
 Page 1 of 19

Evolving Computer Programs for Knowledge Discovery

Crina Grosan1 and Ajith Abraham2

1
Department of Computer Science,

Babes-Bolyai University Cluj-Napoca, Romania, cgrosan@cs.ubbcluj.ro

2
IITA Professorship Program,

School of Computer Science and Engineering,

Chung-Ang University, Korea, ajith.abraham@ieee.org

Abstract: Genetic Programming (GP) offers practical advantages to the researcher facing difficult

optimization problems. These advantages are multifold, including the simplicity of the approach, its

robust response to changing circumstance, its flexibility, and many other facets. GP can be applied to

problems where heuristic solutions are not available or generally lead to unsatisfactory results. As a

result, GP has recently received increased interest, particularly with regard to the manner in which

they may be applied for practical problem solving. This paper illustrates how some GP variants could

be used for knowledge discovery and function approximation.

1. Introduction and Biological Motivation

In nature, evolution is mostly determined by natural selection or different individuals

competing for resources in the environment. Those individuals that are better are more likely

to survive and propagate their genetic material. The encoding for genetic information

(genome) is done in a way that admits asexual reproduction, which results in offspring that

are genetically identical to the parent. Sexual reproduction allows some exchange and re-

ordering of chromosomes, producing offspring that contain a combination of information

from each parent [9]. This is the recombination operation, which is often referred to as

crossover because of the way strands of chromosomes cross over during the exchange. The

diversity in the population is achieved by mutation operation.

In many cases, the mathematical function, which describes the problem, is not known and the

values at certain parameters are obtained from simulations. In contrast to many other

optimization techniques an important advantage of evolutionary algorithms is they can cope

with multi-modal functions. A population of candidate solutions (for the optimization task to

be solved) is initialized. New solutions are created by applying reproduction operators

(crossover and/or mutation). The fitness (how good the solutions are) of the resulting

solutions is evaluated and suitable selection strategy is then applied to determine which

solutions will be maintained into the next generation [1].

2. Genetic Programming

Genetic Programming (GP) technique provides a framework for automatically creating a

working computer program from a high-level problem statement of the problem [10]. Genetic

programming achieves this goal of automatic programming by genetically breeding a

population of computer programs using the principles of Darwinian natural selection and

biologically inspired operations. The operations include most of the techniques discussed in

 Page 2 of 19

the previous sections. The main difference between GP and GA is the representation of the

solution. GP creates computer programs in the LISP or scheme computer languages as the

solution. LISP is an acronym for LISt Processor. Unlike most languages, LISP is usually used

as an interpreted language. This means that, unlike compiled languages, an interpreter can

process and respond directly to programs written in LISP. The main reason for choosing

LISP to implement GP is due to the advantage of having the programs and data have the

same structure, which could provide easy means for manipulation and evaluation. In GP the

individual population members are not fixed length character strings that encode possible

solutions to the problem at hand, they are programs that, when executed, are the candidate

solutions to the problem. These programs are expressed in genetic programming as parse

trees, rather than as lines of code. Example, the simple program ‘a + b * c’ would be

represented as shown in Figure 1. The terminal and function sets are also important

components of genetic programming. The terminal and function sets are the alphabet of the

programs to be made. The terminal set consists of the variables and constants of the programs

(example, A,B and C in Figure 1).

Figure 1. Tree structure of GP

The most common way of writing down a function with two arguments is the infix notation.

That is, the two arguments are connected with the operation symbol between them as follows:

A + B

A different method is the prefix notation. Here the operation symbol is written down first,

followed by its required arguments:

+AB

While this may be a bit more difficult or just unusual for human eyes, it opens some

advantages for computational uses. The computer language LISP uses symbolic expressions

(or S-expressions) composed in prefix notation. Then a simple S-expression could be

(operator, argument)

where operator is the name of a function and argument can be either a constant or a variable

or either another symbolic expression as shown below:

(operator, argument (operator, argument) (operator, argument))

2.1. Genetic Programming Basics

A parse tree is a structure that develops the interpretation of a computer program. Functions

are written down as nodes, their arguments as leaves. A subtree is the part of a tree that is

under an inner node of this tree as illustrated in Figure 2. If this tree is cut out from its parent,

the inner node becomes a root node and the subtree is a valid tree of its own.

