
December 29, 2006 16:0 00156

Journal of Information & Knowledge Management, Vol. 5, No. 4 (2006) 303–313
c© iKMS & World Scientific Publishing Co.

Decision Support Systems Using Ensemble Genetic Programming

Ajith Abraham∗,‡ and Crina Grosan†,§
∗IITA Professorship Program, School of Computer Science

Yonsei University, 134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Republic of Korea
†Department of Computer Science

Babes-Bolyai University, Cluj-Napoca, Romania
‡ajith.abraham@ieee.org
§cgrosan@cs.ubbcluj.ro

Abstract. This paper proposes a decision support sys-
tem for tactical air combat environment using a combina-
tion of unsupervised learning for clustering the data and
an ensemble of three well-known genetic programming tech-
niques to classify the different decision regions accurately. The
genetic programming techniques used are: Linear Genetic pro-
gramming (LGP), Multi-Expression Programming (MEP) and
Gene Expression Programming (GEP). The clustered data are
used as the inputs to the genetic programming algorithms.
Some simulation results demonstrating the difference of these
techniques are also performed. Test results reveal that the pro-
posed ensemble method performed better than the individual
GP approaches and that the method is efficient.

Keywords: Decision support systems; genetic programming;
ensemble systems; evolutionary multi-objective optimisation.

1. Introduction

Several decision support systems have been developed
mostly in various fields including medical diagnosis, busi-
ness management, control system, command and control
of defense, air traffic control and so on (Leal de Matos
and Powell, 2003; Moynihan et al., 2002; Papamichail
and French, 2003; Abraham et al., 2005). Usually pre-
vious experience or expert knowledge is often used to
design decision support systems. Several adaptive learn-
ing frameworks for constructing intelligent decision sup-
port systems have been proposed (Tran et al., 2001,
2002a, b, 2004; Cattral et al., 1999). To develop an intel-
ligent decision support system, we need a holistic view
on the various tasks to be carried out including data
management and knowledge management (Eom, 1999;
Nemati et al., 2002). The focus of this paper is to
develop a Tactical Air Combat Decision Support Sys-
tem (TACDSS) with minimal prior knowledge, which
could also provide optimal decision scores. As shown
in Fig. 1, we propose a concurrent unsupervised neu-
ral network to cluster the decision regions and genetic

programming techniques to automatically generate the
decision scores. Section 2 presents the problem of deci-
sion making in tactical air combat system. In Sec. 3,
we introduce some theoretical concepts of Self Organis-
ing Map (SOM) (Kohonen, 1982) followed by the genetic
programming techniques namely Linear Genetic program-
ming (LGP) (Banzhaf et al., 1998), Multi-Expression
Programming (MEP) (Oltean and Grosan, 2003), Gene
Expression programming (GEP) (Ferreira, 2001) and the
proposed ensemble method. Experimentation results are
provided in Sec. 4 and some conclusions are also provided
towards the end.

2. The Tactical Air Combat
Environment

Figure 2 presents a typical scenario of air combat tactical
environment where the Airborne Early Warning and Con-
trol (AEWC) is performing surveillance operation using
four fighter jets. An air-to-air fuel tanker is on the station
and the location and status are known to the AEWC.
Four fighter jets are on patrol in the area of Combat Air
Patrol (CAP). Sometime later, the AEWC on-board sen-
sor detects 2 hostile aircrafts. When the hostile aircrafts
enter the surveillance region (shown as dashed circle) the
mission system software is able to identify the enemy air-
craft and its distance from the fighter jets in the ground
base or in the CAP. The mission operator has few options
to make a decision on the allocation of fighter jets to inter-
cept the enemy aircrafts.

• Send the fighter jets directly to the spotted area and
intercept.

• Call the fighter jets in the area back to the ground base
and send another fighter jet from the ground base.

• Call the fighter jets in the area to refuel before inter-
cepting the enemy aircraft.

303

December 29, 2006 16:0 00156

304 A. Abraham and C. Grosan

Fig. 1. Concurrent unsupervised and genetic programming models for decision support systems.

Fig. 2. A simple scenario of the air combat.

The mission operator will base the decisions on a
number of decision factors, such as:

• fuel used and weapon status of fighter jets in the area;
• interrupt time required by the fighter jets in the ground

base and the fighter jets at the CAP to stop the hostile;
• the speed of the enemy fighter aircraft and the type of

weapons it possesses;
• the information of enemy aircraft on the type of air-

craft, weapon and number of aircrafts.

