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Abstract: This paper presents a review of the literature on 

the application of data mining techniques for the detection of 

insurance fraud. Academic literature were analyzed and 

classified into three types of insurance fraud (automobile 

insurance, crop insurance and healthcare insurance) and six 

classes of data mining techniques (classification, regression, 

clustering, prediction, outlier detection, and visualization). 

The findings of this review clearly show that automobile 

insurance fraud detection have also attracted a great deal of 

attention in recent years. The main data mining techniques 

used for insurance fraud detection are logistic models, 

Decision tree, the Naïve Bayes, and support vector machine. 
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I. Introduction 

Insurance fraud is a significant and costly problem for 

both policyholders and insurance companies in all sectors 

of the insurance industry. In recent years, fraud detection 

has attracted a great deal of concern and attention. The 

Oxford English Dictionary [1] defines fraud as “wrongful 

or criminal deception intended to result in financial or 

personal gain”.  

Fraud occurs in a wide variety of forms and is ever 

changing as new technologies and new economic and 

social systems provide new opportunities for fraudulent 

activity. The total extent of business losses due to 

fraudulent activities is difficult to define. 

Phua et al. [2] described fraud as leading to the abuse of 

a profit organization's system without necessarily leading 

to direct legal consequences. Although there is no 

universally accepted definition of financial fraud, Wang et 

al. [3], defined it as “a deliberate act that is contrary to 

law, rule, or policy with intent to obtain unauthorized 

financial benefit”. Economically, insurance fraud is 

becoming an increasingly serious problem.  

According to a 2007 BBC news report [4], fraudulent 

insurance claims cost UK insurers a total of 1.6 billion 

pounds a year. The overall losses caused by insurance 

fraud are incalculable. Insurance fraud detection is 

important for preventing the disturbing results of 

insurance fraud. IFD involves distinguishing fraudulent 

claims from genuine claims, thereby disclosing fraudulent 

behavior or activities and enabling decision makers to 

develop appropriate strategies to decrease the impact of 

fraud. 

Data mining has a significant role in IDF, as it is often 

applied to extract and uncover the hidden truths behind 

very large quantities of data. Data mining is about finding 

insights which are statistically reliable, unknown 

previously, and actionable from data [5]. This data must 

be available, relevant, adequate, and clean. Also, the data 

mining problem must be well-defined, cannot be solved 

by query and reporting tools, and guided by a data mining 

process model [6]. 

Bose and Mahapatra [7] defined data mining as a 

process of identifying interesting patterns in databases that 

can then be used in decision making. Turban et al. [8] 

defined data mining as a process that uses statistical, 

mathematical, artificial intelligence, and machine learning 

techniques to extract and identify useful information and 

subsequently gain knowledge from a large database. 

Frawley et al. [9] stated that the objective of data mining 

is to obtain useful, non-explicit information from data 

stored in large repositories. Kou et al. [10] highlighted that 

an important advantage of data mining is that it can be 

used to develop a new class of models to identify new 

attacks before they can be detected by human experts. 

Phua et al. [11] pointed out that fraud detection has 

become one of the best established applications of data 

mining in both industry and government. Various data 

mining techniques have been applied in IFD, such as 

neural networks, logistic regression models, the naïve 

Bayes method, and decision trees, among others. 

II. Methodology of the Research  

The methodology used in this paper consists of three 

stages [12]. In the first stage the research area, aim and 

scope are defined. The data mining techniques used for 

insurance fraud detection in published academic papers is 

the research area of this paper. The aim of this paper is to 

classify the papers according to the used data mining 

techniques. The scope is all published papers on insurance 

fraud detection (IFD) using data mining technique in the 

period between 1997 and 2013. This topic of research is 

relatively new so the 16 year period of this study is 

considered a good indicator for the data mining techniques 

used to IFD.   

In the second stage the search and selection criteria is 

specified. Also classification framework is build for the 

selected papers. The search was done in five different 

academic databases. A complete list of published papers 

in this area was formed.  

The search phrase used was “insurance fraud detection 

data mining”, the search was done in the time period 

between 1997 and 2013, it was conducted within published 

full text papers, and the result was a list of 566 papers. 
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III. Classification Framework on Data 

Mining and Insurance Fraud Detection 

In this Section a classification framework is proposed for 

the available literature on the applications of data mining 

techniques to insurance fraud detection (IFD). The 

classification framework is based on previously published 

literature review papers [12],  and existing knowledge on 

the nature of data mining research [13].  