 Page 3 of 19

Figure 2. Architecture of a GP sub-tree

There is a close relationship between these parse trees and S-expression; in fact these trees

are just another way of writing down expressions. While functions will be the nodes of the

trees (or the operators in the S-expressions) and can have other functions as their arguments,

the leaves will be formed by terminals that are symbols that may not be further expanded.

Terminals can be variables, constants or specific actions that are to be performed. The

process of selecting the functions and terminals that are needed or useful for finding a

solution to a given problem is one of the key steps in GP. Evaluation of these structures is

straightforward. Beginning at the root node, the values of all sub-expressions (or subtrees) are

computed, descending the tree down to the leaves. GP procedure could be summarized as

follows:

• Generate an initial population of random compositions of the functions and terminals of

the problem.

• Compute the fitness values of each individual in the population

• Using some selection strategy and suitable reproduction operators produce offsprings

• Procedure is iterated until the required solution is found or the termination conditions

have reached (specified number of generations).

The creation of an offspring from the crossover operation is accomplished by deleting the

crossover fragment of the first parent and then inserting the crossover fragment of the second

parent. The second offspring is produced in a symmetric manner. A simple crossover

operation is illustrated in Figure 3. In GP the crossover operation is implemented by taking

randomly selected sub trees in the individuals and exchanging them.

Mutation is another important feature of genetic programming. Two types of mutations are

commonly used. The simplest type is to replace a function or a terminal by a function or a

terminal respectively. In the second kind an entire subtree can replace another subtree. Figure

4 explains the concepts of mutation.

 Page 4 of 19

Figure 3. GP recombination operation

Figure 4. GP mutation operation

GP requires data structures that are easy to handle and evaluate and robust to structural

manipulations. These are among the reasons why the class of S-expressions was chosen to

implement GP. The set of functions and terminals that will be used in a specific problem has

to be chosen carefully. If the set of functions is not powerful enough, a solution may be very

complex or not to be found at all. Like in any evolutionary computation technique, the

generation of first population of individuals is important for successful implementation of

GP. Some of the other factors that influence the performance of the algorithm are the size of

the population, percentage of individuals that participate in the crossover/mutation, maximum

 Page 5 of 19

depth for the initial individuals and the maximum allowed depth for the generated offspring

etc. Some specific advantages of genetic programming are that no analytical knowledge is

needed and still could get accurate results. GP approach does scale with the problem size. GP

does impose restrictions on how the structure of solutions should be formulated.

2.2. Variants of Genetic Programming

Several variants of GP could be seen in the literature. Some of them are Linear Genetic

Programming (LGP), Gene Expression Programming (GEP), Multi Expression Programming

(MEP), Cartesian Genetic Programming (CGP), Traceless Genetic Programming (TGP) and

Genetic Algorithm for Deriving Software (GADS).

2.2.1. Linear Genetic Programming

Linear genetic programming is a variant of the GP technique that acts on linear genomes [2].

Its main characteristics in comparison to tree-based GP lies in that the evolvable units are not

the expressions of a functional programming language (like LISP), but the programs of an

imperative language (like c/c ++). This can tremendously hasten the evolution process as, no

matter how an individual is initially represented, finally it always has to be represented as a

piece of machine code, as fitness evaluation requires physical execution of the individuals.

The basic unit of evolution here is a native machine code instruction that runs on the floating-

point processor unit (FPU). Since different instructions may have different sizes, here

instructions are clubbed up together to form instruction blocks of 32 bits each. The

instruction blocks hold one or more native machine code instructions, depending on the sizes

of the instructions. A crossover point can occur only between instructions and is prohibited

from occurring within an instruction. However the mutation operation does not have any such

restriction. LGP uses a specific linear representation of computer programs. A LGP

individual is represented by a variable length sequence of simple C language instructions.

