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Abstract: The purpose of this study is to understand observed 

behavior and to diagnose and find solutions to issues encountered 
in organizational computer security using a systemic approach, 
namely system archetypes. In this paper we show the feasibility of 
archetypes application and the benefits of simulation. We 
developed a model and simulation of some aspects of security 
based on system dynamics principles. The system dynamics 
simulation model can be used in support of decision-making, 
training, and teaching regarding the mitigation of computer 
security risks. In this paper, we describe the archetype “Tragedy of 
the Commons”, in which an organization’s efforts at improvements 
fail to consider the consumption of a shared resource, and we show 
the relevance of this archetype in the context of security. We 
describe a scenario where this archetype can help in diagnosis and 
understanding, and present simulation of “what-if” scenarios 
suggesting how an organization might remedy problems observed 
and maximize its gains from security efforts. 
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1. Introduction 

All companies who use computer systems intensively must 
protect the security properties of their assets against 
malicious actions. They must employ various 
countermeasures to mitigate the risk of attacks, including 
various actions for reduction of vulnerabilities, as well as for 
detection of attacks and tolerance of intrusions. Identifying 
the security risks and knowing what is the most effective 
and efficient combination of countermeasures are very 
difficult tasks, because an organizational computer system is 
complex, with many actors and interactions and an inherent 
uncertainty and unpredictability. In addition, there are 
resource constraints, as well as trade-offs between security 
on one hand and other operational properties or business 
goals on the other hand.  

To support the challenging decision-making process of 
designing an appropriate security strategy, we developed a 
quantitative executable model of an organization’s 
operational computer security. Like all models, this is an 
abstraction of the real system, focused on representing the 

security-significant aspects of the system and associated 
processes. The model targets and represents the perspective 
of the person who must make decisions regarding actions to 
be taken for security assurance and security-related risk 
mitigation. The user of the model will first identify the 
underlying security problem that causes an unwanted 
observed behavior. Then, he/she can set different values for 
the model parameters, corresponding to different system 
usage, vulnerabilities, attacks, and defense profiles. The 
simulator can be run and different “what-if” scenarios can 
be executed. Simulation will help a security manager, 
security engineer, or system administrator answer questions 
such as: if my environment is characterized by these values, 
then what methods and tools should be selected and applied 
to manage security risks and satisfy the users’ needs of my 
system? How will the selected actions work together? What 
is their effectiveness and cost efficiency? To what changes is 
my environment most sensitive? If I make specific changes 
in my security strategy, what will be their impact? What 
changes if my system gets attacked more/less or if the time 
to exploit changes? Should I hire more system 
administrators? Should I spend more on training them? 

We propose using modeling and simulation of aspects of 
organizational computer security from a system’s 
perspective, using the systems dynamics approach described 
by [1]. We take into account that control actions and 
reactions on any side of this system might have not only a 
local effect, but could also affect the rest of the system, often 
resulting in feedback loops. These effects manifest over time 
with different delays. The properties of the system (security 
being one of them) will emerge from its structure and all the 
interactions between its components. We show how 
archetypes (or patterns of behavior) can bring a systems 
perspective towards studying an organization’s security 
aspects. The model aims first at understanding security risk 
reduction in computer systems, then at diagnosing such 
systems and identifying their weaknesses, as well as 
prospectively examining the effectiveness of different 
solutions.  
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This paper is structured as follows. Section 2 discusses 
the notion of archetypes in computer security, exemplifying 
with one possible instance of the “Tragedy of the Commons” 
archetype. Section 3 describes how a simulation model can 
be used to illustrate the archetypal behavior. Section 4 
describes the use of simulation for diagnosis, analysis, and 
comparison of alternative solutions. Section 5 presents 
related work, and Section 6 concludes this study. 

