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Abstract

The use of intelligent systems for stock market prediction has been widely established.
In this paper, we investigate how the seemingly chaotic behavior of stock markets could
be well represented using several connectionist paradigms and soft computing
techniques. To demonstrate the different techniques, we consider the Nasdaq-100
index of Nasdaq Stock MarketSM and the S&P CNX NIFTY stock index. We analyze 7-
year Nasdaq 100 main-index values and 4-year NIFTY index values. This chapter
investigates the development of novel, reliable, and efficient techniques to model the
seemingly chaotic behavior of stock markets. We consider the flexible neural tree
algorithm, a wavelet neural network, local linear wavelet neural network, and finally
a feed-forward artificial neural network. The particle-swarm-optimization algorithm
optimizes the parameters of the different techniques. This paper briefly explains how
the different learning paradigms could be formulated using various methods and then
investigates whether they can provide the required level of performance — in other
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words, whether they are sufficiently good and robust so as to provide a reliable forecast
model for stock market indices. Experiment results reveal that all the models considered
could represent the stock indices behavior very accurately.

Introduction

Prediction of stocks is generally believed to be a very difficult task — it behaves like a
random walk process and time varying. The obvious complexity of the problem paves the
way for the importance of intelligent prediction paradigms (Abraham, Nath, & Mahanti,
2001). During the last decade, stocks and futures traders have come to rely upon various
types of intelligent systems to make trading decisions (Abraham, Philip, & Saratchandran,
2003; Chan & Liu, 2002; Francis, Tay, & Cao, 2002; Leigh, Modani, Purvis, & Roberts,
2002; Leigh, Purvis, & Ragusa, 2002; Oh & Kim, 2002; Quah & Srinivasan, 1999; Wang,
2002). Several intelligent systems have in recent years been developed for modeling
expertise, decision support, and complicated automation tasks (Berkeley, 1997; Bischi &
Valori, 2000; Cios, 2001; Kim & Han, 2000; Koulouriotis, Diakoulakis, & Emiris, 2001;
Lebaron, 2001; Palma-dos-Reis & Zahedi, 1999; Wuthrich et al., 1998). In this chapter, we
analyse the seemingly chaotic behavior of two well-known stock indices namely the
Nasdaq-100 index of NasdaqSM and the S&P CNX NIFTY stock index.
The Nasdaq-100 index reflects Nasdaq’s largest companies across major industry
groups, including computer hardware and software, telecommunications, retail/whole-
sale trade, and biotechnology. The Nasdaq-100 index is a modified capitalization-
weighted index, designed to limit domination of the Index by a few large stocks while
generally retaining the capitalization ranking of companies. Through an investment in
Nasdaq-100 index tracking stock, investors can participate in the collective performance
of many of the Nasdaq stocks that are often in the news or have become household names.
Similarly, S&P CNX NIFTY is a well-diversified 50-stock index accounting for 25 sectors
of the economy. It is used for a variety of purposes such as benchmarking fund portfolios,
index-based derivatives, and index funds. The CNX indices are computed using the
market capitalization weighted method, wherein the level of the index reflects the total
market value of all the stocks in the index relative to a particular base period. The method
also takes into account constituent changes in the index and importantly corporate
actions such as stock splits, rights, and so on, without affecting the index value.
Our research investigates the performance analysis of four different connectionist
paradigms for modeling the Nasdaq-100 and NIFTY stock market indices. We consider
the Flexible Neural Tree (FNT) algorithm (Chen, Yang, and Dong, 2004), a Wavelet Neural
Network (WNN), Local Linear Wavelet Neural Network (LLWNN) (Chen et al., 2005) and
finally a feed-forward Neural Network (ANN) (Chen et al., 2004). The particle-swarm-
optimization algorithm optimizes the parameters of the different techniques (Kennedy &
Eberhart, 1995). We analysed the Nasdaq-100 index value from 11 January 1995 to 11
January 2002 and the NIFTY index from 01 January 1998 to 03 December 2001. For both
indices, we divided the entire data into roughly two equal halves. No special rules were
used to select the training set other than ensuring a reasonable representation of the
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parameter space of the problem domain (Abraham et al., 2003). The complexity of the
training and test data sets for both indices is depicted in Figure 1. In the section entitled
“Hybrid-learning Models,” we briefly describe the different learning algorithms. This is
section is followed by the “Experimentation Setup and Results” section. This is, in turn,
followed by the “Conclusions” section.

