
AU
TH

O
R

 C
O

PY

Journal of Intelligent & Fuzzy Systems 23 (2012) 53–60
DOI:10.3233/IFS-2012-0495
IOS Press

53

A fuzzy matching approach for design pattern
mining

Yuxin Wanga,∗, He Guoa, Hongbo Liua and Ajith Abrahamb

aSchool of Computer, Dalian University of Technology, Dalian, China
bMachine Intelligence Research Labs – MIR Labs, USA IT For Innovations – EU Center of excellence, VSB – Technical
University of Ostrava, Ostrava, Czech Republic

Abstract. Mining design patterns from source code is significant for improving the intelligibility and maintainability of software.
In this paper, we present a new design pattern matching method based on fuzzy, in which matrix model is used for describing
both design pattern and source code, and design pattern’s static and dynamic information is defined as fuzzy attribute value
for measuring the matching degree. Experiments on three open-source projects demonstrate the accuracy and efficiency of the
proposed methodology.

Keywords: Design pattern, fuzzy matching, pattern mining, matrix model

1. Introduction

Design patterns have been widely adopted by soft-
ware industry and attracted significant attention in
the last period. The main reason behind this is that
design patterns are obviously useful in both develop-
ment of new system and comprehension of existing
object-oriented design. With the increasing of soft-
ware system’s scale and complexity, especially for some
large legacy systems lacking of software architecture
and design documentation, mining design patterns from
source code can greatly improve the systems’ maintain-
ability and understandability.

The essence process of design pattern mining is pat-
tern matching, hence the method chosen for matching
directly influences the quality of mining. In consid-
eration of the fuzzy and subjective characteristics of
design pattern description, learning from human’s fuzzy

∗Corresponding author. Yuxin Wang, School of Computer,
Dalian University of Technology, China. E-mail: wyx@dlut.edu.cn.

decision-making ability, we apply fuzzy method to pat-
tern matching strategy and propose a practical approach
for design pattern mining.

The rest of the paper is organized as follows. In
the following section, we discuss some related work
on design pattern mining. In Section 3, we describe
the proposed methodology of mining in detail. Section
4 presents a case study to demonstrate the complete
mining process. Section 5 shows and analyses the exper-
iment results of our methodology and illustrates an
example to prove its advantages. Finally, conclusions
are given in Section 6.

2. Related work

With the development of software engineering, the
technology of design pattern mining has drawn more
and more concerns. A number of techniques have been
proposed to mine design patterns from source code.
Balanyi and Ferenc introduce a method to recover
design patterns using a XML-based language [2] , called

1064-1246/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

AU
TH

O
R

 C
O

PY

54 Y. Wang et al. / A fuzzy matching approach for design pattern mining

Design Pattern Markup Language (DPML). Kaczor
et al. propose an efficient Iterative Bit-vector algorithm
for design pattern identification [11]. In [8] an approach
based on fingerprint is proposed to detect design pat-
tern using metrics and machine learning techniques.
Jing Dong et al. present an approach based on matrix
to discover design patterns, in which matrix is used to
describe the structural characteristics of the design pat-
terns, and the value of each cell represents the relations
among the classes [3].

Heuzeroth [9] and Li [12] think that neither static nor
dynamic analysis alone is sufficient. So they propose
detection methods combining static and dynamic infor-
mation to detect design patterns. H. Huang et al. also
consider both structural and behavioral aspect of design
patterns important for improving the precision of pat-
terns mining [10]. Their approach introduces predicate
logic combined with interval-based temporal logic to
convert the design patterns and source code into Prolog
representations.

An existing similarity score algorithm is applied
in [14] to detect design patterns, in which relation-
ships among classes and all pattern characteristics
are represented by matrix. The design pattern detec-
tion is achieved by calculating the similarity matrices
using similarity score algorithm. The limitation of this
approach is that the algorithm can only calculate the
similarity between two vertices, instead of two graphs.
High similarity score of two vertices does not guaran-
tee a match between two sets of vertices. Aiming at
these limitation, Jing Dong et al. present an optimized
approach called normalized Cross Correlation (CCn)
based on the template matching method [4]. Design pat-
tern and system information are encoded into a single
matrix using prime numbers. And the CCn approach
calculates the similarity between each pair of vectors
which transform from matrix. This approach is effec-
tive, but the dimension of pattern matrix must be same
as the one of source code matrix, which would cause
more complexity to some extent.