2. Archetypes and the “Tragedy of the 
Commons” 

2.1  Archetypes 

Archetypes are a concept related to systems thinking, 
developed in the mid 1980s in an attempt to describe 
complex behavior and to convey ideas in an easier, more 
efficient manner. Archetypes are frequently-observed 
patterns of systems behavior and are a “natural vehicle for 
clarifying and testing mental models” about systems or 
situations [2]. The systems literature describes ten distinct 
archetypes, as listed in [3]. In fact, [4] argues that all of 
these can be categorized into one of four “core generic” 
archetype classes (Underachievement, Relative 
Achievement, Out-of-Control, and Relative Control), but 
then acknowledges that the more common description of 
archetypes, i.e. that of [2], [3], and [5], is more intuitive and 
easier to grasp and apply to simulation, so it is used here. 
(We thus speak of the archetypes “Tragedy of the 
Commons” and “Limits to Growth”, rather than the class 
Underachievement, for example; or “Shifting the Burden” 
and “Eroding Goals” vs. the Out-of-Control class.) For the 
most part, archetypes have been applied in business or 
industrial processes. There has recently been some work 
performed at MIT regarding systems thinking and 
archetypes in systems safety [6], but in computer security 
this is a new idea.           
 Here, we use archetypes for understanding and modeling 
security aspects (needs, problems, actions) in the context of 
an enterprise that uses computers/information technology 
systems for running its business and needs to ensure the 
security of its systems. Our focus in this paper is on the 
application of the common archetypes to computer security; 
however, an archetype is only useful as it lends insight to a 
particular situation. In approaching particular scenarios in 
computer security, we keep in mind that other, specialized 
archetypes may be discovered here. This would not be 
surprising, as [6] uncovered several field-specific archetypes 
in industrial safety. In this paper, however, we limit 
ourselves to the archetypes most commonly discussed in the 
literature, in particular those described by [3].  

In this paper we present one archetype that we modeled, 
namely “Tragedy of the Commons.” In [7], [8], and [9], we 
have previously considered the following archetypes vis-à-
vis computer security: “Escalation”, “Shifting the Burden”, 
and “Escalation” combined with “Limits to Growth”, 
respectively.  

 2.2  “Tragedy of the Commons” 

The concept of a “Tragedy of the Commons” was originally 
proposed by [10] over three decades ago; it has since proven 
useful in many other fields and been incorporated into the 
systems and archetype literature (see [2], [3], [4], and [5]). 
In this archetype, the “Commons” are an uncontrolled 
resource available to many users, who can use (or 
“consume”) it without each other’s knowledge or 
permission. The Commons can accommodate up to a certain 
capacity without loss of yield for its consumers. The 
“Tragedy” occurs when this capacity is exceeded; this can 
happen in two ways. In the first, each user consumes a small 
portion of the Commons, but the number of users eventually 
exceeds the Commons’ optimal capacity. ([2] gives the 
example of too many cars limiting the flow of traffic on a 
highway.) In the second, there are few users, but in time 
each user begins to consume more and more of the 
Commons. (See [2] as well for an example regarding several 
automobile designers, each making increasing demands on 
the car battery.) In either case, until the optimal capacity is 
exceeded, additional consumption or use of the Commons 
leads to additional yields. Beyond this point of consumption, 
however, the yields begin to lessen. Each individual user of 
the Commons does not understand why their gains per effort 
are no longer as high, and may try to compensate by raising 
their efforts, further increasing consumption of the 
Commons and worsening the Tragedy. This may culminate 
in a total destruction of the Commons, or simply a peak and 
then decline in the gains from the Commons.  

As described in [4], a partial solution to this Tragedy 
occurs if the Commons capacity can be raised. However, 
once the Commons capacity is fixed to some finite value, 
consumption will increase until a Tragedy occurs. Thus, the 
only true solution to this Tragedy is if the system is viewed 
as a whole, identifying the Commons, its limits, and its 
consumers. At that point, either the consumers must come to 
some agreement among themselves regarding proper use of 
the Commons, or a superior must place restrictions on its 
use.  

The notion of human resources as Commons is not 
entirely new; in fact, [3] cites the example of one 
information technology department being “shared” by two 
different divisions of a company. Similarly, we describe a 
company’s computer support staff as its Commons. 

2.3 Illustrated Behavior 

For a simple but plausible illustration in computer security, 
we paint a scenario in which a hypothetical company’s 
computer system (or just “system”) is continually falling 
prey to successful simple attacks, known as “kiddy-scripts.” 
These attacks are launched by novice attackers (or “script-
kiddies”), and generally only succeed if the system contains 
vulnerabilities such as software that is not up-to-date or an 
inadequate security policy.              
 Suppose that upon investigating the problem, the 
company’s technology-related management realizes that it 
has neglected having software patches applied on a regular 
basis. (In this scenario, we assume that the software has 
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been completely unpatched until the beginning of the run, so 
additional patching will help significantly, but ignoring the 
patches will not lead to any further harm.) We suppose that 
these managers now demand that the staff begin spending X 
hours per day on patches. On finding this move yields 
significant gains, the demand on the support staff will be 
increased to X+1 within the next few days. This continues, 
with additional gains leading to additional 
efforts/demands/consumption, and so on. There certainly 
does reach a saturation point beyond which further 
allocation of time for patching will accomplish nothing, but 
this is again beyond the scope of our illustration of this 
archetype, so we assume this point is not reached during our 
time period. Alternatively, the management may conclude 
that significant increases in security are available if the 
support staff does a good job of system administration and 
enforcing the company’s security policy, as described in 
[11]. These tasks include, to name a few: scanning for and 
fixing configuration vulnerabilities, which are effectively 
“doors” to the system that were inadvertently left open; 
applying proper access control to prevent unauthorized use; 
and monitoring the users to prevent them from unsafe 
practices such as downloading viruses and using “weak” 
passwords which are easily guessed. We group all of these 
tasks and all others that require no additional software or 
hardware per se, only a great deal of attention paid by the 
support staff (or system administrators) to what is already in 
place under the title of “enforcement actions.” We thus 
suppose that the management initially demands Y hours per 
day of enforcement actions from the support staff. In several 
days’ time, the managers find that the system’s security has 
risen, and thus the demand is increased to Y+2 hours per 
day. Again, this leads to added performance, leading to 
added demands/efforts.               