Our proposed classification framework for insurance 

fraud divides the insurance into three types automobile 

insurance, crop insurance and healthcare insurance. The 

data mining techniques used in insurance fraud detection 

are classified into six data mining application classes of 

classification, clustering, prediction, outlier detection, 

regression, and visualization. We provide a brief 

description of the six data mining application classes. 

A. Classification: 

Classification is defined as the act or process of putting 

things into groups based on ways that they are alike. In data 

mining classification is the process of finding a model (or 

function) that describes and distinguishes data classes or 

concepts, for the purpose of being able to use the model to 

predict the class of objects whose class label is unknown. 

The derived model is based on the analysis of a set of 

training data (i.e., data objects whose class label is known) 

[14]. Zhang and Zhou [15] state that classification and 

prediction is the process of identifying a set of common 

features and models that describe and distinguish data 

classes or concepts. Common classification techniques 

include neural networks, the naïve Bayes technique, 

decision trees and support vector machines. Such 

classification tasks are used in the detection of credit card, 

healthcare and automobile insurance, and corporate fraud, 

among other types of fraud, and classification is one of the 

most common learning models in the application of data 

mining in FFD. 
 

B. Clustering: 

Clustering is used to divide objects into conceptually 

meaningful groups (clusters), with the objects in a group 

being similar to one another but very dissimilar to the 

objects in other groups. Clustering is also known as data 

segmentation or partitioning and is regarded as a variant 

of unsupervised classification [14]. According to Yue et 

al. [16], “clustering analysis concerns the problem of 

decomposing or partitioning a data set (usually 

multivariate) into groups so that the points in one group 

are similar to each other and are as different as possible 

from the points in other groups.” Further, Zhang and Zhou 

[15] argue that each cluster is a collection of data objects 

which are similar to one another within the same cluster 

but dissimilar to those in other clusters. The most common 

clustering techniques are the K-nearest neighbor, the 

Naïve Bayes technique and self-organizing map 

techniques. 

C. Prediction: 

Prediction is a statement about the way things will happen 

in the future based on experience or knowledge. 

Prediction is a statement that some outcome is expected. 

Prediction estimates numeric and ordered future values 

based on the patterns of a data set [13]. Han and Kamber 

[14] note that, for prediction, the attribute for which the 

values are being predicted is continuous-valued (ordered) 

rather than categorical (discrete-valued and unordered). 

This attribute can be referred to simply as the predicted 

attribute. Neural networks and logistic model prediction 

are the most commonly used prediction techniques. 
 

D. Outlier detection: 

Often there exist data objects that do not comply with the 

general behavior or model of the data. Such data objects, 

which are grossly different from or inconsistent with the 

remaining set of data, are called outliers. Many data 

mining algorithms try to minimize the influence of 

outliers or eliminate them all together. This, however, 

could result in the loss of important hidden information. In 

other words, the outliers may be of particular interest, 

such as in the case of fraud detection, where outliers may 

indicate fraudulent activity. Thus, outlier detection and 

analysis is an interesting data mining task, referred to as 

outlier mining. Outlier detection is employed to measure 

the “distance” between data objects to detect those objects 

that are grossly different from or inconsistent with the 

remaining data set [14] “Data that appear to have different 

characteristics than the rest of the population are called 

outliers” [17], p. 521]. Yamanishi et al. [18] point out that 

the problem of outlier/anomaly detection is one of the 

most fundamental issues in data mining. A commonly 

used technique in outlier detection is the discounting 

learning algorithm. 
 

E. Regression: 

Regression is a defensive reaction to some unaccepted 

impulses. It is statistical methodology used to reveal the 

relationship between one or more independent variables 

and a dependent variable  [14]. Many papers have used 

logistic regression. The regression technique is typically 

undertaken using such mathematical methods as logistic 

regression and linear regression, and it is used in the 

detection of different types of fraud detection. 
 

F. Visualization: 

Data visualization is the creation and study of the visual 

representation of data, meaning, information that has been 

abstracted in some graphical form, including attributes or 

variables for the units of information. Visualization refers 

to the easily understandable presentation of the complex 

patterns or relationships uncovered in the data mining 

process [14]. Eick and Fyock [19] report that researchers 

at Bell and AT&T Laboratories have developed the 

pattern detection capability of the human visual system by 

building a suite of tools and applications that flexibly 

encode data using color, position, size and other visual 

characterist. 