Research and technological developments of design
pattern mining encourage the producing of many min-
ing tools (e.g.,[6, 13, 16]) and many effective strategyies
(e.g., Antoniol et al. proposed a multi-stage reduction
strategy to extract structural design patterns from sys-
tem, using metrics, structural properties and delegation
constraints technique to reduce the exploration space
[1]. M. Vokac used reverse engineering tool to analyze
the source code and produce the structural information,
which is stored in database, and the mining strategy is
through database queries [15]).

In this paper, a design pattern mining method based
on fuzzy theory is proposed. Matrix model based on
prime number is introduced to describe the source code
and design pattern. Clustering analysis is applied to
optimize the source code matrix, which improves the
efficiency of pattern matching. On the basis of fuzzy
concepts, we take the static and dynamic information
as the attributes so as to improve the matching accu-
racy. Our proposed approach is evaluated on three open
source projects JUnit, JHotDraw and JFactory. The
experiment results on different systems illustrate that
this approach makes some progress in accuracy and
integrity. It also can identify better the special design
patterns which have the same structure but different
intention.

3. Design pattern matching based on fuzzy
method

As the essence of design pattern mining, pattern
matching, which is subjective and fuzzy due to the
descriptive characteristics of design pattern, is crucial
for the mining process. So the fuzzy set theory and
method could be introduced to apply to pattern match-
ing process.

Fuzzy set theory, which is initiated by Zadeh, pro-
vides a framework for handling the uncertainties [17].
In non-fuzzy set every object is either a member of
the set or not, but in fuzzy sets every object is to
some extent member of a set and to some extent of
another set. Thus, unlike the crisp sets membership
is a continuous concept in fuzzy sets. Fuzzy is used
in support of linguistic variables and there is uncer-
tainness in the problem. Fuzzy theory and method are
widely applicable in information gathering, modeling,
analysis, optimization, control, decision making and
supervision [5].

In this section, we present a fuzzy matching method
to improve the integrality and accuracy of design pattern
mining.

3.1. Fuzzy matching algorithm

Before we present the fuzzy matching algorithm, the
relevant basic concepts are defined. Our fuzzy matching
algorithm is illustrated in Algorithm 1.

Definition 1. (Fuzzy set) If X is a collection of objects
denoted generically by x then a fuzzy set A in X is a

AU
TH

O
R

 C
O

PY

Y. Wang et al. / A fuzzy matching approach for design pattern mining 55

Algorithm 1. Fuzzy Matching Algorithm
Step 1. Build the models of both design pattern and source code;
Step 2. Define an attribute set X = {x1, x2, . . . xr} for source code mode:
The main information in design pattern includes the class information, the static structure information and the dynamic
behavior information. So the attribute set is defined as X = {XClassInfo, XStructureInfo, XBehaviorInfo};
Step 3. Compute the attribute’s matching degree vector:
Aiming at the design patterns which will be detected, compute the vector T = {TClassInfo, TStructureInfo, TBehaviorInfo}
of each source code model;
Step 3. Assign weight vector:
Give the weight vector W = {WClassInfo, WStructureInfo, WBehaviorInfo} for each attribute according to their
importance;
Step 4. Make Decision:
If GMD(Ti ∧ Wi) ≥ the threshold of certain design pattern, source code model i is the instance of this design pattern.

set of ordered pairs: A =
{

(x, µA(x))|x ∈ X
}

. µA(x) is
called the membership function or grade of membership
of x in A which maps X to the membership space M.

Definition 2. (Fuzzy relation) Let X, Y ⊆ R be uni-
versal sets then R =

{(
(x, y), µR(x, y)

)
|(x, y) ⊆

X × Y
}

is called a fuzzy relation on X × Y .

Definition 3. (Composition of fuzzy sets) Let Q ∈
F (U × V), R ∈ F (V × W) be two fuzzy relations. The
composition Q ◦ R (Q max − min R) is the fuzzy set:

µQ◦R(u, w) =
{

∨
v∈V

(µQ(u, v) ∧ µR(v, w))|u ∈

U, v ∈ V, w ∈ W
}

.
It is again the membership function of a fuzzy relation

on fuzzy sets.