Particle-Swarm-Optimization (PSO)
Algorithm

The PSO conducts searches using a population of particles that correspond to individu-
als in an Evolutionary Algorithm (EA). Initially, a population of particles is randomly
generated. Each particle represents a potential solution and has a position represented
by a position vector xi. A swarm of particles moves through the problem space, with the
moving velocity of each particle represented by a velocity vector vi. At each time step,
a function fi  — representing a quality measure — is calculated by using xi as input. Each

Figure 1. (a) Training and test data sets for the Nasdaq-100 index and (b) the NIFTY
index
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particle keeps track of its own best position, which is associated with the best fitness it
has achieved so far in a vector pi. Furthermore, the best position among all the particles
obtained so far in the population is kept track of as pg. In addition to this global version,
another version of PSO keeps track of the best position among all the topological
neighbors of a particle. At each time step t, by using the individual best position, pi(t),
and the global best position, pg(t), a new velocity for particle i is updated by:

))()(())()(()()1( 2211 txtpctxtpctvtv igiiii −+−+=+ φφ (1)

where c1 and c2 are positive constants and φ1  and φ2 are uniformly distributed random
numbers in [0,1]. The term ci is limited to the range of ±Vmax (if the velocity violates this
limit, it is set to its proper limit). Changing velocity this way enables the particle i to search
around both its individual best position, pi, and global best position, pg. Based on the
updated velocities, each particle changes its position according to:

)1()()1( ++=+ tvtxtx iii (2)

The PSO algorithm is employed to optimize the parameter vectors of FNT, ANN, and
WNN.

Hybrid-Learning Models

Flexible Neural Tree Model

In this research, a tree-structured encoding method with specific instruction set is
selected for representing a FNT model (Chen et al., 2005).

Flexible Neuron Instructor and FNT Model

The function set F and terminal instruction set T used for generating a FNT model are
described as follows:

},,,{},,,{ 2132 nN xxxTFS LULU +++== (3)

where +i(i = 2, 3, ..., N) denote nonleaf nodes’ instructions and taking i arguments. x1, x2,..., xn are leaf nodes’ instructions and taking no other arguments. The output of a nonleaf

http://www.pdfcomplete.com/1002/2001/upgrade.htm


Hybrid-Learning Methods for Stock Index Modeling   67

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

node is calculated as a flexible neuron model (see Figure 2). From this point of view, the
instruction +i is also called a flexible neuron operator with i inputs.
In the construction process of a neural tree, if a nonterminal instruction, that is, +i(i =
2, 3, ..., N) is selected, i real values are randomly generated and used for representing the
connection strength between the node +i and its children. In addition, two adjustable
parameters ai and bi are randomly created as flexible activation function parameters.
For developing the FNT model, the following flexible activation function is used:
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The output of a flexible neuron +n can be calculated as follows. The total excitation of +n
is:
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where xj(j = 1, 2, ..., n) are the inputs to node +n. The output of the node +n is then calculated
by:
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A typical flexible neuron operator and a neural tree model are illustrated in Figure 2. The
overall output of the flexible neural tree can be recursively computed from left to right
by the depth-first method.

Figure 2. A flexible neuron operator (left), and a typical representation of the FNT with
function instruction set F = {+2, +3, ..., +6}, and terminal instruction set T = {x1, x2, x3}
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Optimization of the FNT Model

The optimization of FNT includes both tree-structure and parameter optimization.
Finding an optimal or near-optimal neural tree is formulated as a product of evolution.
A number of neural tree variation operators are developed as follows:

• Mutation

Four different mutation operators were employed to generate offspring from the parents.
These mutation operators are as follows:

(1) Changing one terminal node: Randomly select one terminal node in the neural tree
and replace it with another terminal node.

(2) Changing all the terminal nodes: Select each and every terminal node in the neural
tree and replace it with another terminal node.

(3) Growing: Select a random leaf in the hidden layer of the neural tree and replace it
with a newly generated subtree.