Instructions operate on one or two indexed variables (registers) r, or on constants c from

predefined sets.

An important LGP parameter is the number of registers used by a chromosome. The number

of registers is usually equal to the number of attributes of the problem. If the problem has

only one attribute, it is impossible to obtain a complex expression such as the quartic

polynomial. In that case we have to use several supplementary registers. The number of

supplementary registers depends on the complexity of the expression being discovered. An

inappropriate choice can have disastrous effects on the program being evolved. LGP uses a

modified steady-state algorithm. The initial population is randomly generated. The settings of

various linear genetic programming system parameters are of utmost importance for

successful performance of the system. The population space has been subdivided into

multiple subpopulation or demes. Migration of individuals among the subpopulations causes

evolution of the entire population. It helps to maintain diversity in the population, as

migration is restricted among the demes. Moreover, the tendency towards a bad local

minimum in one deme can be countered by other demes with better search directions. The

various LGP search parameters are the mutation frequency, crossover frequency and the

reproduction frequency: The crossover operator acts by exchanging sequences of instructions

between two tournament winners.

 Page 6 of 19

2.2.2. Gene Expression Programming (GEP)

The individuals of gene expression programming are encoded in linear chromosomes which

are expressed or translated into expression trees (branched entities) [3]. Thus, in GEP, the

genotype (the linear chromosomes) and the phenotype (the expression trees) are different

entities (both structurally and functionally) that, nevertheless, work together forming an

indivisible whole. In contrast to its analogous cellular gene expression, GEP is rather simple.

The main players in GEP are only two: the chromosomes and the Expression Trees (ETs),

being the latter the expression of the genetic information encoded in the chromosomes. As in

nature, the process of information decoding is called translation. And this translation implies

obviously a kind of code and a set of rules. The genetic code is very simple: a one-to-one

relationship between the symbols of the chromosome and the functions or terminals they

represent. The rules are also very simple: they determine the spatial organization of the

functions and terminals in the ETs and the type of interaction between sub-ETs. GEP uses

linear chromosomes that store expressions in breadth-first form. A GEP gene is a string of

terminal and function symbols. GEP genes are composed of a head and a tail. The head

contains both function and terminal symbols. The tail may contain terminal symbols only.

For each problem the head length (denoted h) is chosen by the user. The tail length (denoted

by t) is evaluated by:

t = (n - 1)h + 1

where n is the number of arguments of the function with more arguments.

GEP genes may be linked by a function symbol in order to obtain a fully functional

chromosome. GEP uses mutation, recombination and transposition. GEP uses a generational

algorithm. The initial population is randomly generated. The following steps are repeated

until a termination criterion is reached: A fixed number of the best individuals enter the next

generation (elitism). The mating pool is filled by using binary tournament selection. The

individuals from the mating pool are randomly paired and recombined. Two offspring are

obtained by recombining two parents. The offspring are mutated and they enter the next

generation.

2.2.3. Multi Expression Programming

A GP chromosome generally encodes a single expression (computer program). A Multi

Expression Programming (MEP) chromosome encodes several expressions. The best of the

encoded solution is chosen to represent the chromosome [4]. The MEP chromosome has

some advantages over the single-expression chromosome especially when the complexity of

the target expression is not known. This feature also acts as a provider of variable-length

expressions. MEP genes are (represented by) substrings of a variable length. The number of

genes per chromosome is constant. This number defines the length of the chromosome. Each

gene encodes a terminal or a function symbol. A gene that encodes a function includes

pointers towards the function arguments. Function arguments always have indices of lower

values than the position of the function itself in the chromosome. The proposed

representation ensures that no cycle arises while the chromosome is decoded (phenotypically

transcripted). According to the proposed representation scheme, the first symbol of the

 Page 7 of 19

chromosome must be a terminal symbol. In this way, only syntactically correct programs

(MEP individuals) are obtained. An example of chromosome using the sets F= {+, *} and T=

{a, b, c, d} is given below:

1: a

2: b

3: + 1, 2

4: c

5: d

6: + 4, 5

7: * 3, 6

The maximum number of symbols in MEP chromosome is given by the formula:

Number_of_Symbols = (n + 1) * (Number_of_Genes – 1) + 1,

where n is the number of arguments of the function with the greatest number of arguments.