Definition 4. (Maximizing set of two fuzzy sets) Let A

and B be two fuzzy sets. Maximizing set of A and B is
a fuzzy set M that consists all supports from A and B.
Membership degree of each support equals the ratio of
the support itself to the maximum support of A and B.

Definition 5. (Greatest Membership Degree of a fuzzy
set) Let A be a fuzzy set. GMD(A) presents the great-
est membership degree of A. GMD(A) = µA(xi) =
max(µA(x1), µA(x2), . . . µA(xn)).

3.2. Matrix model of design pattern

Currently, design patterns are usually described as
some half-formalized styles. In order to mine design
patterns from source code, the formalized descriptive
method for design pattern need be considered. On the

Table 1
Prime Numbers of relationships between classes

Relations Prime number value

Generalization 2
Association 3
Dependency 5
Realization 7
Aggregation 11
Composite 13

basis of UML and natural language, we use the matrix
based on prime number to describe the pattern.

According to different intentions, design patterns are
divided into three categories by GOF: Creational, Struc-
tural and Behavioral [7]. No matter what category the
design patterns belong to, their structures can be repre-
sented by the relations between classes, which are very
suitable for being described by matrix [3, 11]. Due to the
complexity of these relations, the value of matrix cell
should have the ability to be identified clearly. Real-
izing that the product of prime numbers is always a
unique composite number [3], we represent relation-
ships by different prime numbers and associate the most
frequently used relation with the lowest prime number.
The prime number representation of different relations
between classes is shown in Table1.

Based on above representing method, the value of
matrix element can be calculated as Equation 1.

M(i, j) =






N∏
n=1

Vn(i, j) N ≥ 1

0 N = 0
(1)

Where N is the number of relations between class
i and class j. V (i, j) is the prime number value of a
certain relation between class i and class j.

AU
TH

O
R

 C
O

PY

56 Y. Wang et al. / A fuzzy matching approach for design pattern mining

According to the method, we transform the 23 com-
mon design patterns proposed by Gamma et al. into
matrices and put them into a maintainable design pat-
tern model library.

3.3. Establishment of source code model

It is difficult to mine design pattern from the source
code directly, so we need a kind of intermediate rep-
resentation for the source code. The choice of this
representation method will directly affect the design
of matching algorithm. In order to get an exact match,
matrix defined for design pattern in previous section is
still used to describe source code. The transformation
flow from source code to matrix is shown in Fig. 1.

Sparx Enterprise Architect (EA) is a famous UML
tool. Firstly, we use the function of generation and
reverse engineering of EA to get the UML diagram of
source code and then export the model to XMI (XML
Metadata Interchange) file; Secondly, extract useful
information for mining from the XMI file by XSLT
and generate the XML file; Lastly convert the XML to
matrix.

According to the flow, source code can be trans-
formed to a n by n square matrix (n is the number of
classes of the source code). Evidently, when a certain
design pattern is needed to be mined, the overall matrix
of source code must contain lots of redundancy infor-
mation, which will seriously influence the efficiency
of matching. Hence, the source code matrix should be
optimized before mining, for example, by a Model-
based Clustering Method. Design pattern matrices are
set as the referenced models and the optimal matches
are extracted from source code matrix.

3.4. Computation of source code model’s matching
degree

For the matching degree vector T = {TClassInfo,

TStructureInfo, TBehaviorInfo}, each attribute in it can be
calculated as follows.

3.4.1. Class information’s matching degree
A class’s information includes its method, property

and type. For the process of design pattern mining only
the class’s type is concerned about, and the type could
be interface, abstract or normal. Based on the char-
acteristics of class information and our experiences, a
quadratic parabolic membership function is defined for
TClassInfo as Equation 2.

Fig. 1. The Flow from Source Code to Matrix.

Fig. 2. Value Distribution of TClassInfo.

TClassInfo =






0 x ≤ 1
(

x−1
n−x

)2
1 < x < n

1 x ≥ n

(2)

Where the cutoff point is denoted by n which is the
number of a design pattern’s abstract classes; x is the
number of abstract classes of some candidate source
code instance. So TClassInfo is a number between 0
and 1, and the larger the value is the higher degree
of similarity between the candidate instance and the
design pattern. The value distribution of TClassInfo can
be described as Fig. 2.