From the above simple scenario, it is evident that
there are several important decision factors of the tacti-
cal environment that might directly affect the air com-
bat decision. In the simple tactical air combat, the four
decision factors that could affect the decision options for
calling the fighter jets in the CAP or the fighter jets at
the ground base are the following:

• “fuel status” — quantity of fuel available to perform
the intercept;

• “weapon possession status” — quantity of weapons
available in the fighter jet;

• “interrupt time”— time required by the fighter jet to
interrupt the hostile; and

• “danger situation” — information of the fighter jet and
the hostile aircraft.

Each factor has different range of units such as the
fuel status (0 to 1000 l), interrupt time (0 to 60min),
weapon status (0% to 100%) and danger situation (0 to
10 points). We used the following two expert rules for
developing the fuzzy inference system.

• The decision selection will have small value if the fuel
status is low, the interrupt time is slow, the fighter jet
has low weapon status, and the danger situation is high.

• The decision selection will have high value if the fuel
status is full, the interrupt time is fast, the fighter
jet has high weapon status and the danger situation
is low.

In a tactical air combat environment, decision-
making is always based on all the states of decision fac-
tors. But sometimes, a mission operator or commander
could make a decision based on a important factors, such
as the fuel used is too low, the enemy has more power-
ful weapons, quality and quantity of enemy aircraft and
so on. Table 1 depicts some typical scores (key decision
selection criteria) taking into account of the various tac-
tical air combat decision factors.

December 29, 2006 16:0 00156

Decision Support Systems Using Ensemble Genetic Programming 305

Table 1. Decision factors for the tactical air combat.

Fuel
used

Time
intercept

Weapon
status

Danger
situation

Decision

Full Fast Sufficient Very
dangerous

Good

Half Normal Enough Dangerous Acceptable
Low Slow Insufficient Endanger Bad

3. Learning Decision Regions Using
Hybrid Unsupervised and
Supervised Learning Paradigms

3.1. Self-organising maps (SOM)

The Kohonen’s projection algorithm is the fundamen-
tal idea of unsupervised, competitive learning, self-
organisation and global ordering (Kohonen, 1982). An
input from the original high-dimensional space causes
dominant response of one neuron in the 2D array of
neurons, and only this “winning” neuron together with
its neighbouring neurons get to adjust their weights. For
example, adjusting weights of neurons in a local neigh-
bourhood around the winning neuron leads to global
ordering through continuous learning. This operation of
the SOM algorithm shows the ability of biological neu-
rons that perform global ordering based on local interac-
tions. This global order leads to the creation of natural
structures and biologically motivated configurations and
shapes, which are created according to the laws of mini-
mum energy, time, or complexity. The SOM algorithm for
clustering the decision regions is given below:

1. Initialise the weight wij , neighbourhood size Nm(0)
and parameter functions α(t) and σ2(t).

2. Select the training term vector xi at random for the
input layer and calculate the similarity (distance) d of
this input to the weight w of each node j.

dj =
∥∥x − wj

∥∥ =

√√√√
n∑

i=1

(xi − wij)2 (1)

3. Select the node with the minimum distance as the win-
ner vector m.

4. Update the weights connecting the input layer to the
winning node and its neighbouring nodes by the learn-
ing rule

wij(t + 1) = wij(t) + c�xi − wij(t)�, (2)

where c = α(t) exp(−‖ri − rm‖ /σ2(t)) for all nodes j

in Nm(t).
5. Repeat steps 2–4 by increasing t by 1 at a time and

decreasing the neighbourhood size, α(t) and σ2(t) until
the weights are stabilised.

6. Map each term to a node on the SOM and label each
winning node with an associated term.

A 2D map of decision regions (with different clus-
ters) are formed after the training process. We adopted
a trial and error approach by comparing the “normalised
distortion” and “quantisation error” to decide the vari-
ous parameter settings of the SOM algorithm. We finally
decided the parameter setting, which could minimise both
“normalised distortion” and “quantisation” errors.

3.2. Genetic programming (GP)

Once the clusters are defined using SOM, the next step
is to apply the GP models to learn the different decision
regions for the given input data. LGP, MEP and GEP
are the three well-known genetic programming techniques
explored in this paper.