The maximum number of effective symbols is achieved when each gene (excepting the first

one) encodes a function symbol with the highest number of arguments. The minimum

number of effective symbols is equal to the number of genes and it is achieved when all

genes encode terminal symbols only.

The translation of a MEP chromosome into a computer program represents the phenotypic

transcription of the MEP chromosomes. Phenotypic translation is obtained by parsing the

chromosome top-down. A terminal symbol specifies a simple expression. A function symbol

specifies a complex expression obtained by connecting the operands specified by the

argument positions with the current function symbol.

For instance, genes 1, 2, 4 and 5 in the previous example encode simple expressions formed

by a single terminal symbol. These expressions are:

E1 = a,

E2 = b,

E4 = c,

E5 = d,

Gene 3 indicates the operation + on the operands located at positions 1 and 2 of the

chromosome. Therefore gene 3 encodes the expression: E3 = a + b. Gene 6 indicates the

operation + on the operands located at positions 4 and 5. Therefore gene 6 encodes the

expression: E6 = c + d. Gene 7 indicates the operation * on the operands located at position 3

and 6. Therefore gene 7 encodes the expression: E7 = (a + b) * (c + d). E7 is the expression

encoded by the whole chromosome.

There is neither practical nor theoretical evidence that one of these expressions is better than

the others. This is why each MEP chromosome is allowed to encode a number of expressions

equal to the chromosome length (number of genes). The chromosome described above

encodes the following expressions:

E1 = a,

E2 = b,

E3 = a + b,

E4 = c,

E5 = d,

E6 = c + d,

E7 = (a + b) * (c + d).

The value of these expressions may be computed by reading the chromosome top down.

Partial results are computed by dynamic programming and are stored in a conventional

manner.

 Page 8 of 19

Due to its multi expression representation, each MEP chromosome may be viewed as a forest

of trees rather than as a single tree, which is the case of Genetic Programming.

The chromosome fitness is usually defined as the fitness of the best expression encoded by

that chromosome. For instance, if we want to solve symbolic regression problems, the fitness

of each sub-expression Ei may be computed using the formula:

,)(
1

,∑
=

−=

n

k
kiki woEf

where ok,i is the result obtained by the expression Ei for the fitness case k and wk is the

targeted result for the fitness case k. In this case the fitness needs to be minimized. The

fitness of an individual is set to be equal to the lowest fitness of the expressions encoded in

the chromosome:

When we have to deal with other problems, we compute the fitness of each sub-expression

encoded in the MEP chromosome. Thus, the fitness of the entire individual is supplied by the

fitness of the best expression encoded in that chromosome.

2.2.4. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) uses a network of nodes (indexed graph) to achieve

an input to output mapping [6]. Each node consists of a number of inputs, these being used as

parameters in a determined mathematical or logical function to create the node output. The

functionality and connectivity of the nodes are stored as a string of numbers (the genotype)

and evolved to achieve the optimum mapping. The genotype is then mapped to an indexed

graph that can be executed as a program.

In CGP there are very large number of genotypes that map to identical genotypes due to the

presence of a large amount of redundancy. Firstly there is node redundancy that is caused by

genes associated with nodes that are not part of the connected graph representing the

program. Another form of redundancy in CGP, also present in all other forms of GP is,

functional redundancy.