3.4.2. Structure information’s matching degree
In [4], normalized cross correlation (CCn) template

matching method is introduced by dividing the cross
correlation value by the product of the norms of vector
f and g as Equation 3, which is really effective for
matching matrix models.

CCn =
∑

f (x) · g(x)
|f (x)| · |g(x)|

(3)

In other words, CCn defines the cosθ value, where θ

is the angle between f and g. The maximum value is 1
when f and g is an exact match, i.e., θ = 0.

AU
TH

O
R

 C
O

PY

Y. Wang et al. / A fuzzy matching approach for design pattern mining 57

On the basis of the optimization of source code
matrix, we apply CCn method to match the static struc-
ture information of design pattern model and source
code model. The matching result is obtained. The value
is between 0 and 1, where 1 means exact match and 0
means no match. It is the matching degree of structure
information TStructureInfo.

3.4.3. Behavior information’s matching degree
Many mining approaches can not distinguish the

design patterns with same structure but different inten-
tion (e.g., Composite vs. Decorator and State vs.
Strategy). The same static models lead to a matched
detection result. In order to overcome the limitation,
we introduce the dynamic behaviour information as a
mining factor.

Dynamic behavior information’s matching degree
can be acquired through the following steps:

1. Get the behavior information of both design pat-
tern and source code from the corresponding
sequence diagram;

2. Transform the sequence diagram to behavior
matrix:

The matrix is defined as: column represents
the involved classes; row represents the detailed
behavior (row i is the task i). The value of matrix
cell can be positive, negative and ∞, where posi-
tive is the begin of the task, negative is the end of
the task, ∞ represents the periods is finished;

3. Compute the similarity of the dynamic matrices:
Use CCn to calculate the similarity of the matri-

ces and the result is the dynamic information’s
matching degree value.

Figure 3 is the State pattern’s sequence diagram, and

its dynamic behavior matrix is





1 −1 0 0

0 2 −2 0

0 −3 3 0

4 −4 0 0

0 5 0 −5

0 −6 0 6

∞ ∞ ∞ ∞





.

4. Case study

In this section, a case study is provided to demon-
strate the complete process mentioned above for mining
Visitor pattern.

Fig. 3. State Pattern’s Sequence Diagram.

Fig. 4. Visitor Pattern’s UML Diagram.

1. Matrix Model of Visitor Design Pattern
Firstly we get the prime number matrix model

of Visitor pattern whose UML diagram is showed

in Fig. 4 as





0 0 0 5

5 0 0 0

2 0 0 0

0 2 0 0




.

2. Matrix Model of Source Code and its Optimi-
zation

Figure 5 shows the source code’s UML dia-
gram. According to the transformation flow from
source code to matrix, we can get the source code’s
matrix mode is a 8 × 8 matrix.

Evidently, in order to mine Visitor pattern,
there are a lot of redundancy information. So,
we need optimize the original matrix according
Model-based Clustering Method. And the clus-
tering condition has to be the Generalization and
Dependency relations. After clustering, we can

get two matrices which are





0 0 0 5 5

5 0 0 0 0

2 0 0 0 0

0 2 0 0 0

0 2 0 0 0




and

AU
TH

O
R

 C
O

PY

58 Y. Wang et al. / A fuzzy matching approach for design pattern mining

Fig. 5. UML Diagram of Partial Source Code.





0 0 0

2 0 0

2 0 0



. However, there is still some reduplicate

information in the matrices, such as the last 2 rows
and columns are same in first matrix, that means
class CarElement and BusElement have the same
signification, which needs to be normalized, and
so does the second matrix. After that we can get



0 0 0 5

5 0 0 0

2 0 0 0

0 2 0 0




and

[
0 0

2 0

]
. Furthermore, since the

dimension of second matrix is less than Visitor
pattern’s, the matrix must not be the instance of
Visitor Pattern. So we get the optimized matrix



0 0 0 5

5 0 0 0

2 0 0 0

0 2 0 0




. The final clustering result shows that

there is almost no redundancy information and
the number of matching decrease from C4

8 to 1,
the efficiency of matching is greatly improved.

