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Abstract: Ordinary digital signatures have an inherent weakness:
if the secret key is leaked, then all signatures, even the ones gen-
erated before the leak, are no longer trustworthy. Forward-secure
digital signatures address this weakness, they ensure that the past
signatures remain secure even if the current secret key is leaked.
Following the notion of aggregate signatures introduced by Boneh
et al, which provides compression of signatures, we have come up
with aggregate signature schemes for ElGamal, DSA and Bellare-
Miner forward-secure signatures. We describe two schemes of ag-
gregation for the Bellare-Miner Scheme. The first is a aggregate
signature scheme with aggregation done separately in different time
periods.The second is a aggregate signature scheme with aggrega-
tion done for a set of time periods. All our schemes can be used for
multiple signers. To avoid individual verification of signatures, we
propose a method by which the verifier will be able to verify n sig-
natures at a time using a single verification equation. We observe
that our method saves approximately 160n modular multiplications
when compared to individual signature verification of DSA.
Keywords : Aggregate Signature, Forward-Security, Key
evolution, Hash function, Digital Signature.

I Introduction
Aggregate signature schemes were introduced in 2003 by
Boneh, Gentry, Lynn and Shacham [6]. Basically, an ag-
gregate signature scheme is a digital signature that supports
aggregation: Given n signatures on n distinct messages from
n distinct users, it is possible to aggregate all these signa-
tures into a single short signature. This single signature
will convince the verifier that the n users did indeed sign
the n original messages (i.e., user i signed message Mi for
i = 1, . . . , n). The advantage of these signatures is that they
provide compression of signatures.
In a general signature aggregation scheme each user i signs
her message Mi to obtain a signature σi. Then anyone can
use a public aggregation algorithm to take all n signatures
σ1, . . . , σn and compress them into a single signature σ.
Moreover, the aggregation can be performed incrementally.
Signatures σ1, σ2 can be aggregated into σ12 which can then
be further aggregated with σ3 to obtain σ123, and so on.
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There is also an aggregate verification algorithm that takes
PK1, . . . , PKn, M1, . . . , Mn and σ to decide whether the
aggregate signature is valid.
Thus, an aggregate signature provides non-repudiation at
once on many different messages by many users. This is
referred to as general aggregation since aggregation can be
done by anyone and without the cooperation of the signers.
In another type of aggregation called sequential aggregation
scheme, signature aggregation can only be done during the
signing process. Each signer in turn sequentially adds her
signature to the current aggregate. Thus, there is an explicit
order imposed on the aggregate signature and the signers
must communicate with each other during the aggregation
process. Operationally, sequential aggregation works as fol-
lows: User1 signs M1 to obtain σ1; User2 then combines
σ1 and M2 to obtain σ2; and so on. The final signature σn