2.2.5. Traceless Genetic Programming (TGP)

The main difference between Traceless Genetic Programming and GP is that TGP does not

explicitly store the evolved computer programs [7]. TGP is useful when the trace (the way in

which the results are obtained) between the input and output is not important. TGP uses two

genetic operators: crossover and insertion. The insertion operator is useful when the

population contains individuals representing very complex expressions that cannot improve

the search.

2.2.6. Grammatical Evolution

Grammatical evolution is a grammar-based, linear genome system. In grammatical evolution,

the Backus Naur Form (BNF) specification of a language is used to describe the output

produced by the system (a compilable code fragment) [5]. Different BNF grammars can be

used to produce code automatically in any language. The genotype is a string of eight-bit

binary numbers generated at random and treated as integer values from 0 to 255. The

phenotype is a running computer program generated by a genotype–phenotype mapping

 Page 9 of 19

process. The genotype–phenotype mapping in grammatical evolution is deterministic because

each individual is always mapped to the same phenotype. In grammatical evolution, standard

genetic algorithms are applied to the different genotypes in a population using the typical

crossover and mutation operators.

2.2.7. Mathematical Expressions Evolver (MEXE)

Mathematical Expressions Evolver (MEXE) uses a string of operands and operators (on

alternative positions) for representing solutions [13]. The odd positions of the chromosome

consist of operands and the even positions consist of operators. The chromosome length is

constant during the search process. The genetic operators used are crossover and mutation.

By mutation, an operand can be replaced with another operand from the considered set and an

operator can be replaced with another operator from the considered operators set. Each of the

sub-expressions encoded in a MEXE chromosome is considered as a potential problem

solution. For instance the chromosome

C = x + y * y – x / y

encodes the expressions:

E1 = x;

E2 = x+y;

E3 = x+y*y;

E4 = x+y*y−x;

E5 = x+y*y−x / y;

The value of these expressions may be computed by reading the chromosome from left to

right. Partial results are computed by dynamic programming and stored in a conventional

manner. The chromosome fitness is usually defined as the fitness of the best expression

detected in that chromosome.

2.2.8. Genetic Algorithm for Deriving Software (GADS)

Genetic algorithm for deriving software is a GP technique where the genotype is distinct from

the phenotype. The GADS genotype is a list of integers representing productions in a syntax

[8]. This is used to generate the phenotype, which is a program in the language defined by the

syntax. Syntactically invalid phenotypes cannot be generated, though there may be

phenotypes with residual non-terminals.

 Page 10 of 19

Figure 5. Steps of the knowledge discovery process.

3. Knowledge Discovery

Historically the notion of finding useful patterns in data has been given a variety of names

including data mining, knowledge extraction, information discovery, and data pattern

processing. The term data mining has been mostly used by statisticians, data analysts, and the

management information systems (MIS) communities. The term knowledge discovery in

databases (KDD) refers to the overall process of discovering knowledge from data, while data

mining refers to a particular step of this process. Data mining is the application of specific

algorithms for extracting patterns from data. The additional steps in the KDD process, such as

data selection, data cleaning, incorporating appropriate prior knowledge, and proper

interpretation of the results are essential to ensure that useful knowledge is derived form the

data [14]. KDD has evolved from the intersection of research fields such as machine learning,

pattern recognition, databases, statistics, artificial intelligence, and more recently it gets new

inspiration from computational intelligence.

Steps of Knowledge Discovery

We broadly outline some of the basic steps of knowledge discovery as depicted in Figure 5

taken from [15].

1. Developing and understanding the application domain, the relevant prior knowledge,

and identifying the goal of the KDD process.

2. Creating training/target data set.

3. Data cleaning and preprocessing: basic operations such as the removal of noise,

handling missing data fields.

4. Data reduction and projection: finding useful features to represent the data depending

the goal of the task. Using dimensionality reduction or transformation methods to

reduce the effective number of variables under consideration or to find invariant

representation of data.