3. Pattern Matching
Through above analysis, we get the matrix mod-

els of design pattern and source code. And next,
we will compute the Matching Degree of the two

models. According to Equation (2), the matching
degree of class’s information is 1. Also, the struc-
ture information’s matching degree is 1 which is
calculated by CCn method.

As discussed in section 3, we get the behaviour
matrix of Visitor pattern and source code as



1 −1 0 0

0 2 0 −2

0 −3 0 3

4 0 −4 0

0 0 5 −5

0 0 −6 6





. So the matching degree of

behaviour information is also 1.
According the matching degree, the match-

ing degree vector of Visitor pattern is TVisitor =
(1.0, 1.0, 1.0). By defined the weight vector of
Visitor pattern as WVisitor = (0.4, 0.83, 0.65), we
can get GMD(TVisitor ∧ WVisitor) = 0.83 which is
greater than Visitor pattern’s threshold 0.73. So,
the mining result is that the source code includes
one candidate of Visitor pattern.

5. Analysis of experiment results

Our proposed approach is evaluated on three open
source projects JUnit, JHotDraw and JFactory. There
are a lot of well-known design patterns in them, and
the authors indicate the implemented design patterns in
the documentation. Moreover, many related works take
them as the specification of design pattern mining, and
we can compare their results with ours. Table 2 illus-
trates part of the mining results of behavioral patterns
by our approach (MO) and compares them with method
of [8] (MG) and method of [4] (MD).

Table 2 illustrates that our approach can distinguish
State pattern from Strategy pattern well and the mining
accuracy and integrity is improved.

We take the source code of JHotDraw (shown in
Fig. 6) as an example to analyze the effectiveness of our

Table 2
Performance comparison of considered approaches

Patterns JUnit JHotDraw JRefactory

MO MG MD MO MG MD MO MG MD

Version v4.7 v3.7 v3.8 v6.0 v5.1 v6.0 v2.9.18 v2.6.24 v2.6.24
State (strategy) 0 (3) 3 3 12 (17) 22 29 7 (15) 11 12
Template method 1 1 – 5 5 – 19 17 –
Observer 4 4 – 3 5 – 1 0 –
Visitor 0 0 – 1 1 – 2 2 –

AU
TH

O
R

 C
O

PY

Y. Wang et al. / A fuzzy matching approach for design pattern mining 59

Fig. 6. Part of Source Code of JHotDraw.

approach. It is an illustration of State pattern. Accord-
ing to [4], the mining result is that the source code
is the instance of both State pattern and Strategy pat-
tern, because these two patterns have the same static
structure, i.e., they have the same matrix and the same
matching result. That means they can not distinguish
State pattern from Strategy pattern.

In our approach, the matrices of state and strategy

pattern both are





0 3 0

0 0 0

0 2 0



, and





0 3 0 0

0 0 0 0

0 7 0 0

0 0 2 0




is the opti-

mized source code matrix. Then TClassInfo State = 1.0,
TStructureInfo State = 0.97, TBehaviorInfo State = 0.81,
so the source code matching degree vector of
state pattern is TState = (1.0, 0.97, 0.81). Here
only one cycle’s behavioral information is con-
sidered, we need not to consider the whole life
cycle of the source code sequence diagram,

so the matrix is





1 −1 0 0 0

0 2 −2 0 0

0 −3 3 0 0

4 −4 0 0 0

0 5 0 0 −5

0 −6 0 0 6

7 −7 0 0 0

0 8 0 −8 0

0 −9 0 9 0





. Similarly,

TStrategy = (1.0, 0.97, 0.23).
Define the weight vector of these two patterns

as WState = (0.3, 0.8, 0.7), WStrategy = (0.3, 0.7, 0.6),
and according to our experience, State pattern’s thresh-
old is 0.75 and Strategy pattern’s is 0.79. Then
we can get GMD(TState ∧ WState) = 0.81 > 0.75 and
GMD(TStrategy ∧ WStrategy) = 0.7 < 0.79, so the result

illustrates that the source code is an instance of state
pattern.