A third possibility is that the management decides to 
begin demanding both patches and enforcement actions, in 
quantities equal to the sum of the previous two cases. 
Meanwhile, the hapless support staff has a finite capacity of 
hours in the day it can spend on any given task. Well before 
its absolute maximum capacity however, there reaches a 
point where it is stretched beyond optimal capacity. Once 
demands beyond optimal capacity are placed on the support 
staff, especially if the demands are being made for different 
goals, the support staff is stressed and must now spend a 
nontrivial amount of time answering the non-stop requests 
from each directive from management, demanding its 
immediate attention. Thus, the gains it can provide a 
particular demand begin to decrease.      
 Throughout the systems literature, the possibility is 
acknowledged that the Commons could be consumed to the 
point of its total collapse, such as complete depletion of a 
natural resource; the analogy here would be the support 
staff’s becoming disgruntled and ultimately resigning. For 
now, however, we assume the support staff, even if pushed 
beyond peak efficiency, is still operating in a “normal” 
mode and providing some gains. 

The management does not realize that the Commons of 
the support staff is not capable of sustaining all of the 

demands placed upon it, and are thus puzzled when the 
increases in security are not as steep as they had once been; 
the system’s security may even level off and decline. These 
effects are displayed in an influence diagram in Figure 1.  

In the upper-center loop, increased efforts (i.e. demanding 
more staff-hours per day from the support staff) for patches 
cause increased gains in security from patches, increasing 
the motivation for additional efforts. Similarly, in the loop 
beneath it, increased efforts for enforcement actions produce 
gains in security, encouraging further efforts/demands. Each 
of these two loops, if viewed independently, would be 
described as reinforcing loops, which should increase 
indefinitely if nothing else influences the system.   

Unfortunately, something else does indeed influence the 
system, and that is represented by the arcs to the left of the 
main loops: all efforts contribute to a rise in total activity, 
which depends on additional use of the Commons (in our 
case, the support staff); while there may be some delay 
(double hatch mark), ultimately the demands on the support 
staff beyond its optimal capacity will results in a reduced 
gain per individual activity (i.e. a given demand for more 
enforcement or patches).      

 Figure 1. Influence diagram for a “Tragedy of the 
Commons” situation 

Of course, if the support staff has a high capacity, it will 
take much longer for the point of optimality to be surpassed, 
and thus the gains per effort can remain higher for longer. 
Another pattern observable, therefore is as follows: 
increased efforts add to total activity, which reduces the gain 
per individual activity if the support staff’s optimal capacity 
has been exceeded; this decreases the gain from enforcement 
and/or patches. At some point, it is believed that 
diminishing gains will lead to reduced efforts: this forms a 
“balancing loop”, which will push towards the equilibrium 
of efforts matching the support staff’s optimal capacity. 

3. Proposed Model 

To consider the quantitative strengths of the various 
influences in the above archetypes, and to see the results of 
changes and possible prognoses, computer simulation is 
used, as is recommended by [2]. The continuous simulation 
technique of the Extend simulation environment [12] was 
used. An overview of Extend can be found in [13], where 
Extend is described as providing “an integrated structure for 
building simulation models and developing news simulation 
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tools.” Moreover, “model builders can user Extend’s pre-
built modeling components to quickly build and analyze 
systems without programming.” The description provided 
here of our simulation model is excerpted from [14], which 
contains full details. The entities modeled consist mostly of 
those mentioned above: “attempted attacks”, “staff size”, 
“security-related efforts”, “countermeasures and 
vulnerabilities”, with human factors related to the 
management (or decision-makers regarding security 
investments), the support staff, and the attackers.   As the 
model is applied to different specific contexts, this will 
allow data from those systems to contribute to tailoring and 
increasing the accuracy of the model. Using the model will 
reveal the data needs for executing it for a given system, 
thus guiding security measurement. For our current 
numerical values, we have incorporated empirical findings 
such as: 

• The cyber security bulletins from [15]. For instance, in 
the first two years since its release, Microsoft Windows 
2000 Server averaged 0.09 bulletins per day at the 
Critical or Important level. For Windows 2003 Server, 
the average was 0.04 per day. We used an average of 
these two values to describe the rate at which an 
unpatched system becomes steadily more vulnerable to 
attack. 