binds Useri to Mi for all i = 1, . . . , n.
In [6], the concept of an aggregate signature, security mod-
els for such signatures, and applications for aggregate sig-
natures are presented. They construct an efficient aggregate
signature from a recent short signature scheme based on bi-
linear maps due to Boneh, Lynn, and Shacham [6]. In [7],
the authors survey two aggregate signature schemes. The
first is based on the short signature scheme of Boneh, Lynn,
and Shacham and supports general aggregation. The sec-
ond, based on a multisignature scheme of Micali, Ohta, and
Reyzin, is built from any trapdoor permutation but only sup-
ports sequential aggregation. In [4], the authors propose
sequential aggregate signatures, in which the set of signers
is ordered. The aggregate signature is computed by having
each signer, in turn, add his signature to it. They show how
to realize this in such a way that the size of the aggregate sig-
nature is independent of the number of signatures. In [9], the
authors consider FssAgg (Forward-secure signature aggrega-
tion) authentication schemes in the contexts of both conven-
tional and public key cryptography and construct a FssAgg
MAC scheme and a FssAgg signature scheme, each suitable
under different assumptions. This work only represents the
initial investigation of Forward-Secure Aggregation as the
proposed schemes are not specific or optimal.
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In a designated verifier aggregation scheme [3, 14], an ag-
gregate signature is addressed to a specific verifier. And only
this specific verifier needs to be convinced of the integrity
and origin of the signed messages.
Ordinary digital signatures have an inherent weakness: if the
secret key is leaked, then all signatures, even the ones gen-
erated before the leak, are no longer trustworthy. Forward-
secure digital signatures address this weakness, they ensure
that the past signatures remain secure even if the current se-
cret key is leaked.
Following the notion of aggregate signatures introduced by
Boneh et al, which provides compression of signatures, we
have come up with aggregate signature schemes for ElGa-
mal, DSA, Bellare-Miner forward-secure signatures. All our
schemes can be used for multiple signers. Aggregate sig-
nature gets verified only if the individual signatures in the
aggregate signature are valid. Generally aggregation is per-
formed by an un-trusted third party. In case, a group of
honest signers want their aggregate signature to be verified,
then there is need for every individual signer a way to ver-
ify whether his signature is aggregated as a valid or invalid
signature. We address this problem by giving a verification
equation. If all the honest signers are able to verify this equa-
tion, then the aggregate signature is a valid signature.
When e-banks process cheques electronically, they verify
each cheque individually and clear the cheque. Sometimes
the number of cheques may be so large that processing the
cheque individually becomes time consuming. To address
this problem we have come up with a verification equation,
using which all the cheques can be verified at once. We have
considered some cheques to be signed by same signer and
some by different signers. The scheme works with DSA sig-
natures. In [8] an interactive batch verification method us-
ing DSA is proposed. They show batch verification of doc-
uments, all signed by a single signer. They have communi-
cation between the signer and the verifier before the signa-
ture is generated. In our scheme, there is no communication
between the signer and verifier during signature generation.
Also, our method considers n or less signers for n different
messages. The method saves ≈ 160n modular multiplica-
tions when compared to individual signature verification of
DSA.
The organisation of our paper is as follows: In Section 2,
we describe briefly the properties of forward-secure signa-
ture schemes and in particular discuss the Forward-secure
Bellare-Miner Scheme. In Section 3, we describe two
schemes of aggregation for the Bellare-Miner Scheme. The
first is a aggregate signature scheme with aggregation done
separately in different time periods.The second is a aggre-
gate signature scheme with aggregation done for a set of
time periods. In Section 4, we discuss the Forward-Secure
DSA Signature scheme and the corresponding aggregation.
In Section 5, we discuss the Forward-Secure ElGamal Signa-
ture scheme and the corresponding aggregation. In Section
6, to avoid individual verification of signatures, we discuss

a method by which the verifier will be able to verify n sig-
natures at a time using a single verification equation. This
saves nearly 160n modular multiplications when compared
to individual signature verification of DSA. Lastly in Section
7, we conclude.

II Forward Secure Signature Scheme
Digital signatures are vulnerable to leakage of secret key. If
the secret key is compromised, any message can be forged.
To prevent future forgery of signatures, both public key and
secret key must be changed. Notice, that this will not protect
previously signed messages: such messages will have to be
re-signed with new pair of public key and secret key, but this
is not feasible. Also changing the keys frequently is not a
practical solution.
To address the above problem, the notion of forward security
for digital signatures was first proposed by Anderson in [1],
and carefully formalised by Bellare and Miner in [5] (see
also[2, 12, 10, 13]). The basic idea is to extend a standard
digital signature scheme with a key update algorithm so that
the secret key can be changed frequently while the public
key stays the same. Unlike a standard signature scheme, a
forward secure signature scheme has its operation divided
into time periods, each of which uses a different secret key
to sign a message. The key update algorithm computes the
secret key for the new time period based on the previous one
using a one way function. Thus, given the secret key for any
time period, it is hard to compute any of the previously used
secret keys. (It is important for the signer to delete the old
secret key as soon as the new one is generated, since other-
wise an adversary breaking the system could easily get hold
of these undeleted keys and forge signatures.) Therefore a re-
ceiver with a message signed before the period in which the
secret key gets compromised, can still trust this signature, for
it is still hard to any adversary to forge previous signatures.
To specify a forward-secure signature scheme, we need to (i)
give a rule for updating the secret key (ii) specify the public
key and (iii) specify the signing and the verification algo-
rithms.
II-A Bellare-Miner Forward-secure scheme
For the sake of completeness we describe the algorithms of
the Bellare-Miner scheme.
Key generation: The signer generates the keys by running
the following algorithm which takes as input the security pa-
rameter k, the number l of points in the keys and the number
T of time periods over which the scheme is to operate.
Pick at random, distinct k/2 bit primes p, q each congruent
to 3 mod 4 and set N ← pq. N is a Blum Williams integer.
The base secret key SK0 = (S1,0, . . . , Sl,0, N, 0) (where

Si,0
R← Z∗N ).