(4) Pruning: Randomly select a function node in the neural tree and replace it with a
terminal node.

The neural tree operators were applied to each of the parents to generate an offspring
using the following steps:

(a) A Poission random number N, with mean λ , was generated.

(b) N random mutation operators were uniformly selected with replacement from the
previous four-mutation operator set.

(c) These N mutation operators were applied in sequence one after the other to the
parents to get the offspring.

• Crossover

Select two neural trees at random and select one nonterminal node in the hidden layer
for each neural tree randomly, then swap the selected subtree. The crossover operator
is implemented with a predefined probability of 0.3 in this study.
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• Selection

Evolutionary-programming (EP) tournament selection was applied to select the parents
for the next generation. Pairwise comparison is conducted for the union of µ parents and
µ offspring. For each individual, q opponents are chosen uniformly at random from all the
parents and offspring. For each comparison, if the individual’s fitness is no smaller than
the opponent’s, it is selected. Then select µ  individuals from parents and offspring that
have most wins to form the next generation.

• Parameter Optimization by PSO

Parameter optimization is achieved by the PSO algorithm as described in the “The
Particle-swarm-optimization (PSO) Algorithm” section. In this stage, the FNT architec-
ture is fixed, as the best tree developed by the end of run of the structured search. The
parameters (weights and flexible activation-function parameters) encoded in the best tree
formulate a particle. The PSO algorithm works as follows:

(a) An initial population is randomly generated. The learning parameters c1 and c2 in
PSO should be assigned in advance.

(b) The objective function value is calculated for each particle.
(c) Modification of search point — the current search point of each particle is changed

using Equations 1 and 2.
(d) If the maximum number of generations is reached or no better parameter vector is

found for a significantly long time (~100 steps), then stop, otherwise go to step (b).

The Artificial Neural Network (ANN) Model

A neural network classifier trained using the PSO algorithm with flexible bipolar sigmoid
activation functions at hidden layer was constructed for the stock data. Before describ-
ing the details of the algorithm for training the ANN classifier, the issue of coding needs
to be addressed. Coding concerns the way the weights and the flexible activation-
function parameters of the ANN are represented by individuals or particles. A floating-
point coding scheme is adopted here. For neural network (NN) coding, suppose there are
M nodes in the hidden layer and one node in the output layer and n input variables, then
the number of total weights is n × M + M × 1, the number of thresholds is M + 1 and the
number of flexible activation-function parameters is M + 1, therefore the total number of
free parameters in the ANN to be coded is n × M + M + 2(M + 1). These parameters are
coded into an individual or particle orderly. The simple proposed training algorithm for
a neural network is as follows:
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Step 1: Initialization — Initial population is generated randomly. The learning parameters
c1 and c2 in the PSO should be assigned in advance.

Step 2: Evaluation — The objective function value is calculated for each particle.
Step 3: Modification of search point — The current search point of each particle is

changed using Equations 1 and 2.
Step 4: If the maximum number of generations is reached or no better parameter vector

is found for a significantly long time (100 steps say), then stop, otherwise go to Step
2.

The WNN-Prediction Model

In terms of wavelet transformation theory, wavelets in the following form:
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are a family of functions generated from one single function ϕ(x) by the operation of
dilation and translation. ϕ(x), which is localized in both the time space and the frequency
space, is called a mother wavelet and the parameters ai and bi are named the scale and
translation parameters, respectively.
In the standard form of a wavelet neural network, output is given by:
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where ψi is the wavelet activation function of i-th unit of the hidden layer and ωi is the
weight connecting the i-th unit of the hidden layer to the output-layer unit. Note that for
the n-dimensional input space, the multivariate wavelet-basis function can be calculated
by the tensor product of n single wavelet-basis functions as follows:
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Before describing details of the PSO algorithm for training WNNs, the issue of coding
needs to be addressed. Coding concerns the way the weights, dilation, and translation
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parameters of WNNs are represented by individuals or particles. A floating-point coding
scheme is adopted here. For WNN coding, suppose there are M nodes in the hidden layer
and n input variables, then the total number of parameters to be coded is (2n + 1)M. The
coding of a WNN into an individual or particle is as follows:

||||| 1122221211111111 nnnnnnnnnnn babababababa ωωω LLLL

The simple proposed training algorithm for a WNN is as follows:

Step 1: An initial population is randomly generated. The learning parameters, such as c1,
c2 in PSO should be assigned in advance.