• The FBI’s annual computer security survey [16]. For 
example, out of the 600+ corporate, academic, and 
governmental organizations responding to the poll, 65% 
observed a virus on their systems last year, but only 25% 
observed a denial-of-service attack, making the former 
significantly more prevalent. It is thus assumed that 
between a countermeasure designed specifically against 
viruses and one designed specifically against denial-of-
service attacks, the former will defeat a larger number of 
attacks typically seen on the Internet. 

• “Honeypot” or “honeynet” research and analysis (such as 
[17] and [18]), which gives us some idea of how many 
attacks per day tend to be attempted against an average 
system.  

For data unavailable in the literature, experts’ judgment 
was used in assigning values. Thus, given these parameters, 
the current numerical results of the simulation reflect a 
combination of literature data where available and well-
educated estimates where data were not available. Further 
benefit resides in the overall trends in behavior displayed by 
the simulation, which are used for problem-solving below.  

3.1 Model Description  

To see some quantitative results of the above “Tragedy of 
the Commons” scenario, an Extend model was built 
simulating a system containing on the order of 200 
machines, sustaining 100 simple attacks per day. A certain 
percentage of simple attacks are modeled as exploiting 
vulnerabilities in the system’s software; the better-patched 
the software has been, the less of these will succeed. 
Similarly, a certain percentage of simple attacks are 
designed to exploit user mistakes, poorly configured servers, 
and the like; therefore, a certain percentage of attacks will 

not succeed if proper enforcement actions are in place. Note 
that even if our simulation indicates “40% of the attempted 
attacks succeeded”, the system’s users may not observe for 
100 attempted attacks, 40 separate failures, as many of these 
attempts might target a small set of specific vulnerabilities 
and exploit them in the same way. Similarly, no single task 
(or even patching combined with enforcement actions) 
should be expected to reduce the attack success rate to 0 by 
itself, as there are enough different types of attacks that any 
single security action or countermeasure can be defeated. (In 
real life, therefore, an organization would be wise to 
augment its patches and enforcement actions with 
countermeasures such as a firewall or antivirus software, but 
they are omitted in this archetype demonstration.) We use 
the percentage of successful attacks only as a measure of the 
system’s vulnerabilities. For a given execution of the 
simulation, we specify some rule of how many staff-hours 
per day of efforts are demanded for each security-related 
task (such as applying software patches or enforcement 
actions). Given the optimal capacity of the support staff (as 
specified in the model), these demands are translated into 
actual staff efforts for each task, whereupon the staff efforts 
determine the quality (or lack-of-vulnerability) of the 
system’s software and configuration. These daily measures 
of quality determine what percentage of each day’s 
attempted attacks do not succeed; the remaining attacks are 
deemed “successful”, and their tally is viewed as the 
model’s output. Analyzing this output of “successful attacks 
per day” can give us a greater understanding of what the 
(often unforeseen) effects of our input choices have been; it 
also allows us to compare alternative scenarios run with 
different input values. The model was executed for the 
equivalent of 6 months (real time) with different scenarios. 
(Each execution of this type runs in under 30 seconds.)  

3.2 Model Behavior 

In the first scenario simulated, patches alone are used; a 
certain number xi of staff hours are demanded initially for 
patches, and that number rises linearly with time, up to xf 
staff hours at day 180, where xf is still less than the optimal 
capacity of the support staff. (This is a quantitative 
description of behavior we assume to be realistic.) In the 
second scenario, enforcement actions alone are used, with 
an initial demand of yi staff hours for enforcement actions, 
increasing linearly over 180 days to yf. Again, at no point do 
the demands for enforcement actions exceed the support 
staff’s optimal threshold. In the third scenario, the two 
previous scenarios are implemented simultaneously, 
beginning with net demand (i.e. staff-hours demanded for 
all tasks) zi = xi + yi and ending with demand zf = xf + yf. 
We have used the values xi = 0.84, yi = 1.2, zi = 2.0, and xf = 
6.6, yf = 11, zf = 17.6, believing these to be realistic 
descriptions of a transition from very modest security efforts 
vis-à-vis patches and/or enforcement actions to a full effort. 
To measure the effectiveness of efforts in the first two 
scenarios, we measure percentage of attacks unsuccessful. 
Figure 2 shows the results of scenarios one (patches) and 
two (enforcement actions), each one executed by itself. Note 
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that in our current model, effective software patching can 
lead to many more unsuccessful attacks than can effective 
enforcement actions; the goal of this archetype description is 
not to compare one against the other, but rather to note the 
overall shape of each trend and see what happens when they 
are combined. 