5. Matching the goals of the KDD process to a particular data mining method: Although

the boundaries between prediction and description are not sharp, the distinction is

 Page 11 of 19

useful for understanding the overall discovery goal. The goals of knowledge

discovery are achieved via the following data mining methods:

• Clustering: Identification of a finite set of categories or clusters to describe the

data. Closely related to clustering is the method of probability density

estimation. Clustering quantizes the available input-output data to get a set of

prototypes and use the obtained prototypes (signatures, templates, etc., and

many writers refer to as codebook) and use the prototypes as model

parameters.

• Summation: finding a compact description for subset of data, e.g. the

derivation of summary for association of rules and the use of multivariate

visualization techniques.

• Dependency modeling: finding a model which describes significant

dependencies between variables (e.g. learning of belief networks).

• Regression: learning a function which maps a data item to a real-valued

prediction variable and the discovery of functional relationships between

variables.

• Classification: learning a function that maps (classifies) a data item into one of

several predefined classes.

• Change and Deviation Detection: Discovering the most significant changes in

the data from previously measured or normative values.

Model evaluation criteria: qualitative statements or fit functions of how well a particular

pattern (a model and its parameters) meet the goals of the KDD process. For example,

predictive models can often judged by the empirical prediction accuracy on some test set.

Descriptive models can be evaluated along the dimensions of predictive accuracy, novelty,

utility, and understandability of the fitted model.

4. Knowledge Discovery Using GP Techniques

We will consider several applications for illustrating the large area of problems which can be

approached using GP techniques.

4.1 GP Applied for Function Approximation

We consider the following function: x
4
+2x

3
-10x

2
+6x. The training set contains 20 instances

between 0 and 1. Parameters used by GP are:

• Number of generations: 100

• Population size: 100

• Crossover frequency: (%) 80

• Mutation frequency: (%) 40

• Maximum depth for new individuals: 6

• Maximum depth for individuals after crossover: 20

• Maximum depth for new subtrees in mutants: 4

• Functions used: +, -, *, /.

 Page 12 of 19

The quality of the approximation is given by the sum of the absolute differences of the target

function values and the approximation function values at the sample points. The evolution of

fitness function during the search process is depicted in Figure 6. Comparison between the

function evolved by GP and the target function is presented in Figure 7.

Figure 6. Relationship between fitness value and number of generations for GP.

Figure 7. Function evolved by GP.

4.2 LGP Applied for Classification of Diabetics Patients

The data is extracted from the "Pima Indians Diabetes Database", archived by National

Institute of Diabetes and Digestive and Kidney Diseases, USA. The diagnostic, binary-valued

variable (0 for no and 1 for yes) investigated is whether the patient shows signs of diabetes

according to World Health Organization criteria (i.e., if the 2 hour post-load plasma glucose

was at least 200 mg/dl at any survey examination or if found during routine medical care).

From the 250 data samples, 24 datasets were randomly extracted to represent the test set.

Each data set comprises of 8 input variables (all numeric-valued) with the following details:

• Number of times pregnant

 Page 13 of 19

• Plasma glucose concentration a 2 hours in an oral glucose tolerance test

• Diastolic blood pressure (mm Hg)

• Triceps skin fold thickness (mm)

• 2-Hour serum insulin (mu U/ml)

• Body mass index (weight in kg/(height in m)2)

• Diabetes pedigree function

• Age (years)

• Output class variable (0 or 1) is interpreted as "tested positive for diabetes").

LGP method was used to build the diabetic patients classifier. The settings of various

linear genetic programming system parameters are of utmost importance for successful

performance of the system. The population space has been subdivided into multiple

subpopulation or demes. Migration of individuals among the subpopulations causes

evolution of the entire population. It helps to maintain diversity in the population, as

migration is restricted among the demes. Moreover, the tendency towards a bad local

minimum in one deme can be countered by other demes with better search directions. The

various LGP search parameters are the mutation frequency, crossover frequency and the

reproduction frequency: The crossover operator acts by exchanging sequences of

instructions between two tournament winners. Steady state genetic programming

approach was used to manage the memory more effectively. After a trial and error

approach, the following parameter settings were used for the experiments:

• Population size: 500

• No of tournaments: 50,000

• Mutation frequency: 95%

• Crossover frequency: 50%

• Number of demes: 10

• Maximum program size: 256

• Target subset size: 100

The experiments were repeated 10 times and the worst results are reported. In Figures 7-9

the average of fitness values obtained for train data set (Figure 7), the values of the best

individual obtained for training (Figure 8) and the values of the best individual obtained

for test data (Figure 9) are depicted.