Step 2: Parameter optimization with PSO algorithm.
Step 3: if the maximum number of generations is reached or no better parameter vector

is found for a significantly long time (~100 steps), then go to Step 4; otherwise go
to Step 2.

Step 4: Parameter optimization with gradient-descent algorithm.
Step 5: If a satisfactory solution is found then stop; otherwise go to Step 4.

The Local Linear WNN Prediction Model

An intrinsic feature of basis-function networks is the localized activation of the hidden-
layer units, so that the connection weights associated with the units can be viewed as
locally accurate piecewise constant models whose validity for any given input is
indicated by the activation functions. Compared to the multilayer perceptron neural
network, this local capacity provides some advantages, such as learning efficiency and
structure transparency. However, the problem of basis-function networks requires some
special attention. Due to the crudeness of the local approximation, a large number of
basis-function units have to be employed to approximate a given system. A shortcoming
of the wavelet neural network is that for higher dimensional problems many hidden-layer
units are needed.
In order to take advantage of the local capacity of the wavelet-basis functions while not
having too many hidden units, here we propose an alternative type of WNN. The
architecture of the proposed local linear WNN (LLWNN) is shown in Figure 3. Its output
in the output layer is given by:
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where x = (x1, x2, ..., xn). Instead of the straightforward weight ωi (piecewise constant
model), a linear model:

niniii xxv ωωω +∧++= 110 (11)

is introduced. The activities of the linear model vi (i = 1, 2, ..., M) are determined by the
associated locally active wavelet function ψi(x)(i = 1, 2, ..., M), thus vi is only locally
significant. The motivations for introducing local linear models into a WNN are as
follows: (1) Local-linear models have been studied in some neurofuzzy systems (Abraham,
2001) and offer good performances; and (2) Local-linear models should provide a more
parsimonious interpolation in high-dimension spaces when modeling samples are
sparse. The scale and translation parameters and local-linear-model parameters are
randomly initialized at the beginning and are optimized by the PSO algorithm.

Experiment Setup and Results

We considered 7-year stock data for the Nasdaq-100 Index and 4-year for the NIFTY
index. Our target was to develop efficient forecast models that could predict the index
value of the following trading day based on the opening, closing, and maximum values
on any given day. The training and test patterns for both indices (scaled values) are
illustrated in Figure 1. We used the same training- and test-data sets to evaluate the

Figure 3. Architecture of a local linear wavelet neural network
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different connectionist models. More details are reported in the following sections.
Experiments were carried out on a Pentium IV, 2.8 GHz Machine with 512 MB RAM and
the programs implemented in C/C++. Test data was presented to the trained connectionist
models, and the output from the network compared with the actual index values in the
time series.
The assessment of the prediction performance of the different connectionist paradigms
were done by quantifying the prediction obtained on an independent data set. The root-
mean-squared error (RMSE), maximum-absolute-percentage error (MAP), mean-abso-
lute-percentage error (MAPE), and correlation coefficient (CC) were used to study the
performance of the trained forecasting model for the test data.
MAP is defined as follows:
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where Pactual, i is the actual index value on day i and Ppredicted, i is the forecast value of the
index on that day. Similarly MAPE is given as:
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where N represents the total number of days.

• FNT Algorithm

We used the instruction set S = {+2, +3, ..., +10, x0, x1, x2} modeling the Nasdaq-100 index
and instruction set S = {+2, +3, ..., +10, x0, x1, x2, x3, x4} modeling the NIFTY index. We used
the flexible activation function of Equation 4 for the hidden neurons. Training was
terminated after 80 epochs on each dataset.