Figure 2. Percentage of attacks unsuccessful for the two 
countermeasures used individually 

Figure 3 shows the results of scenario three, in which 
both efforts are made (and increased) simultaneously, 
without regard for the optimal output of the support staff. 
Thus, the total burden on the sysadmin is larger than it had 
been in each scenario of Figure 2. 

Figure 3. Percentage of unsuccessful attacks, both Patches 
and Enforcement used simultaneously 

In scenario three, at some point (actually around day 90 
here, though the effects are not felt for several more weeks), 
the optimal capacity of the support staff is slowly exceeded. 
Additional efforts are still made, but the support staff 
demand-beyond-optimal-capacity effect is engaged, reducing 
the number of effective staff-hours supplied to patches and 
enforcement. As a result, the gains from each begin to peak 
and then decline. For enforcement, which did not possess 
very aggressive growth when implemented independently, 
the percentage of unsuccessful attacks plateaus, and then 
descends quite rapidly. For patches, which witnessed a 
sharp increase in success over the last six months when run 
alone, the plateau and fall do not come until almost the end 
of the simulation (day 158), but they come nonetheless.  

4. Discussion and Other Scenarios 

4.1 Lessons and Alternate Scenarios for “Tragedy of 
the Commons” 

From Figure 3, it can be learned that the effects of a 
combination of security-related tasks cannot easily be 
predicted only from the history of each one used in isolation. 
There must be one managing body considering all the 
demands being made on the Commons, then developing and 

enforcing a policy that leads to maximum overall gains from 
its use; such a policy will involve limiting consumption.
 Armed with this knowledge, a manager can then ask what 
the optimal allocation of the Commons will be, and again 
simulation can help provide an answer. For any proposed 
“what-if” course of action, the model can be re-run with the 
appropriate change in input values; the (possibly 
counterintuitive) results of each proposed solution can then 
be studied to reduce risk before any changes are actually 
implemented in the real-world computer system. If the 
above scenario three represented our “problem” or 
“baseline” scenario, we consider “solution” scenarios four, 
five, and six. In these latter scenarios, the ratio of demand 
between patches and enforcement actions is modified for 
improved performance. The solution scenarios differ in how 
to manage the quantity of total effort demanded.      

Scenario four is that of on “optimal” solution: the 
manager has near-perfect knowledge of the system, makes 
no additional demands once the optimal staff load has been 
reached, and allocates hours between the two tasks with this 
in mind.      

Of course, the optimal scenario four assumed that this 
magical value of “optimal staff load” is known. More 
realistically, scenario five (“one day delay”) acknowledges 
that it is not known in advance, but a manager keeping a 
close watch of the results (i.e. unsuccessful attacks) could 
implement the following (somewhat counterintuitive) rule: 
if, at any day, a decline in unsuccessful attacks is seen, from 
the next day on, make no further demands, i.e. leave the 
staff demands at their current levels. In the language of [4], 
any combination of several “mental barriers” might prevent 
a rule such as this from being implemented: the manager 
may not understand that the decline is being caused by 
excess demands; there may be an instinctive fear response to 
increase demands when problems appear; the decline may 
be too small to be observable; and the manager might not 
change course because he/she refuses to acknowledge the 
decline, rationalizing that “it was just one bad day.” Given 
all of these difficulties, a more likely response is that of 
scenario six, where a delay greater than one day is present 
before additional demands are halted, i.e. if, at any day, 
unsuccessful attacks are less today than they were θ days 
ago, then make no further demands from the next day on. 
We consider θ = 3 to be reasonably optimistic.       

We simplify by plotting only the total percentage of 
attacks unsuccessful for each scenario. The results of 
scenarios “baseline”, “optimal”, “one day delay”, and “three 
day delay” are shown in Figure 4.  