3.2.1. Linear genetic programming (LGP)

LPG is a variant of the GP technique that acts on lin-
ear genomes (Banzhaf et al., 1998). Its main charac-
teristics when compared to the tree-based GP lies in
that the evolvable units are not the expressions of a
functional programming language (like LISP), but the
programs of an imperative language (like C/C++). An
alternate approach is to evolve a computer program at
the machine code level, using lower level representations
for the individuals. This can tremendously hasten the evo-
lution process as, no matter how an individual is initially
represented, finally it always has to be represented as a
piece of machine code, as fitness evaluation requires phys-
ical execution of the individuals. The basic unit of evolu-
tion here is a native machine code instruction that runs
on the floating-point processor unit (FPU). Since differ-
ent instructions may have different sizes, here instruc-
tions are clubbed up together to form instruction blocks
of 32 bits each. The instruction blocks hold one or more
native machine code instructions, depending on the sizes
of the instructions. A cross-over point can occur only
between instructions and is prohibited from occurring
within an instruction. However, the mutation operation
does not have any such restrictions. LGP uses a specific
linear representation of computer programs. Instead of the
tree-based GP expressions of a functional programming
language (like LISP) programs of an imperative language
(like C) are evolved. An LGP individual is represented by
a variable-length sequence of simple C language instruc-
tions. Instructions operate on one or two indexed variables
(registers) r, or on constants cfrom pre-defined sets. The
result is assigned to a destination register, for example,

December 29, 2006 16:0 00156

306 A. Abraham and C. Grosan

ri = rj ∗ c. An example of an LGP program is illustrated
below:

void LGP (double v [8])
{
[0] = v[5] + 73;
v[7] = v[3] −−59;
if (v[1] > 0)
if (v[5] > 21)
v[4] = v[2]. v[1];
v[2] = v[5] + v[4];
v[6] = v[7]. 25;
v[6] = v[4] − 4;
v[1] = sin(v[6]);
if (v[0] > v[1])
v[3] = v[5]. v[5];
v[7] = v[6]. 2;
v[5] = v[7] + 115;
if (v[1] <= v[6])
v[1] = sin(v[7]);
}

An LGP can be turned into a functional representa-
tion by successive replacements of variables starting with
the last effective instruction. The maximum number of
symbols in an LGP chromosome is 4 * number of instruc-
tions. Evolving programs in a low-level language allows us
to run those programs directly on the computer processor,
thus avoiding the need of an interpreter. In this way the
computer program can be evolved very quickly. An impor-
tant LGP parameter is the number of registers used by a
chromosome. The number of registers is usually equal to
the number of attributes of the problem. If the problem
has only one attribute, it is impossible to obtain a complex
expression such as the quartic polynomial. In that case we
have to use several supplementary registers. The number
of supplementary registers depends on the complexity of
the expression being discovered. An inappropriate choice
can have disastrous effects on the program being evolved.
LGP uses a modified steady-state algorithm. The initial
population is randomly generated.

The following steps are repeated until a termination
criterion is reached:

Four individuals are randomly selected from the cur-
rent population. The best two of them are considered the
winners of the tournament and will act as parents. The
parents are recombined and the offsprings are mutated
and then replaced with the losers of the tournament.

We used an LGP technique that manipulates and
evolves a program at the machine code level. The settings
of various linear genetic programming system parameters
are of utmost importance for successful performance of the

system. The population space has been sub-divided into
multiple sub-population or demes. Migration of individ-
uals among the sub-populations causes evolution of the
entire population. It helps to maintain diversity in the
population, as migration is restricted among the demes.
Moreover, the tendency towards a bad local minimum in
one deme can be countered by other demes with bet-
ter search directions. The various LGP search param-
eters are the mutation frequency, cross-over frequency
and the reproduction frequency. The cross-over opera-
tor acts by exchanging sequences of instructions between
two tournament winners. Steady-state genetic program-
ming approach was used to manage the memory more
effectively.