For verifying signatures, the verifier is given the public key
PK, calculated as the value obtained on updating the base
secret key T + 1 times: PK = (U1, . . . , Ul, N, T ) where
Ui = S2T+1

i,0 mod N, i = 1, . . . , l.
Key evolution: During time period j the signer signs using
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key SKj . This key is generated at the start of period j by ap-
plying a key update algorithm to the key SKj−1. The update
algorithm squares the l points of the secret key at the previ-
ous stage to get the secret key at the next stage. Once this
update is performed the signer deletes the key SKj . Since
squaring modulo N is a one way function, when the factor-
ization of N is unknown it is computationally infeasible to
recover SKj−1 from SKj .
The secret key SKj = (S1,j , . . . , Sl,j , N, j) of the time
period j is obtained from the secret key SKj−1 =
(S1,j−1, . . . , Sl,j−1, N, j − 1) of the previous time period
via the update rule: Si,j = S2

i,j−1 mod N, i = 1, . . . , l.
Signature Generation: It has as input the secret key SKj

of the current period, the message M to be signed, and the
value j of the period itself to return a signature 〈j, (Y, Z)〉
where Y, Z in Z∗N are calculated as follows:

Y = R2(T+1−j)
mod N (1)

where R
R← Z∗N and

Z = R

l∏

i=1

Sci
i,j mod N (2)

with
c1, . . . , cl = H(j, Y, M) (3)

being the l output bits of a public hash function.
Signature Verification: A claimed signature 〈j, (Y, Z)〉 for
the message M in time period j is accepted if

Z2(T+1−j)
= Y

l∏

i=1

U ci
i mod N (4)

where c1, . . . , cl = H(j, Y,M), and rejected otherwise. No-
tice that since

Z2(T+1−j)
= (R(

l∏

i=1

Sci
i,j)

2(T+1−j)
mod N

= Y.(
l∏

i=1

S2(T+1)ci
i,0 ) mod N

= Y.

l∏

i=1

U ci
i mod N.

a signature by an honest signer with the secret key will be
accepted.

III Aggregate Forward-Secure signatures for
Bellare-Miner scheme

We describe the following two schemes of aggregation for
the Bellare-Miner Scheme [11].

1. Aggregate signature scheme with aggregation done sep-
arately in different time periods.

2. Aggregate signature scheme with aggregation done for
a set of time periods.

To reduce the complexity of equations we give the equations
for a single user. But they can be extended for multiple users.
Different moduli N of signers is handled as in [4] by order-
ing the moduli.
III-A Aggregate signature scheme for Forward-

secure signatures with aggregation done sep-
arately in different time periods

Here we propose a forward-secure aggregate signature
scheme based on Bellare-Miner Scheme in which given n
signatures, n = n1 + n2 + . . . + nT , where nj are the num-
ber of signatures signed by a single signer in the jth period
on nj distinct messages. We aggregate the signatures in dif-
ferent time periods separately i.e each of the nj signatures
are considered for aggregation separately.
Aggregate Signature Generation: Let
〈(Mj,1, j, (Yj,1, Zj,1)), . . . , (Mj,nj , j, (Yj,nj , Zj,nj))〉
be the signatures generated as discussed in Section 3
in any jth period. The aggregate signature is obtained
by computing the product of the individual components
of the signatures. Therefore, the aggregate signature is
〈(j, YA,j , ZA,j ,Mj,1, . . . ,Mj,nj)〉, where

YA,j = Yj,1 . . . Yj,nj mod N (5)

ZA,j = Zj,1 . . . Zj,nj mod N. (6)

Aggregate Signature Verification: The verification equa-
tion for time period j is given by

Z2(T+1−j)

A,j = YA,j .

l∏

i=1

U
(cMj,1,i+...+cMj,nj,i)

i mod N. (7)

where cMj,1,1, . . . , cMj,l,l = H(j, Yj,1,Mj,1). Notice that
since

LHS = Z2(T+1−j)

j,1 . . . Z2(T+1−j)

j,nj
mod N

= (R1.

l∏

i=1

S
cMj,1,i

i,j )2
(T+1−j)

. . .