 

 

http://en.wikipedia.org/wiki/Future
http://en.wikipedia.org/wiki/Visual_system
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Information
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Table 1. Techniques used in insurance fraud detection 

IV. Analysis of Insurance Fraud Detection  

This paper provides a state-of-the-art review of the 

applications of data mining to insurance fraud detection. 

For the classification of insurance fraud, we divide the 

papers among the three types of insurance: automobile 

insurance (AI), crop insurance (CI) and healthcare 

insurance (HI). The second step is the classification of the 

44 papers as given in Table 1. Table 1 lists the papers 

according to type of insurance fraud detection and the data 

mining application classes and techniques used with 

reference to the problems addressed. Some of the selected 

applications in the review address more than one IFD 

problem, and thus we categorized these applications by the 

dominant problem addressed. The third step makes more 

categorization using a set of algorithmic approaches (e.g., 

neural networks).  Table 2 shows the classification of the 

44 papers according to data application classes. Table 2 

illustrates that most of the papers are on automobile 

insurance fraud (57%) than healthcare insurance fraud 

(39%).  It also shows that classification is the most 

Type of fraud 

detection 

 Data 

mining 

application 

class 

Data mining technique Reference 

Automobile 

insurance 

 

Classification Naïve Bayes [20] 

  Neural network, naïve Bayesian, decision trees [21] 

  Logistic model [22] 

  
Neural networks, support vector machine, K-nearest neighbor, Naïve Bayes, 

Bayesian belief network, decision trees, Logistic model 
[23] 

  support vector machine, Genetic programming [24] 

  
Decision tree , Naive Bayes tree , SVM-RFE (recursive feature elimination), 

SVM 
[25] 

  Consolidated Trees, decision trees [26] 

  Naïve Bayesian, Decision Tree [27] 

  Neural network, ensemble  neural network  [28] 

  Principal component analysis of RIDIT(PRIDIT) [29] 

  Logistic model [30] 

  Logistic model [31] 

  Logistic model [32] 

  Fuzzy logic [33] 

  Bayesian belief network, Logistic model [34] 

  Self-organizing map [35] 

  Fuzzy DEMATEL, Intuitionist fuzzy number, ELECTRE-TRI [36] 

  Gradient Boosting [37] 

 Prediction Evolutionary algorithms, Cultural algorithms [38] 

  Social network analysis, Iterative Assessment Algorithm (IAA) [39] 

  Logistic model [40] 

 Regression Probit model [41] 

  Logistic model [42] 

  Probit model [43] 

  Logistic model [44] 

Crop 

insurance 
 Yield-switching model [45] 

  Logistic model, probit model [46] 

Health care 

insurance 
Classification support vector machine, Gaussian (nonlinear), Linear kernels [47] 

  
Naïve Bayes (NB), decision tree, Multiple Criteria Linear Programming 

(MCLP) 
[48] 

  Polymorphous (M-of-N) logic [49] 

  Self-organizing map [50] 

  Association rule [51] 

  decision tree [52] 

  support vector machine [53] 

 Clustering SAS EM, CLUTO [54] 

  Nonnegative matrix factorization [55] 

  Regression analysis, Distances analysis [56] 

  Decision trees [57] 

 
Outlier 

detection 
Distance analysis, density estimation   [58] 

  Risk [59] 

  R&DB-algorithm, RB-resolution algorithm [60] 

  Discounting learning algorithm [18] 

 Prediction social network analysis, temporal analysis, higher order feature construction [61] 

 Visualization Visualization  [62] 
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frequently used data mining application class 57% (41% + 

16%) of the total (25 of the 44 papers), and that 

visualization is the least common, accounting for only 

2.0% each (1 out of 44 each). Given that visualization is a 

significant method of fraud detection, which has 

characteristics that confer comparative advantages over 

other techniques, more attention should be paid to it in 

future research. To determine the main algorithms used for 

IFD, we present a simple analysis of IFD and the data 

mining techniques identified in the papers in table 3. Table 

3 shows forty four data mining techniques used for 

insurance fraud detection. The most often used techniques 

are logistic models, Decision tree, the Naïve Bayes, and 

support vector machine, all of which fall into the 

“classification” class. The logistic models are the most 

popular, being used in 10 of 44 of the papers reviewed, 

followed by Decision tree, used in 8 of the 44 papers, and 

then the Naïve Bayes used 6 of the 44 papers and support 

vector machine used in 5 of the 44 papers. 
Table 2. Distribution of papers by data mining application classes. 