3.2.2. Multi-expression programming (MEP)

MEP genes are represented by sub-strings of variable
lengths (Oltean and Grosan, 2003). The number of genes
per chromosome is constant. This number defines the
length of the chromosome. Each gene encodes a termi-
nal or a function symbol. A gene that encodes a function
includes pointers towards the function arguments. Func-
tion arguments always have indices of lower values than
the position of the function itself in the chromosome. The
proposed representation ensures that no cycle arises while
the chromosome is decoded (phenotypically transcripted).
According to the proposed representation scheme, the first
symbol of the chromosome must be a terminal symbol. In
this way, only syntactically correct programs (MEP indi-
viduals) are obtained. An example of chromosome using
the sets F = {+, ∗} and T = {a, b, c, d} is given below:

1: a

2: b

3: + 1, 2
4: c

5: d

6: + 4, 5
7: * 3, 6

The maximum number of symbols in MEP chromo-
some is given by:

number of symbols = (n+1) * (number of genes – 1) + 1,

where n is the number of arguments of the function with
the greatest number of arguments. The maximum number
of effective symbols is achieved when each gene (excepting
the first one) encodes a function symbol with the high-
est number of arguments. The minimum number of effec-
tive symbols is equal to the number of genes and it is
achieved when all genes encode terminal symbols only.
The translation of a MEP chromosome into a computer
program represents the phenotypic transcription of the

December 29, 2006 16:0 00156

Decision Support Systems Using Ensemble Genetic Programming 307

MEP chromosomes. Phenotypic translation is obtained by
parsing the chromosome top–bottom. A terminal symbol
specifies a simple expression. A function symbol specifies a
complex expression obtained by connecting the operands
specified by the argument positions with the current func-
tion symbol. For example, genes 1, 2, 4 and 5 in the previ-
ous example encode simple expressions formed by a single
terminal symbol. These expressions are:

E1 = a,
E2 = b,
E4 = c,
E5 = d,

Gene 3 indicates the operation + on the operands
located at positions 1 and 2 of the chromosome. There-
fore, gene 3 encodes the expression: E3 = a + b. Gene 6
indicates the operation + on the operands located at posi-
tions 4 and 5. Therefore, gene 6 encodes the expression:
E6 = c + d. Gene 7 indicates the operation * on the
operands located at positions 3 and 6. Therefore, gene 7
encodes the expression: E7 = (a + b) * (c + d). E7 is
the expression encoded by the whole chromosome. There
is neither practical nor theoretical evidence that one of
these expressions is better than the others. This is why
each MEP chromosome is allowed to encode a number
of expressions equal to the chromosome length (number
of genes). The chromosome described above encodes the
following expressions:

E1 = a,
E2 = b,

E3 = a + b,
E4 = c,
E5 = d,

E6 = c + d,
E7 = (a + b) ∗ (c + d).

The value of these expressions may be computed by
reading the chromosome top–bottom. Partial results are
computed by dynamic programming and are stored in a
conventional manner. Due to its multi-expression repre-
sentation, each MEP chromosome may be viewed as a
forest of trees rather than as a single tree, which is the
case of GP. The chromosome fitness is usually defined as
the fitness of the best expression encoded by that chromo-
some. For instance, if we want to solve symbolic regres-
sion problems, the fitness of each sub-expression Ei may
be computed using the formula:

f(Ei) =
n∑

k=1

|ok,i − wk|,

where ok,i is the result obtained by the expression Ei for
the fitness case k and wk is the targeted result for the fit-
ness case k. In this case the fitness needs to be minimised.

The fitness of an individual is set to be equal to the low-
est fitness of the expressions encoded in the chromosome.
When we have to deal with other problems, we compute
the fitness of each sub-expression encoded in the MEP
chromosome. Thus, the fitness of the entire individual is
supplied by the fitness of the best expression encoded in
that chromosome.

3.2.3. Gene expression programming (GEP)

The individuals of gene expression programming
(Ferreira, 2001) are encoded in linear chromosomes
which are expressed or translated into expression trees
(branched entities). Thus, in GEP, the genotype (the
linear chromosomes) and the phenotype (the expression
trees) are different entities (both structurally and func-
tionally) that, nevertheless, work together forming an
indivisible whole. In contrast to its analogous cellular
gene expression, GEP is rather simple. The main players
in GEP are only two: the chromosomes and the Expression
Trees (ETs), the latter being the expression of the genetic
information encoded in the chromosomes. As in nature,
the process of information decoding is called translation.
And this translation implies obviously a kind of code and
a set of rules. The genetic code is very simple: a one-to-
one relationship between the symbols of the chromosome
and the functions or terminals they represent. The rules
are also very simple: they determine the spatial organi-
sation of the functions and terminals in the ETs and the
type of interaction between sub-ETs. GEP uses linear
chromosomes that store expressions in breadth-first form.
A GEP gene is a string of terminal and function symbols.
GEP genes are composed of a head and a tail. The head
contains both function and terminal symbols. The tail
may contain terminal symbols only. For each problem the
head length (denoted h) is chosen by the user. The tail
length (denoted by t) is evaluated by:

t = (n − 1)h + 1,

where n is the number of arguments of the function with
more arguments.