(Rnj .

l∏

i=1

S
cMj,nj,i

i,j )2
(T+1−j)

mod N

= (R1 . . . Rnj )
2(T+1−j)

.

(
l∏

i=1

S
cMj,1,i+...+cMj,nj,i

i,j )2
(T+1−j)

mod N

= YA,j(
l∏

i=1

S
cMj,1,i+...+cMj,nj,i

i,j )2
(T+1−j)

mod N

= YA,j .(
l∏

i=1

S
2(T+1).(cMj,1,i+...+cMj,nj,i)

i,0 ) mod N
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= YA,j .

l∏

i=1

U
(cMj,1,i+...+cMj,nj,i)

i mod N.

= RHS,

an aggregate signature generated by a honest signer with his
secret key will be accepted.
III-B Aggregate signature scheme for Forward-

secure signatures with aggregation done for
a set of time periods

We propose another aggregate signature scheme for Bellare-
Miner Scheme in which given n signatures, n = n1 + n2 +
. . . + nT , where nj are the number of signatures signed in
the jth period on nj distinct messages by a single signer. We
can aggregate all the signatures occurring in any m distinct
time periods, i1, . . . , im. Here for convenience and to reduce
the complexity of equations we consider n1 = n2 = . . . =
nj = 1.
Aggregate Signature Generation: Let
〈(Mi1,1, i1, (Yi1,1, Zi1,1)), . . . , (Mim,1, im, (Yim,1, Zim,1))〉
be the m signatures generated as discussed in Section 2 in m
time periods I = {i1, i2, . . . , im} by a single signer. The ag-
gregate signature is 〈(i1 . . . im, YA, ZA,Mi1,1, . . . ,Mim,1)〉,
where

YA = Yi1,1 . . . Yim,1 mod N (8)

ZA = Z2(T+1−i1)

i1,1 . . . Z2(T+1−im)

im,1 mod N. (9)

Aggregate Signature Verification: The verification equa-
tion is given by

ZA = YA.
∏

i∈I

l∏

j=1

U
cMi,1,j

j mod N. (10)

where cMik,1,1, . . . , cMik,1,l = H(ik, Yik,1,Mik,1), k =
1, 2, . . . , m
Notice that since

LHS = Z2(T+1−i1)

i1,1 . . . Z2(T+1−im)

im,1 mod N

= (Ri1(
l∏

j=1

S
cMi1,1,j

j,i1
))2

(T+1−i1)
. . .

(Rim(
l∏

j=1

S
cMim,1,j

j,im
))2

(T+1−im)
mod N

= R2(T+1−i1)

i1 . . . R2(T+1−im)

im
.

(
l∏

j=1

S
cMi1,1,j

j,i1
)2

(T+1−i1)

. . . (
l∏

j=1

S
cMim,1,j

j,im
)2

(T+1−im)
mod N

= Yi1,1 . . . Yim,1.(
l∏

j=1

S
2(T+1).cMi1,1,j

j,0 )

Table 1: For prime p of size |p| bits, φT (p) has a prime factor
of size 160 bits.
|p| p T
256 23158417847463239084714197 56

00173758157065399693312811
28078915168015826259280709

256 23158417847463239084714197 56
00173758157065399693312811
28078915168015826259280027

274 60708402882054033466233184 77
58823496583257521372037936

0039119137804340758912662766479
274 6070840288205403346623318458823 73

49658325752137203793600391191
37804340758912662765931

512 268156158598851941991480499964 266
116922549587316411847867554471
228874435280601470939536037485
963338068553800637163729721017

07507765623893139892867298012168351

. . . (
l∏

j=1

S
2(T+1)cMim,1,j

j,0 ) mod N

= YA.

l∏

j=1

U
cMi1,1,j

j . . .

l∏

j=1

U
cMim,1,j

j mod N.

= RHS,

an aggregate signature generated by a honest signer with his
secret key will be accepted.

IV Forward Secure DSA Signature Scheme
To specify a forward-secure signature scheme, we need to (i)
give a rule for updating the secret key (ii) specify the public
key and (iii) specify the signing and the verification algo-
rithms.
In saying that our forward-secure scheme is based on a ba-
sic signature scheme, we mean that, given a message and
the secret key of a time period, the signing algorithm is the
same as in the basic signature scheme. The public key for
the forward-secure signature scheme is the key obtained on
running T times the update rule for secret keys.
Now, we need to be able to write a verification equation re-
lating the public key and the signature (and incorporating the
time period of the signature) from which the claim of forward
security can be deduced.
Here are the details.