 Page 14 of 19

Figure 7. Average training fitness during 50,000 tournaments

Figure 8. Best training fitness during 50,000 tournaments

 Page 15 of 19

Figure 9. Best validation fitness during 50,000 tournaments

The classification accuracy obtained by LGP for boths training and test data set are presented

in Table 1.

Classification accuracy

Training data Test data

80.88 % 79%

Table 1. Classification accuracy for training and test data.

4.3. MEP Applied for Mackey-Glass Chaotic Time Series

The Mackey-Glass differential equation [10] is a chaotic time series for some values of the

parameters x(0) and τ.

.x(t)0.1
τ)(tx1

τ)0.2x(t

dt

dx(t)
10

−

−+

−
=

We used the value x(t-18), x(t-12), x(t-6), x(t) to predict x(t+6). Fourth order Runge-Kutta

method was used to generate 1000 data series. The time step used in the method is 0.1 and

initial condition were x(0)=1.2, τ=17, x(t)=0 for t<0. First 500 data sets were used for training

and remaining data for testing.

Parameters used by MEP are:

• Population size: 200

• Crossover probability: 0.9

• Number of mutations / chromosome: 4

• Number of generations: 150

• Functions used: +, - , *, /, sin, cos, sqrt, ln, lg, log2, min, max, abs.

 Page 16 of 19

Our goal is to optimize the Root Mean Squared Error (RMSE) and Correlation Coefficient

(CC):

∑
=

−=

N

i
ipredictediactual PPRMSE

1
,, , (a)

∑

∑

=

=
=

N

i
iactual

N

i
ipredicted

P

P

CC

1
,

1
,

, (b)

The value of RMSE obtained by MEP is: 0.064862 and the value obtained for CC is 0.9995.

Results obtained by MEP are depicted in Figure 10.

Figure 10. Comparison between values obtained by MEP and target values for Mackey-Glass

Chaotic Time Series

4.4. MEXE Applied for Function Detection

We consider the quartic function x

4
+ x

3
+ x

2
+ x. The training set for quartic function contains

21 fitness cases randomly generated over the interval [0, 1]. Parameters used by MEXE are:

• Population size: 50

• Number of generations: 50

• Mutation probability: 0.3

• Crossover probability: 0.9.

The MEXE success rate obtained for different chromosomes length is depicted in Figure 11.

For greater lengths of the chromosomes the success rate is 100%.

 Page 17 of 19

×

−

= 100max
,

,,

ipredicted

ipredictediactual

P

PP
MAE

0

20

40

60

80

100

120

8 35 55 67 83 86 86 93 98 94 99

Chromosome length

S
u

c
c
e
ss

 r
a
te

Figure 11. Comparison of different success rates obtained by MEXE considering different

chromosomes lengths

4.5 GEP for Gas Furnace Time Series Data

This time series was used to predict the CO2 (carbon dioxide) concentration y(t+1) [11]. In a

gas furnace system, air and methane are combined to form a mixture of gases containing

CO2. Air fed into the gas furnace is kept constant, while the methane feed rate u(t) can be

varied in any desired manner. After that, the resulting CO2 concentration y(t) is measured in

the exhaust gases at the outlet of the furnace. Data is represented as [u(t), y(t), y(t+1)] The

time series consists of 292 pairs of observation and 50% of data was used for training and

remaining for testing.