 Figure 4. Results of “What-if” scenarios 
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Several trends can be observed here. Firstly, all of the 
scenarios other than baseline avoid the Tragedy to a large 
degree and thus do not experience a decrease towards the 
end of the simulation period. Secondly, note that the three 
alternative scenarios (optimal, one day delay, three day 
delay) all involve ceasing further demands by approximately 
day 90, and yet gains continue to rise: once the company 
begins doing a good job with patches and enforcement, a 
constant effort will increase gains over time. A saturation 
point will most probably be reached at some point in the 
future, but that is not considered here; a description of that 
situation is addressed by the “Limits to Growth” archetype 
described in [9]. Thirdly, it is not surprising that the longer 
the delay to action, the less the plot will look like “optimal” 
and the more it will look like “baseline.” Lastly, even in the 
“optimal” scenario, the greatest gain reached is 
approximately 80% attacks unsuccessful. While this value is 
impressive, we might also turn back to Figure 2, which 
considered the gains of using each task individually. If we 
were to sum the two plots of Figure 2 at day 180, we would 
arrive at a supremum of over 90%. Indeed, if the Commons 
were infinite, then the gains due to two tasks performed 
simultaneously would be equal to the sum of each task’s 
individual gains. Realistically, however, the best we can do 
is to acknowledge the Commons as finite and optimize 
accordingly; this is reflected in the “optimal” 80% of Figure 
4.                      
 Here we have presented only one instance of “Tragedy of 
the Commons” as it can occur on the enterprise security 
level. This archetype has also been used in other fields of 
computing, for example, resource allocation between 
processes in centralized system design. Another instance on 
the enterprise level that may be modeled in future work is 
that of common memory, processing power and the like, 
where security-related tasks such as encryption and virus 
scanning can consume the Commons. 

4.2 Applying Archetypes and Simulation 

We have thus shown the feasibility of using known system 
archetypes for explaining situations that can occur within an 
organization with respect to its computer security. In our 
modeling of such situations, both the system’s technological 
aspects and human factors are taken into account. Each 
archetype describes a "story", explaining symptoms that can 
be observed while examining relevant variables (in our case, 
for example, the “attacks unsuccessful" served as an 
indicator of a chosen security strategy’s effectiveness). 
While one archetype alone may not depict a broad picture of 
the entire system’s behavior, a combination of archetypes 
can do so. Depending on a specific organization’s 
characteristics, a particular known archetype may or may 
not present itself. Furthermore, besides the generic system 
archetypes referenced in this paper, security-specific 
archetypes (as mentioned in the introduction to Section 2) 
may be identified in a given organization. It is up to the 
analyst of each given system to determine what lessons of 
system dynamics are applicable to his/her concrete situation. 
Here, the paradigm of system thinking and archetypes is 

offered as a tool to analysts who may include, for example, 
security engineers, managers, and security policy makers. 
The other tool proposed here is that of simulation: once 
archetypes are used to identify the cause of an undesirable 
outcome, simulation can then be used to consider the results 
of different proposed solutions. Used in this way, 
simulation can thus support decision making in selecting 
and implementing the most effective security strategy; by 
modeling dollar-value costs for phenomena such as 
successful attacks or staff-hours of security labor (see [9] 
and [14]), the most cost-efficient strategy can be determined 
and chosen as well. 

 4.3 Simulating Other Organizational Contexts 

The scenarios presented above were executed for a 
hypothetical organization. For practical use of the simulator, 
it has to be run in the context specific to the organization 
under study. For making the model and the simulator 
applicable to different contexts, we parameterized the model 
and the simulator. The context can be varied by changing 
the values for these parameters. The parameters reflect the 
profile of company, system size (i.e. number of machines), 
system vulnerability factor, the attack profile, and the 
countermeasure strategy.  

In addition to the context parameters, the model and 
simulator also have another set of parameters, namely input 
parameters, whose values are varied for executing different 
scenarios for a chosen context, corresponding to different 
candidate solutions. Examples of such input parameters are 
staff size, delays for making changes, and change quantities. 

 For executing the simulator for a specific organization 
and system, the simulator has to be calibrated first to that 
specific environment (by setting the context parameters to 
specific values). Different scenarios can be then executed by 
setting the values for the input parameters. The Extend 
simulation environment that we used provides features such 
as sensitivity analysis, for one or more parameters at a time.  

As described in [14], the current version of the simulator 
has a graphical user interface containing sliders and 
switches through which the user of the simulator can set the 
desired values of the input parameters. The values of the 
context parameters are set (and can be adjusted) in an Excel 
spreadsheet that is automatically read at the beginning of 
the simulation. The outputs of the simulation from one run 
or multiple consecutive runs can be recorded as graphs (as 
shown in figures above), or exported to Excel and processed 
after the simulation. They can be processed for example for 
comparing outputs of different scenarios using multiple 
decision variables (e.g., number of attacks and effort/cost 
invested in security) and supporting decisions regarding the 
most desirable security strategy, according to the criteria 
established for the organization under study. 