1. Secret Key Updation
Let p be a large prime. Let φ(p − 1) = pr1

1 . . . p
rk
k where

p1 < p2 < . . . < pk.
Choose g such that

gcd(g, p) = 1, gcd(g, φ(p)) = 1, gcd(g, φ2(p)) = 1, . . . ,
gcd(g, φT−1(p)) = 1

where φ(p) is the Euler totient function and φT−i(p) =
φ(φT−i−1(p)) for 1 ≤ i ≤ T − 1 with φ0(p) = p. It may be
noted that a prime g chosen in the range pk < g < p satisfies
the above condition. The base secret key a0 (this is the initial-
isation for the secret key updation) is chosen randomly in the
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range 1 < a0 < p− 1.
The secret key ai in any time period i is derived as a function
of ai−1, the secret key in the time period i− 1, as follows:

ai = gai−1 mod φT−i+1(p) mod φT−i(p) (11)

for 1 ≤ i < T . Once the new secret key ai is generated
for time period i, the previous secret key ai−1 is deleted.
Thus an attacker breaking in period i will get ai but cannot
compute a0, . . . , ai−1, because of difficulty of computing
discrete logarithms. For a given large prime p, though the
value of φi(p) decreases exponentially over time i, we
have determined experimentally (see Table 1) that for the
following typical values of p, φi(p) factor into primes of size
greater than 2160 for reasonable value of T. Therefore, we
assume that computing discrete logarithms mod φT−i(p) is
hard, for 1 ≤ i < T .

2. Public Key Generation
We obtain the public key by executing the Secret Key Upda-
tion Algorithm T times as follows :

β = gaT−1 mod p = aT mod p (12)

3. Signature Generation: The signature generated in any time
period i is 〈r, s, i〉. The computation of r is

r = (gk mod p) mod q (13)

where k is a random number chosen such that 0 < k < p and
gcd(k, (p− 1)) = 1.
The computation of s is

s = k−1(SHA(m||i) + (A(g, T − i− 1, ai).r)) mod q
(14)

where SHA is a collision-resistant hash function. While
hashing, i is concatenated with m to indicate the time period
in which the message is signed.

The notation A(α, u, v) = α..
.α

v

we mean that there are u
number of α ’s in the tower and the topmost α is raised to v,
i.e in the above equation there are (T − i− 1) number of α’s
in the tower and the topmost α is raised to ai.
Notice that the public key β can also be given in terms of ai

as,
β = A(g, T − i, ai) mod p, (15)

This relation gets employed in the verification of validity of
the signature.

4. Verification:

w = (s)−1

u1 = SHA(m||i).w
u2 = r.w

v = gu1.βu2

A claimed signature 〈r, s, i〉 for the message m in time period
i is accepted if

v = r (16)

else rejected.

Recall that the claim of security of the standard DSA signature
scheme is based on the difficulty of computing discrete logarithms.
The same security guarantee is obtained in the Forward-secure DSA
Signature Scheme.

IV-A Aggregate Signatures for Forward-Secure
DSA

Let 〈(Mi1,1, i1, (ri1,1, si1,1)) . . . (Mim,1, im, (rim,1, sim,1)〉 be
the m DSA forward-secure signatures generated in m time peri-
ods I = {i1, . . . , im} by a single signer. The aggregate signature
is obtained by computing the following:

σ1 = r
r−1

i1,1.si1,1

i1,1 . . . r
rim,1.sim,1
im,1 mod p

σ2 = (SHA(Mi1,1)r
−1
i1,1+. . .+SHA(Mim,1)r

−1
im,1).H(σ1) mod p.