Let us consider a gene made up of symbols in the
set S:

S = {., /, +,−, a, b}.
In this case, n = 2. If we choose h = 10, then we get
t = 11, and the length of the gene is 10 + 11 = 21. Such a
gene is given below:

CGEP = + ∗ ab − +aab + ababbbababb.

The expression encoded by the gene CGEP is:

E = a + b ∗ ((a + b) − a).

December 29, 2006 16:0 00156

308 A. Abraham and C. Grosan

GEP genes may be linked by a function symbol in order
to obtain a fully functional chromosome. In the current
version of GEP the linking functions for algebraic expres-
sions are addition and multiplication. A single type of
function is used for linking multiple genes. GEP uses
mutation, recombination and transposition. GEP uses a
generational algorithm and the initial population is ran-
domly generated.

The following steps are repeated until a termination
criterion is reached: A fixed number of the best individu-
als enter the next generation (elitism). The mating pool
is filled by using binary tournament selection. The indi-
viduals from the mating pool are randomly paired and
recombined. Two offsprings are obtained by recombining
two parents. The offsprings are mutated and they enter
the next generation.

There are some problems regarding multi-genic chro-
mosomes. Generally, it is not a good idea to assume that
the genes may be linked either by addition or by multi-
plication. Providing a particular linking operator means
providing partial information to the expression which is
discovered. But, if all the operators {+,−, ., /} are used
as linking operators, then the complexity of the problem
substantially grows (since the problem of determining how
to mix these operators with the genes is as difficult as
the initial problem). Furthermore, the number of genes in
the GEP multi-genic chromosome raises a problem. For
some problems, the success rate of GEP increases with the
number of genes in the chromosome. But, after a certain
value, the success rate decreases if the number of genes
in the chromosome is increased. This happens because we
cannot force a complex chromosome to encode a less com-
plex expression. A large part of the chromosome is unused
if the target expression is short and the head length is
large. Note that this problem arises usually in systems
that employ chromosomes with a fixed length.

3.3. Ensemble Modelling of LGP, MEP
and LGP

Our goal is to provide optimal decision scores. This could
be achieved by optimising two error measures namely
Root Mean Squared Error (RMSE) and Correlation Coef-
ficient (CC):

RMSE =

√√√√ N∑
i=1

|Pactual,i − Ppredicted,i, |,

CC =
∑N

i=1 Ppredicted,i∑N
i=1 Pactual,i

.

The task is to have minimal value for RMSE and a maxi-
mum value for CC. The objective is to carefully construct
the different GP models to achieve the best generali-
sation performance. Test data is then passed through
these individual models and the corresponding outputs
are recorded. Suppose results obtained by LGP, MEP and
GEP are an, bn and cn, respectively and the correspond-
ing desired value is xn. The task is to combine an, bn

and cn so as to get the best output value that maximises
the CC and minimises the RMSE values. We consider
this problem as a multi-objective optimisation problem
in which we want to find solution of this form: (coef1,
coef2 and coef3), where coef1, coef2 and coef3 are real
numbers between −1 and 1, so that the resulting combi-
nation, coef1*an + coef2*bn + coef3*cn, would be close
to the desired value xn.

This means, in fact, to find a solution so as to
simultaneously optimise RMSE and CC. This problem
is equivalent to find the Pareto solutions of a multi-
objective optimisation problem (objectives being RMSE
and CC). We used the Multi-objective Evolutionary Algo-
rithm (MOEA) — Non-dominated Sorting Genetic Algo-
rithm II (NSGAII) (Deb et al., 2002). A short description
of this algorithm is given in Sec. 3.40.