The value of the simulation’s output depends on the 
quality of its inputs. For the illustration in this paper we 
used values taken from the literature and experts’ opinions. 
To obtain maximum gain from simulation, a company must 
have its own specific values with which to run the 
simulation. The list of parameters of the model can 
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constitute a start for defining what the organization should 
collect as part of their security measurement activity. 

5. Related Work 

5.1 Security Validation 

Traditional, non-quantitative approaches to security 
validation, such as [19] and [20], have focused on 
prescribing procedures for system design. Actually, in 
selecting the entities to be represented in our model, we 
followed the security concepts and relationships from [20], 
and then extended it with dynamic, behavioral, and 
quantitative aspects.              
 Where quantitative methods have been used, they have 
either been quite formal, such as [21], proving how certain 
security properties hold given a specified set of assumptions; 
quite informal, using a “red team” of experts (e.g. [22]) 
trying to compromise a system; or risk-oriented, assessing 
the risks to which an organization is exposed (e.g. [23]). 
Risk assessment is also included in [24], which describes 
guidelines for initiating, implementing, maintaining, and 
improving information security management in an 
organization or in information security governance that 
delivers certifications like the Certified Information Security 
Manager (CISM) certification. An alternative approach has 
been to try to probabilistically quantify an attacker’s 
behavior and its impact on a system’s ability to provide 
certain security-related properties. Attempts have been made 
to build models that take into account both the attacker and 
the system being validated. A general 9-state model of an 
intrusion-tolerant system is proposed by [25] to describe 
security exploits by considering attack impacts; the system 
state is represented in terms of failure-causing events.   
 [26] proposes a combination of state-level modeling, 
formal logic, and Bayesian analysis to quantify system 
survivability. The authors first model the network nodes and 
links of a networked system using state machines, and then 
faults are injected in the models. The third step consists of 
specifying a survivability property, e.g., the system enters a 
faulty state, using a temporal logic. This is used to generate 
a scenario graph, which is then used for evaluating the 
overall system reliability or the latency using Bayesian 
networks. [27] proposes modeling known vulnerabilities in a 
system using a “privilege graph” similar to the scenario 
graph described above. By combining a privilege graph with 
assumptions concerning an attacker’s behavior, the authors 
then obtain an “attack state graph.” Parameter values for 
such a graph have been obtained empirically; once obtained, 
an attack state graph can be analyzed using standard 
Markov techniques to obtain probabilistic measures of 
security. [28] uses a probabilistic model for validating an 
intrusion-tolerant system that combined intrusion tolerance 
and security, allowing the designers to make choices that 
maximize the intrusion tolerance before they implement the 
system.   

The presented models vary from high-level models with 9 
states [25] to much more detailed models [26], [27], [28]. 
The model that we have presented has an intermediate level 

of abstraction. Our model is also more generic in its 
inclusion of other human elements like users and system 
administrators. Finally, with the exception of [27]’s model, 
which uses some data collected experimentally to assess 
certain parameter values, the other models are not developed 
to easily be linked to empirical data. 

5.2  Related Security Simulators 

Cyberciege [29], [30], developed by the Naval Postgraduate 
School, is a computer game with a very engaging user 
interface and virtual world, intended for training students to 
understand security engineering. Cyberciege focuses on 
detailed access control, user-by-user, for a small number of 
users. Each piece of hardware is hand-selected from a list of 
fictional brands, and physical security measures are then 
implemented on a user-by-user basis. The determination of 
whether an attack succeeds is by comparing asset 
desirability and how well standard procedures have been 
followed. Cyberciege’s level of detail models the role of an 
individual security officer who might oversee a dozen 
computers at most, while our model abstracts one level 
higher, to the manager who oversees several hundred 
machines. Many of the tasks we include under “enforcement 
actions”, for example, are performed in detail in Cyberciege. 

In a similar vein, [31] describes a security simulator 
available on their website (http://all.net/games/index.html). 
This simulator gives examples of how a single attack of 
varying sophistication might succeed against different 
computers with different countermeasures. The defender 
strength, i.e. to what degree the defender does the right 
thing, is specified as a percentage by the user before running 
the simulator. If an attack succeeds, the dollar loss due to 
the attack is estimated based on the attacker profile, e.g. 
how much will a successful attack by a private investigator 
cost? Our approach attempts to add in more empirical data. 
Additionally, our work extends the “defender strength” idea 
by allowing for strengths of each countermeasure: a system 
may have a 90% effective firewall but only a 70% effective 
IDS. Furthermore, rather than specify a value for defender 
strength, the user of our model inputs managerial decisions 
such as how much effort is allocated to which security tasks 
and how skilled the staff is – the model then uses these 
inputs to determine the resulting defense strength for each 
countermeasure. 