• NN-PSO Training

A feed-forward neural network with three input nodes and a single hidden layer
consisting of 10 neurons was used for modeling the Nasdaq-100 index. A feed-forward
neural network with five input nodes and a single hidden layer consisting of 10 neurons
was used for modeling the NIFTY index. Training was terminated after 3000 epochs on
each dataset.
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• WNN-PSO

A WNN with three input nodes and a single hidden layer consisting of 10 neurons was
used for modeling the Nasdaq-100 index. A WNN with five input nodes and a single
hidden layer consisting of 10 neurons was used for modeling the NIFTY index. Training
was terminated after 4000 epochs on each dataset.

• LLWNN-PSO

A LLWNN with three input nodes and a hidden layer consisting of five neurons for
modeling Nasdaq-100 index. A LLWNN with five input nodes and a single hidden layer
consisting of five neurons for modeling NIFTY index. Training was terminated after 4500
epochs on each dataset.

Figure 4. Test results showing the performance of the different methods for modeling
the Nasdaq-100 index

Figure 5. Test results showing the performance of the different methods for modeling
the NIFTY index
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• Performance and Results Achieved

Table 1 summarizes the training and test results achieved for the two stock indices using
the four different approaches. The statistical analysis of the four learning methods is
depicted in Table 2. Figures 4 and 5 depict the test results for the 1-day-ahead prediction
of Nasdaq-100 index and NIFTY index respectively.

Conclusion

In this chapter, we have demonstrated how the chaotic behavior of stock indices could
be well-represented by different hybrid learning paradigms. Empirical results on the two
data sets using four different learning models clearly reveal the efficiency of the
proposed techniques. In terms of RMSE values, for the Nasdaq-100 index, WNN
performed marginally better than the other models and for the NIFTY index, the NN
approach gave the lowest generalization RMSE values. For both data sets, LLWNN had
the lowest training error. For the Nasdaq-100 index (test data), WNN had the highest CC,
but the lowest values of MAPE and MAP were achieved by using the FNT model. The
highest CC together with the best MAPE/MAP values for the NIFTY index were achieved
using the NN trained using the PSO model. A low MAP value is a crucial indicator for
evaluating the stability of a market under unforeseen fluctuations. In the present example,
the predictability ensures that the decrease in trade is only a temporary cyclic variation
that is perfectly under control.

FNT NN-PSO WNN-PSO LLWNN-PSO
Training results

Nasdaq-100 0.02598 0.02573 0.02586 0.02551
NIFTY 0.01847 0.01729 0.01829 0.01691

Testing results
Nasdaq-100 0.01882 0.01864 0.01789 0.01968
NIFTY 0.01428 0.01326 0.01426 0.01564

Table 1. Empirical comparison of RMSE results for four learning methods

Table 2. Statistical analysis of four learning methods (test data)

FNT NN-PSO WNN-PSO LLWNN-PSO
Nasdaq-100

CC 0.997579 0.997704 0.997721 0.997623
MAP 98.107 141.363 152.754 230.514
MAPE 6.205 6.528 6.570 6.952

NIFTY
CC 0.996298 0.997079 0.996399 0.996291
MAP 39.987 27.257 39.671 30.814
MAPE 3.328 3.092 3.408 4.146
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Our research was to predict the share price for the following trading day based on the
opening, closing, and maximum values on any given day. Our experimental results
indicate that the most prominent parameters that affect share prices are their immediate
opening and closing values. The fluctuations in the share market are chaotic in the sense
that they heavily depend on the values of their immediate forerunning fluctuations.
Long-term trends exist, but are slow variations and this information is useful for long-
term investment strategies. Our study focused on short-term floor trades in which the risk
is higher. However, the results of our study show that even with seemingly random
fluctuations, there is an underlying deterministic feature that is directly enciphered in the
opening, closing, and maximum values of the index of any day making predictability
possible.
Empirical results also show that there are various advantages and disadvantages for the
different techniques considered. There is little reason to expect that one can find a
uniformly best learning algorithm for optimization of the performance for different stock
indices. This is in accordance with the no-free-lunch theorem, which explains that for any
algorithm, any elevated performance over one class of problems is exactly paid for in
performance over another class (Macready & Wolpert, 1997). Our future research will be
oriented towards determining the optimal way to combine the different learning para-
digms using an ensemble approach (Maqsood, Kahn, & Abraham, 2004) so as to
complement the advantages and disadvantages of the different methods considered.
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