3.4. Non-dominated sorting genetic
algorithm II (NSGA II)

In the NSGA II algorithm, for each solution x the number
of solutions that dominate solution x is calculated. The
set of solutions dominated by x is also calculated. The
first front (the current front) of the solutions that are
non-dominated is obtained. Let us denote by Si the set of
solutions that are dominated by the solution xi. For each
solution xi from the current front consider each solution
xq from the set Si. The number of solutions that domi-
nates xq is reduced by one. The solutions which remain
non-dominated after this reduction will form a separate
list. This process continues using the newly identified front
as the current front.

Let P (0) be the initial population of size N . An off-
spring population Q(t) of size N is created from cur-
rent population P (t). Consider the combined population
R(t) = P (t) ∪ Q(t). Population R(t) is ranked according
to non-domination. The fronts F1, F2, . . . are obtained.
New population P (t+1) is formed by considering individ-
uals from the fronts F1, F2, . . . until the population size
exceeds N . Solutions of the last allowed front are ranked
according to a crowded comparison relation. NSGA II uses
a parameter called crowding distance for density estima-
tion for each individual. Crowding distance of a solution x

December 29, 2006 16:0 00156

Decision Support Systems Using Ensemble Genetic Programming 309

(a) (b)

Fig. 3. Developed clusters using SOM (a) Dataset A (b) Dataset B.

is the average side-length of the cube enclosing the point
without including any other point in the population. Solu-
tions of the last accepted front are ranked according to the
crowded comparison distance.

NSGA II works as follows: Initially, a random
population, which is sorted based on non-domination, is
created. Each solution is assigned a fitness equal to its
non-domination level (1 is the best level). Binary tour-
nament selection, recombination and mutation are used
to create an offspring population. A combined popula-
tion is formed from the parent and offspring popula-
tion. The population is sorted according to the non-
domination relation. The new parent population is formed
by adding the solutions from the first front and the follow-
ings until exceed the population size. Crowding compar-
ison procedure is used during the population reduction
phase and in the tournament selection for deciding the
winner.

4. Experiment Results and
Performance Analysis

Our master data set comprises of 1000 numbers. To avoid
any bias on the data, from the master dataset, we ran-
domly created two sets of training (Dataset A — 90%
and Dataset B — 80%) and test data (10% and 20%). In
addition to the four input variables (fuel used, time inter-
cept, weapon status and danger situation) as illustrated
in Table 1, we also used the cluster information generated
using SOM algorithm to train the GP models. All the
experiments were repeated three times and the average
errors are reported.

4.1. Unsupervised training of SOM

The SOM algorithm provided three clusters C1, C2 and
C3 as depicted in Figs. 3(a) and 3(b).

4.2. Learning the decision regions

Parameters used by LGP, MEP and GEP and the ensem-
bles between LGP, MEP and GEP using NSGA II are
depicted in Tables 2, 3, 4 and 5, respectively. the RMSE
and CC values obtained for Datasets A and B using LGP,
MEP, GEP and the ensembles between LGP, MEP and
GEP using NSGA II are presented in Table 6.

Table 2. Parameters used by LGP.

Parameters Values

Population size 50
Mutation frequency 95%
Cross-over frequency 95%
Number of demes 10
Program size

Initial 80
Maximum 1024

Table 3. Parameters used by MEP.

Parameters Values

Population size 50
Number of mutations per chromosome 3
Cross-over probability 0.8
Code length 40
Number of generations 50
Tournament size 4

December 29, 2006 16:0 00156

310 A. Abraham and C. Grosan

Table 4. Parameters used by GEP.

Parameter Value

Population size 50
Mutation probability 0.044
Cross-over probability (one-point cross-over) 0.3
Number of genes 3
Genes recombination 0.1
Genes transposition 0.1
Inversion 0.1

Table 5. Parameters used by ensemble.

Parameters Values

Population size 250
Number of generations 500
Cross-over probability 0.6

Table 6. RMSE of decision scores using GP and ensemble
models for the training and test datasets.

Performance LGP MEP GEP Ensemble
measure

Dataset A
RMSE Test 0.09989 0.07225 0.06693 0.0485

CC 0.993 0.994 0.989 0.9981

Dataset B
RMSE Test 0.056864 0.05927 0.07666 0.0496

CC 0.988 0.992 0.987 0.9962

Fig. 4. Dataset A: relationship between fitness function and
generations obtained by MEP.

Fig. 5. Dataset B: relationship between fitness function and
generations obtained by MEP.