Our goal is to optimize several error measures: Root Mean Squared Error (RMSE) (equation

(a), Section 4.3) Correlation Coefficient (CC) (equation (b) Section 4.3) and Maximum

Absolute Percentage Error given by:

Results obtained by GEP for RMSE, CC and MAE for different population sizes are depicted

in Figures 12 (for train data set) and 13 (for test data set).

 Page 18 of 19

Figure 13. Values of RMSE, CC and MAE obtained by GEP for different population sizes of

train data set.

Figure 14. Values of RMSE, CC and MAE obtained by GEP considerent different population

sizes of test data set.

5. Conclusions

This paper illustrated the basic principles of genetic programming and it variants. We further

attempted to formulate some of the GP models for practical knowledge discovery purposes.

As evident from the illustrations and empirical results, GP techniques are a promising tool

 Page 19 of 19

for solving complex classification problems, prediction, functions approximation and

symbolic regression problems.

References

[1] Abraham, A., Evolutionary Computation, Handbook for Measurement Systems

Design, Peter Sydenham and Richard Thorn (Eds.), John Wiley and Sons Ltd.,

London, ISBN 0-470-02143-8, pp. 920-931, 2005.

[2] Banzhaf, W., Nordin, P., Keller, E. R., Francone, F. D., Genetic Programming : An

Introduction on The Automatic Evolution of Computer Programs and its

Applications, Morgan Kaufmann Publishers, Inc., 1998.

[3] Ferreira, C., Gene Expression Programming: A new adaptive algorithm for solving

problems - Complex Systems, Vol. 13, No. 2,pp. 87-129, 2001.

[4] Oltean M. and Grosan C., Evolving Evolutionary Algorithms using Multi

Expression Programming, Proceedings of The 7
th

 European Conference on

Artificial Life, Dortmund, Germany, pp. 651-658, 2003.

[5] C. Ryan, J. J. Collins, and M. O'Neill, Grammatical Evolution: Evolving Programs

for an Arbitrary Language, Proceedings of the First European Workshop on Genetic

Programming (EuroGP'98), Lecture Notes in Computer Science 1391, pp. 83–95,

1998.

[6] Miller, JF Thomson, P., Proceedings of the European Conference on Genetic

Programming, Lecture Notes In Computer Science; Vol. 1802 pp. 121 - 132, 2000.

[7] Oltean, M., Solving Even-Parity Problems using Traceless Genetic Programming,

IEEE Congress on Evolutionary Computation, Portland, 19-23 June, edited by G.

Greenwood et. al. IEEE Press, pp. 1813-1819, 2004.

[8] Paterson, NR and Livesey, M., Distinguishing Genotype and Phenotype in Genetic

Programming, Late Breaking Papers at the Genetic Programming 1996, Koza JR

(Ed.), pp. 141-150,1996.

[9] Fogel, D. B. (1999) Evolutionary Computation: Toward a New Philosophy of

Machine Intelligence. IEEE Press, Piscataway, NJ, Second edition, 1999.

[10] Koza. J.R. (1992) Genetic Programming. The MIT Press, Cambridge,

Massachusetts.

[11] Mackey MC and Glass L (1977), Oscillation and Chaos in Physiological Control

Systems, Science Vol 197, pp.287-289.

[12] Box G E P and Jenkins G M, Time Series Analysis, Forecasting and Control,

San Francisco: Holden Day, 1970.

[13] Grosan, C., Evolving mathematical expressions using Genetic Algorithms.

Genetic and Evolutionary Computation Conference (GECCO), T. Riopka et al.

(Eds), Springer-Verlag Germany, Seattle, USA, 2004.

[14] Abonyi J., Feil, B. and Abraham, A., 'Computational Intelligence in Data

Mining', Informatica: An International Journal of Computing and Informatics,

Vol. 29, No. 1, pp. 3-12, 2005.

[15] U. Fayyad, G. Piatestku-Shapio, P. Smyth, Knowledge discovery and data

mining: Towards a unifying framework, in: Advances in Knowledge Discovery

and Data Mining, AAAI/MIT Press, 1994.