5.3  Related Empirical Studies 

For sources of empirical data, we have security-incident 
anecdotes such as [32] and corporate surveys such as [16]. 
Hypothesized behavior of an individual attacker is 
empirically described by [33], but more data are needed on 
describing the aggregated effect of multiple attackers. 
Therefore, most data on attacks are gathered from analyzing 
“honeypots” or “honeynets”, systems designed to be 
attacked. Such studies include [17], [34], [35], and [36], as 
well as our own laboratory’s [18] and [37]. A great deal of 
this work is ongoing and will continue to yield additional 
empirical data.  
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To help meet the dearth of empirical data regarding 
security, nine teams are collaborating on the projects 
DETER and EMIST [38]. DETER involves building a 
massive (currently approximately 200 machines, intended to 
reach 1000 machines) “researcher- and vendor-neutral” 
network testbed for emulating various types of attacks, 
countermeasures, and network topologies. Meanwhile, the 
EMIST project seeks to formalize methodologies for 
measuring these effects. Combined, these projects should 
provide a wealth of useful, unbiased, and well-accepted 
emulated attack data. Both studies will enrich our model 
with quantifiable values, e.g. honeynet findings might show 
that 20 buffer-overflow attacks of a certain type are 
attempted each day, and the DETER/EMIST findings would 
tell us that the attack will succeed 80% of the time if the 
network has Topology A but only 60% of the time with 
Topology B. 

Regarding user factors, [39] uses surveys to understand 
Internet usage, and [40] conducts studies with test websites 
to investigate users’ privacy behaviors online. The authors 
of these papers have indicated that their future work will 
analyze user behavior regarding network security, which 
should be applicable to our user model. 

As far as the interaction of economics and computer 
security, [41] considers the effects of public disclosure 
regarding security breaches on a company’s stock prices. 
[42], [43], and [44] use economic analysis in determining 
how much security investment is worthwhile for a company, 
given its priorities; however, details are not provided as to 
what should be done specifically with the investments. This 
provides the connection point to our model. 

Economic requirements are also used to lead to 
assumptions or specifications for related computer security, 
e.g. determining the subjective cost and total welfare 
regarding network routing [45] or requirements on trusted 
platforms placed by digital rights management [46], [47]. 

6. Conclusions 

We have shown in this paper how a system archetype can be 
used in computer security to aid understanding and 
diagnosis, and making decisions for risk mitigation. 
Moreover, systems thinking, combined with simulation, can 
assist an organization in placing its efforts in the places that 
will give the most “leverage” to their goals, and in 
diagnosing and solving problems. We have specifically 
shown that even if the results are known for two different 
courses of action, combining the actions can produce vastly 
different results.  

System dynamics simulation is thus a very valuable tool 
for enterprise computer security, and can be used in the 
following way: 

An organization identifies the indicators whose evolution 
needs to be studied for assessing achievement of its goals 
(“attacks unsuccessful” in the example presented here) or 
existence of problems. If the trends of these indicators point 
to an archetypal behavior, then the simulation 
corresponding to that archetype (or archetypal combination, 

see [9]) is selected and the simulator is calibrated to the 
organizational context, as described in section 4.3. After the 
observed behavior is reproduced by simulation, different 
what-if scenarios will be executed in order to determine how 
to fix the problems identified by the archetypes. Different 
solutions will be simulated by varying the values of the 
simulation parameters. As with any simulation modeling, 
the results depend on the data used for developing and 
calibrating the model: the data used for model development 
were drawn from the current literature and experts’ 
opinions, gathered by our interviews, for average 
information systems. The model is then tuned with 
calibration data provided by the individual organization 
using it. 

The simulation model can also be used for training of 
students and less-experienced security personnel, who can 
simulate and analyze the effects of potential actions without 
affecting the real system. This learning by doing is enabled 
by the knowledge encoded in the model; thus the model 
serves as a tool for knowledge transfer from experts to the 
less-experienced.  

In sum, the archetype and simulation results presented 
here show the value of systems dynamics modeling for 
enterprise security. Monitoring behavior for a long enough 
time allows observation of the genuine, long-term trends. 
Combined with a systems approach, this supports proper 
diagnosis, understanding, and solution-finding for observed 
problems. We illustrated the value of applying systems 
thinking in modeling the domain of enterprise security; the 
value of thinking in terms of links, delays, and feedback 
loops; and of keeping in mind that something happening 
locally in one part of the system might have an unexpected, 
possibly delayed, global effect. We also showed the benefits 
of simulation, which supports execution of “what-if” 
scenarios. The number values assumed in our discussions 
were for a hypothetical situation to illustrate some 
archetypal trends, but the patterns outlined here are 
expected to hold in other contexts as well. 
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