(a)

Fig. 6. (a) Dataset A: LGP models showing the evolution of best training and test fitness values during 200,000 tournaments;
(b) average and best code length.

December 29, 2006 16:0 00156

Decision Support Systems Using Ensemble Genetic Programming 311

(b)

Fig. 6. (Continued)

(a)

(b)

Fig. 7. (a) Dataset B: LGP models showing the evolution of best training and test fitness values during 200,000 tournaments;
(b) average and best code length.

The functions evolved by MEP (combining these vari-
ables and also using some constants) are reported below:

— for the first data set, the derived function is: var3 (where
var1, var2, var3 and var4 are the four input variables);

— for the second data set, the derived function is:
0.93786 + var1 − 0.79537 − 0.044892.

Relationship between the number of generations and
the value of fitness function (RMSE) for training data
obtained by MEP for the first data set and the second
data set are depicted in Figs. 4 and 5, respectively. Fig-
ures 6 and 7 illustrate LGP models showing the evolution
of best training and test fitness values and the average
and best code length for the first and second data set,

December 29, 2006 16:0 00156

312 A. Abraham and C. Grosan

respectively during 200,000 tournaments. From the exper-
imental results, it is clear that the results obtained by the
ensemble between GP techniques outperformed each of
the individual techniques (LGP, MEP and GEP) in terms
of lower RMSE and higher CC values.

5. Conclusion and Future Research

In this paper, we proposed a hybrid unsupervised–
supervised training method to develop a decision sup-
port system where not much prior knowledge about the
decision regions is available. We investigated the per-
formance of three different GP techniques (LPG, MEP
and GEP) to learn the different decision regions. LGP,
MEP and GEP techniques were combined using an ensem-
ble approach by an evolutionary multi-objective algo-
rithm so as to simultaneously optimise the performance
measures (RMSE and CC). We evolved a set of coeffi-
cients in order to obtain an ensemble combination of the
two techniques by applying a multi-objective evolutionary
algorithm.

Two data sets were considered in the experiments.
Empirical results reveal that GEP outperforms LGP and
MEP for the dataset A and for the dataset B, LGP
obtains the best results. MEP performed well for both
the data sets while GEP (the best algorithm for the first
data set) performed worst for the second data set and
LGP (the worst for the first data set) performed the best
for the second data set. Empirical results also illustrate
that a combination of these techniques is very useful.
The results obtained by an ensemble of these paradigms
clearly outperform results obtained by each technique
individually.

Acknowledgement

This research was supported by the International Joint
Research Grant of the IITA (Institute of Information
Technology Assessment) foreign professor invitation pro-
gramme of the MIC (Ministry of Information and Com-
munication), Korea.

References

Tran, C, A Abraham and L Jain (2004). Modeling decision
support systems using hybrid neurocomputing. Neuro-
computing Journal, Elsevier Science, Netherlands, 61C,
85–97.

Tran, C, A Abraham and L Jain (2001). Adaptive
Database Learning in Decision Support System Using
Evolutionary Fuzzy Systems: A Generic Framework,
Hybrid Information Systems, Advances in Soft Com-
puting. Germany: Physica-Verlag, pp. 237–252.

Tran, C, Abraham A and L Jain (2002a). TACDSS: adap-
tation using a hybrid neuro-fuzzy system. In 7th Online
World Conf. Soft Computing in Industrial Applications
(WSC7), Advances in Soft Computing: Engineering
Design and Manufacturing, JM Benitez et al. (eds.),
pp. 53–62. Germany: Springer-Verlag.

Tran, C, A Abraham and L Jain (2002b). Adaptation of
mamdani fuzzy inference system using neuro-genetic
approach for tactical air combat decision support sys-
tem. In 15th Australian Joint Conf. Artificial Intel-
ligence (AI’02), LNAI 2557, pp. 672–679. Germany:
Springer-Verlag.

Cattral, R, F Oppacher and D Deogo (1999). Rule acqui-
sition with a genetic algorithm. In Proc. Congress
on Evolution Computation, CEC99, Vol. 1, pp.
125–129.

Eom, SB (1999). Decision support systems research: cur-
rent state and trends. Industrial Management and Data
Systems, 99(5), 213–221.

Kohonen, T (1982). Self organized formation of topolog-
ically correct feature maps. Biological Cybernetics, 43,
59–69.