6. Conclusion

In this paper, an approach of design pattern match-
ing based on fuzzy theory is proposed to implement
design pattern mining. The description of both source
code and design pattern is formalized through prime-
number-based matrix model. Clustering analysis is
applied to optimize the source code matrix. The design
pattern’s static and dynamic information is defined
as the attributes for measuring the matching degree.
And finally the fuzzy matching between design pattern
and source code is implemented based on fuzzy the-
ory. Experiment results illustrate that our approach can
detect design patterns from the source code well, espe-
cially for the behavioral design patterns with higher
accuracy and efficiency.

Acknowledgments

This work is supported by the National Natural
Science Foundation of China (Grant No. 60873054,
61073056), the Fundamental Research Funds for the
Central Universities (Grant No. 2011JC006), the Sci-
ence and Technology Research Project of Education
Bureau of Liaoning Province (Grant No. 2009S013),
and the Dalian Science and Technology Fund (Grant
No. 2010J21DW006).

References

[1] G. Antoniol, G. Casazza, M.D. Penta and R. Fiutem, Object
oriented design pattern recovery, Journal of Systems and Soft-
ware 59(2) (2001), 181–196.

[2] Z. Balanyi and R. Ferenc Mining design patterns from
C++ source code, Proceedings of the 19th IEEE Interna-
tional Conference on Software Maintenance. Amsterdam, The
Netherlands, 2003, 305–314.

[3] J. Dong, D. Lad and Y. Zhao, DP-Miner: Design pattern
discovery using matrix, Proceedings of 14th annual IEEE
International Conference and Workshops the Engineering of
Computer-Based Systems (ECBS). Arizona, USA, 2007, 371–
380.

[4] J. Dong, Y. Sun and Y. Zhao, Design pattern detection by
template matching, Proceedings of the 23rd Annual ACM Sym-
posium on Applied Computing. Fortaleza, Cear, Brazil, 2008,
765–769.

[5] M. Fasanghari and F.H. Roudsari, Optimized ICT project
selection utilizing fuzzy system, World Applied Sciences Jour-
nal 4(1) (2008), 44–49.

AU
TH

O
R

 C
O

PY

60 Y. Wang et al. / A fuzzy matching approach for design pattern mining

[6] R. Ferenc, J. Gustafsson, L. Miiller and J. Paki, Recogniz-
ing design patterns in C++ programs with the integration of
Columbus and maisa, Acta Cybernetica 15(4) (2002), 669–
682.

[7] E. Gamma, R. Helm and R. Johnson, et al., Design patterns:
Elements of reusable object-oriented software, Addison Wes-
ley Publishing Company, 1995, 21–22.

[8] Y. Guéhéneuc, H. Sahraoui and F. Zaidi, Fingerprinting design
patterns, Proceedings of the 11th Working Conference on
Reverse Engineering. Delft, The Netherlands, 2004, 172–181.

[9] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe, Automatic
design pattern detection, Proceedings of the 11th International
Workshop on Program Comprehension (IWPC). Portland, Ore-
gon, USA, 2003, 94–103.

[10] H. Huang, S. Zhang, J. Cao and Y. Duan, A practical pattern
recovery approach based on both structural and behavioral
analysis, Journal of Systems and Software 75(1-2) (2005),
69–87.

[11] O. Kaczor, Y. Guéhéneuc and S. Hamel, Efficient identification
of design patterns with bit-vector algorithm, Proceedings of

the Conference on Software Maintenance and Reengineering.
Bari, Italy, 2006 175–184.

[12] F. Li, Q. Li, Y. Su and P. Chen, Detection of design patterns by
combining static and dynamic analyses, Journal of Shanghai
University 11(2) (2007), 156–162.

[13] L. Prechelt and C. Krämer, Functionality versus practicality:
Employing existing tools for recovering structural design pat-
terns, Journal of Universal Computer Science 4(12) (1998),
866–882.

[14] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides and
S. Halkidis, Design pattern detection using similarity scor-
ing, IEEE Transaction on Software Engineering 32(11) (2006),
896–909.

[15] M. Vokac, Defect frequency and design patterns: An empiri-
cal study of industrial code, IEEE Transactions on Software
Engineering, 30(12) (2004), 904–917.

[16] M. Vokac, An efficient tool for recovering design patterns from
C++ code, Journal of Object Technology 5(1) (2006), 139–157.

[17] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965),
338–353.

