlin, 2005.

[46] D. Bergemann, J. Feigenbaum, S. Shenker, and J. M.
Smith. “Towards an Economic Analysis of Trusted
Systems”. In Proceedings of the Third Annual
Workshop on Economics and Information Security
(WEIS), 2004.

[47] D. Bergemann, T. Eisenbach, J. Feigenbaum, and S.
Shenker. “Flexibility as an Instrument in DRM

Systems”. In Proceedings of the Fourth Annual
Workshop on Economics and Information Security
(WEIS), 2005.

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

 20

Author Biographies
Shalom N. Rosenfeld is currently a graduate student in Electrical and
Computer Engineering at the University of Maryland. He holds a B.A. in
mathematics from Queens College – CUNY. His research interests include
archetypes and computer security, modeling, and machine learning.

Ioana Rus is a research scientist at the Fraunhofer Center for Empirical
Software Engineering Maryland. Her current research interests include
software process modeling and simulation, software security, dependability
engineering, measurement and empirical studies in software development and
technology transfer, and experience and knowledge management. She has a
Ph.D. in computer science and engineering, and work experience in software
development, research, and teaching.

Michel Cukier is an Assistant Professor at the Center for Risk and Reliability
in the Mechanical Engineering Department of the University of Maryland. He
earned his doctorate from LAAS-CNRS, Toulouse, France in 1996 on
coverage estimation of fault-tolerant systems. From 1996 to 2001, he was a
member of the Perform research group in the Coordinated Science Laboratory
at the University of Illinois, Urbana-Champaign, working on adaptive fault
tolerance and intrusion tolerance. His current research interests include security
evaluation, intrusion tolerance, distributed system validation, and fault
injection.

Journal of Information Assurance and Security 4 (2009) 010-020

Received July 10, 2007 1554-1010 $03.50 © Dynamic Publishers, Inc