The verification equation is given by

ασ2 = ((β)−m.σ1)
H(σ1) mod p

Since

RHS = (β−m.r
r−1

i1,1.si1,1

i1,1 . . . r
rim,1.sim,1
im,1 )H(σ1) mod p

= (β−m.g
(SHA(Mi1,1)+A(g,T−1−i1,ai1 ).ri1,1)r−1

i1,1 . . .

g
(SHA(Mim,1)+A(g,T−j−im,aim ).rim,1).r−1

im,1)H(σ1)

= (β−m.g
(SHA(Mi1,1).r−1

im,1)
. . .

g
(SHA(Mim,1).r−1

im,1)
.βm)H(σ1) mod p

= (g
(SHA(Mi1,1).r−1

i1,1)
. . .

g
(SHA(Mim,1).r−1

im,1)
)H(σ1) mod p

= gσ2 mod p

= LHS,

a set of messages signed by a honest signer will be accepted. This
can be easily extended to any number of users.

V Forward Secure ElGamal Signature
Scheme

As the Secret Key Updation Algorithm and Public Key Generation
Algorithm remains the same as in Forward-Secure DSA scheme,
we discuss only the Signature Generation and Signature Verification
algorithms. Here are the details.

1. Signature Generation
The signature generated in any time period i is 〈y1,i, y2,i〉.
The computation of y1,i is

y1,i = αk mod p (17)

where k is a random number chosen such that 0 < k < p and
gcd(k, (p− 1)) = 1.
The computation of y2,i is

y2,i = (H(m||i)−(A(α, T−i−1, ai).y1,i))k
−1 mod (p−1)

(18)
where H is a collision-resistant hash function. While hashing,
i is concatenated with m to indicate the time period in which
the message is signed.



Some Aggregate Forward-Secure Signature Schemes 89

Notice that the public key β can also be given in terms of ai

as,
β = A(α, T − i, ai) mod p, (19)

This relation gets employed in the verification of validity of
the signature.

2. Verification
A claimed signature 〈y1,i, y2,i〉 for the message m in time
period i is accepted if

αH(m||i) = βy1,i y
y2,i

1,i mod p (20)

else rejected.

V-A Aggregate Signatures for Forward-Secure El-
gamal Signature Scheme

Let 〈(Mi1,1, i1, (yi1,1, y
′
i1,1)) . . . (Mim,1, im, (yim,1, y

′
im,1)〉 be

the m forward-secure ElGamal signatures generated in m time pe-
riods I = {i1, i2, . . . , im} by a single signer. The aggregate signa-
ture is obtained by computing the following:

σ1 = y
y−1

i1,1.y′i1,1
i1,1 . . . y

yim,1.y′im,1
im,1 mod p

σ2 = (SHA(Mi1,1)y
−1
i1,1+. . .+SHA(Mim,1)y

−1
im,1).H(σ1) mod p.

The verification equation is given by

gσ2 = ((β)m.σ1)
H(σ1) mod p.

Since,

RHS = (βm.y
y−1

i1,1.y′i1,1
i1,1 . . . y

yim,1.y′im,1
im,1 )H(σ1) mod p

= (βm.g
ki1 .k−1

im
(H(Mi1,1)−A(g,T−1−1,ai1 ).yi1,1)y−1

i1,1

. . . g
kj .k−1

j
(H(Mj,1)−A(g,T−j−1,aim ).yim,1).y−1

im,1)H(σ1)

= (βm.g
(H(Mi1,1).y−1

i1,1)
. . .

g
(H(Mim,1).y−1

im,1)
.β−m)H(σ1) mod p

= (g
(SHA(Mi1,1).y−1

i1,1)
. . . g

(H(Mim,j).y−1
im,1)

)H(σ1) mod p

= gσ2 mod p

= LHS,

a set of messages signed by a honest signer will be accepted. This
can be easily extended to any number of users.

VI Batch Verification of Signatures
Financial institutions receive a large number of cheques every day.
Each cheque is separately verified using the corresponding public
keys. We propose a method in which all cheques can be verified in a
single step. We use DSA as our signature scheme. In [8] an interac-
tive batch verification method using DSA is proposed. They show
batch verification of documents, all signed by a single signer. They
have communication between the signer and the verifier before the
signature is generated. In our scheme, there is no communication
between the signer and verifier during signature generation. Also,
our method considers n or less signers for n different messages.
Thus the cheques received by a bank among which some cheques,
all signed by single signer, and some cheques signed by different
signers can be verified in a single step. We observe that our method
saves ≈ 160n modular multiplications when compared to individ-
ual signature verification of DSA.