 Table 4 shows the distribution of papers by type of 

insurance fraud and Publication year. It can be seen from 

this table that insurance fraud detection is an important 

research area and still is, since in 2011 there were 8 papers 

and 2012 there were 6 papers.  The majority of these 

papers are in automobile insurance fraud detection, it is 

believed that it has to do with the data collection. It very 

difficult to collect data for insurance fraud detection in 

general but there is punch-data available for automobile 

fraud detection. 

V. Conclusions 

This paper proposes a classification framework for the 

application of data mining techniques to insurance fraud 

detection. This paper has explored almost all published 

insurance fraud detection papers in the five online 

databases that were searched. The search was done using 

several keywords to search online databases for papers 

published between 1997 and 2013.  

The analysis results show that automobile insurance 

fraud in the most covered area of researched (57%). The 

data mining application class that was used in most of the 

papers is classification (57%). The most often used data 

mining techniques are logistic models, Decision tree, the 

Naïve Bayes, and support vector machine, all of which fall 

into the “classification” class. 

 
Table 3. Distribution of articles by data mining techniques 

Type of fraud 

detection 

Data mining 

application 

class 

Number 

of 

papers 

Percentage 

Automobile 

insurance (AI) 

Classification 18 41% 

Prediction 3 7% 

Regression 4 9% 

Total 25 57% 

Crop insurance 

(CI) 

Regression 2 5% 

Total 2 5% 

Health care 

insurance (HCI) 

Classification 7 16% 

Clustering 4 9% 

Outlier 

Detection 
4 9% 

Prediction 1 2% 

Visualization 1 2% 

 Total 17 39% 

Total  44  

 

Table 4. Distribution of papers by publication year 

Publication  

year 

AI CI  HCI Total 

1997 1  1 2 

1998 2   2 

1999 1   1 

2000 1  1 2 

2001   1 1 

2002 6  1 7 

2003    0 

2004 1   1 

2005 3 1  4 

2006  1 2 3 

2007 2  1 3 

2008 1   1 

2009    0 

2010   1 1 

2011 4  4 8 

2012 3  3 6 

2013   2 2 

Total 25 2 17 44 

 Automobile insurance AI CI  HCI Total 

1 Logistic model 9 1  10 

2 Decision Tree 5  3 8 

3 Naïve Bayes 5  1 6 

4 support vector machine 3  2 5 

5 Probit model 2 1  3 

6 Bayesian belief network 2   2 

7 distance analysis   2 2 

8 Self-organizing map 1  1 2 

9 Social network analysis 1  1 2 

10 Neural network 2   2 

11 Association rule   1 1 

12 CLUTO   1 1 

13 Consolidated Trees 1   1 

14 Cultural algorithms 1   1 

15 density estimation   1 1 

16 Discounting learning algorithm   1 1 

17 ELECTRE-TRI 1   1 

18 Evolutionary algorithms 1   1 

19 Fuzzy DEMATEL 1   1 

20 Fuzzy logic 1   1 

21 Gaussian (nonlinear)   1 1 

22 Genetic programming 1   1 

23 Gradient Boosting 1   1 

24 higher order feature construction   1 1 

26 Intuitionistic fuzzy number 1   1 

27 Iterative Assessment Algorithm (IAA) 1   1 

28 K-nearest neighbor 1   1 

29 Linear kernels   1 1 

30 Multiple Criteria Linear Programming    1 1 

31 nonnegative matrix factorization   1 1 

32 Polymorphous (M-of-N) logic   1 1 

33 Principal component analysis of RIDIT 1   1 

34 R&DB-algorithm   1 1 

35 ensemble neural network  1   1 

36 RB-resolution algorithm   1 1 

37 regression analysis   1 1 

38 risk   1 1 

39 SAS EM   1 1 

40 SVM (recursive feature elimination) 1   1 

41 temporal analysis   1 1 

42 text mining   1 1 

43 Visualization    1 1 

44 Yield-switching model  1  1 
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