Leal de Matos, PA and PL Powell (2003). Decision sup-
port for flight re-routing in Europe. Decision Support
Systems, 34(4), 397–412.

Moynihan, GP, P Purushothaman, RW McLeod and WG
Nichols (2002). DSSALM: a decision support system
for asset and liability management. Decision Support
Systems, 33(1), 23–38.

Nemati, HR, DM Steiger, LS Iyer and RT, Herschel
(2002). Knowledge warehouse: an architectural inte-
gration of knowledge management, decision support.
Decision Support Systems, 33(2), 143–161.

Papamichail, KN and S French (2003). Explaining and
justifying the advice of a decision support system: a
natural language generation approach. Expert Systems
with Applications, 24(1), 35–48.

Parker, DB (1985). Learning-logic, Report TR-47.
Cambridge, MA. Massachusetts Institute of Technol-
ogy, Center for Computational Research in Economics
and Management Science.

Oltean, M and C Grosan (2003). Evolving evolution-
ary algorithms using multi expression programming.
In Proc. 7th European Conference on Artificial Life,
pp. 651–658. Germany: Dortmund.

Banzhaf, W, P Nordin ER Keller and FD Francone
(1998). Genetic Programming: An Introduction on the
Automatic Evolution of Computer Programs and Its
Applications. USA: Morgan Kaufmann Publishers, Inc.

Ferreira, C (2001). Gene expression programming: a new
adaptive algorithm for solving problems. Complex Sys-
tems, 13(2), 87–129.

Deb, K, A Pratap, S Agarwal and T Meyarivan (2002).
A fast and elitist multi-objective genetic algorithm:
NSGA-II. IEEE Transaction on Evolutionary Compu-
tation, 6(2), 181–197.

December 29, 2006 16:0 00156

Decision Support Systems Using Ensemble Genetic Programming 313

Abraham, A, C Grosan, C Tran and L Jain (2005). A con-
current neural network — genetic programming model
for decision support systems. In Knowledge Manage-
ment Nurturing Culture, Innovation and Technology,

2005 International Conference on Knowledge Manage-
ment (ICKM 2005), USA, S. Hawamdeh (ed.), pp. 231–
245. Singapore: World Scientific Press.

Ajith Abraham currently works as a Professor under
the South Korean Government’s Institute of Information
Technology Assessment (IITA) Professorship programme
at Yonsei University, Seoul. His primary research inter-
ests are in computational intelligence with a focus on
using evolutionary computation techniques for design-
ing intelligent paradigms. Application areas include Web
services, information security, Web intelligence, financial
modelling, multi-criteria decision-making, data mining
applications, etc. He has authored/co-authored over 250
research publications in peer-reviewed reputed journals,
book chapters and conference proceedings of which four
have won “best paper” awards.

He is an editor of the Journal of Information and
Knowledge Management (JIKM) and also serves the
editorial board of over a dozen international journals. He
has also guest-edited 16 special issues for reputed interna-
tional journals. He received his PhD degree from Monash
University, Australia.

Crina Grosan currently works as an Assistant Pro-
fessor in the Computer Science Department of Babes-
Bolyai University, Cluj-Napoca, Romania. She received

her PhD degree from Babes-Bolyai University, Romania.
Her main research area is in evolutionary computation,
with a focus on evolutionary multi-objective optimisa-
tion and applications, and genetic programming. She is
also interested in Swarm Intelligence (Particle Swarm
Optimisation, Ant Colonies Systems) and applications
in bioinformatics, internet security, financial modelling,
etc. Dr. Grosan authored/co-authored over 70 articles in
peer-reviewed international journals, proceedings of the
international conferences and book chapters. She is co-
author of two books in the field of computer science.
She is the Managing Editor of the International Jour-
nal of Computational Intelligence Research (IJCIR). Dr.
Grosan has guest-edited a special issue on “Soft Com-
puting in Simulation and Modeling” for the Interna-
tional Journal of Simulation Systems, Science and Tech-
nology, UK. She has co-edited two books Swarm Intelli-
gence and Data Mining and Stigmergic optimisation which
were published by Springer-Verlag, Germany in 2006. Dr.
Grosan is the co-editor of the following two books which
will be published by Springer-Verlag, Germany in 2007:
Hybrid Evolutionary Systems and Engineering Evolution-
ary Intelligent Systems.