Let (r, s) be the signature in DSA for a message m. Let us consider
n messages signed by n different signers.
Let x1 . . . xn be the secret keys and y1 . . . yn be their
corresponding public keys of signers signer1 . . . signern.
Let (r1, s1) . . . (rn, sn) be their signatures for the messages
m1 . . . mn.
The verification equation is given by

ασ2 = (y1 . . . yn)−1.σ1

where

σ1 = r
r−1
1 .s1

1 . . . rr−1
n .sn

n

σ2 = (SHA(m1)r
−1
1 + . . . + SHA(mn)r−n

n )

Since

RHS = (y1 . . . yn)−1.r
r−1
1 .s1

1 . . . rr−1
n .sn

n

= (y1 . . . yn)−1.αk1.k−1
1 (SHA(m1)+x1.r1)r−1

1 . . .

αkn.k−1
n (SHA(mn)+xn.rn)r−1

n

= (y1 . . . yn)−1.α(SHA(m1).r−1
1 ) . . .

α(SHA(mn).r−1
n ).(y1 . . . yn)

= α(SHA(m1).r−1
1 ) . . . α(SHA(mn).r−1

n )

= ασ2

= LHS,

a set of signatures signed by n honest signers will be accepted.
Each DSA verification requires 3 log2(q) modular multiplica-
tions. If there are n signatures, then n DSA verifications require
3n log2(q) modular multiplications. In the batch verification of
signatures that we propose, observing the equations, computation
of σ1 requires 2n log2(q) modular multiplications while the verifi-
cation equation requires 2 log2(q) modular multiplications. Thus
there is a saving of 3n log2(q) − (2n log2(q) + 2 log2(q)) =
(n− 2) log2(q) ≈ 160n modular multiplications.
Supposing an ith signer alone signs some k cheques, then the veri-
fication equation is given by:

ασ2 = (y1 . . . yi−1.y
k
i .yi+1 . . . yn)−1.σ1

VII Conclusion
Following the notion of aggregate signatures introduced by Boneh
et al, which provides compression of signatures, we have come
up with aggregate signature schemes for ElGamal, DSA, Bellare-
Miner forward-secure signatures. We describe two schemes of ag-
gregation for the Bellare-Miner Scheme. The first is a aggregate
signature scheme with aggregation done separately in different time
periods.The second is a aggregate signature scheme with aggrega-
tion done for a set of time periods. To avoid individual verification
of signatures, we propose a method by which the verifier will be
able to verify all the cheques at a time using a single verification
equation. We observe that our method saves approximately 160n
modular multiplications for n signatures compared to the individual
signature verification of DSA.
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A Digital Signature Algorithm
The Digital Signature Algorithm (DSA) [?] is a United States Fed-
eral Government standard or FIPS (Federal Information Processing
Standard) for digital signatures. It was proposed by the National In-
stitute of Standards and Technology (NIST) in August 1991 for use
in their Digital Signature Standard (DSS), specified in FIPS. This
scheme is a digital signature scheme which is based on the difficulty
of computing discrete logarithms

A-A Key Generation
• Choose a 160 bit prime q.

• Choose a L-bit prime p, such that p = qz+1 for some integer
z.

• Choose h, where 1 < h < p− 1 such that g = hz mod p >
1. Here g is the generator.

• Choose x where 0 < x < q.

• Calculate y = gx mod p.

• Public key is (p, q, g, y). Private key is x.

A-B Signature Generation
• Generate a random k per message where 0 < k < q.

• Calculate r = (gk mod p) mod q.

• Calculate s = (k−1(H(m)+x.r)) mod q where H(m) is the
SHA-1 hash function applied to the message m.

• The signature is (r, s).

A-C Signature Verification
• Calculate w = s−1 mod q.

• Calculate u1 = (H(m).w) mod q

• Calculate u2 = r.w mod q

• Calculate v = ((gu1.yu2) mod p) mod q

• The signature is valid if v = r

B ElGamal Signatures
Choose a random large prime p such that p − 1 has a large prime
factor q. The signature for the message m in the basic ElGamal
scheme [?] with the secret key s and public key β (β = αs) is
(y1, y2) where

y1 = αk mod p

where α is the generator in the cyclic group Zp and k is a random
number chosen such that 0 < k < p− 1 and gcd(k, p− 1) = 1.

y2 = (H(m)− sy1)k
−1 mod (p− 1)

where H is a collision-resistant hash function [?].
The verification equation is given by

αH(m) = βy1yy2
1 mod p


