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Abstract

Theuse of intelligent systemsfor stock market prediction has been widely established.
Inthispaper, weinvestigate howthe seemingly chaotic behavior of stock markets could
be well represented using several connectionist paradigms and soft computing
techniques. To demonstrate the different techniques, we consider the Nasdag-100
index of Nasdaq Stock Market™ and the S& P CNX NIFTY stock index. We analyze 7-
year Nasdaq 100 main-index values and 4-year NIFTY index values. This chapter
investigates the devel opment of novel, reliable, and efficient techniques to model the
seemingly chaotic behavior of stock markets. We consider the flexible neural tree
algorithm, a wavel et neural network, local linear wavelet neural network, and finally
a feed-forward artificial neural network. The particle-swar m-optimization algorithm
optimizes the parameters of the different techniques. This paper briefly explains how
the different learning paradigms could be formulated using various methods and then
investigates whether they can provide the required level of performance — in other
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wor ds, whether they ar e sufficiently good and robust soasto provide areliableforecast
model for stock market indices. Experiment resultsreveal that all themodel sconsidered
could represent the stock indices behavior very accurately.

| ntroduction

Prediction of stocksisgenerally believed to beavery difficult task — it behaveslikea
randomwal k processandtimevarying. The obviouscomplexity of theproblem pavesthe
way for theimportanceof intelligent prediction paradigms (Abraham, Nath, & Mahanti,
2001). During thelast decade, stocksand futurestradershave cometo rely upon various
typesofintelligent systemsto maketrading decisions(Abraham, Philip, & Saratchandran,
2003; Chan & Liu, 2002; Francis, Tay, & Cao, 2002; Leigh, Modani, Purvis, & Raberts,
2002; Leigh, Purvis, & Ragusa, 2002; Oh & Kim, 2002; Quah & Srinivasan, 1999; Wang,
2002). Several intelligent systems have in recent years been developed for modeling
expertise, decision support, and complicated automation tasks (Berkeley, 1997; Bischi &
Valori, 2000; Cios, 2001; Kim & Han, 2000; Koulouriotis, Diakoul akis, & Emiris, 2001;
Lebaron, 2001; Palma-dos-Reis& Zahedi, 1999; Wuthrichetal., 1998). In thischapter, we
analyse the seemingly chaotic behavior of two well-known stock indices namely the
Nasdag-100 index of Nasdag™ andthe S& PCNX NIFTY stock index.

The Nasdag-100 index reflects Nasdag's largest companies across major industry
groups, including computer hardwareand software, telecommunications, retail/whole-
sale trade, and biotechnology. The Nasdag-100 index is a modified capitalization-
weighted index, designed to limit domination of the Index by afew large stocks while
generally retai ning the capitalization ranking of companies. Through aninvestmentin
Nasdag-100index tracking stock, investorscan participatein thecall ective performance
of many of the Nasdaq stocksthat are often in thenews or have becomehousehold names.
Similarly, S& PCNX NIFTY isawell-diversified 50-stock i ndex accounting for 25 sectors
of theeconomy. Itisusedfor avariety of purposes such asbenchmarking fund portfolios,
index-based derivatives, and index funds. The CNX indices are computed using the
market capitalization weighted method, wherein thelevel of theindex reflectsthetotal
market val ueof all thestocksintheindex rel ativetoa particul ar base period. Themethod
also takes into account constituent changes in the index and importantly corporate
actions such as stock splits, rights, and so on, without affecting the index value.

Our research investigates the performance analysis of four different connectionist
paradigmsfor modeling theNasdag-100 and NIFTY stock market indices. Weconsider
theFlexibleNeural Tree(FNT) algorithm (Chen, Y ang, and Dong, 2004), aWavelet Neural
Network (WNN), Local Linear Wavel et Neural Network (LLWNN) (Chenetal., 2005) and
finally afeed-forward Neural Network (ANN) (Chenet al., 2004). Theparticle-swarm-
opti mizati on algorithm opti mizesthe parameter sof thedifferent techniques (Kennedy &
Eberhart, 1995). Weanalysed the Nasdag-100 index valuefrom 11 January 1995to 11
January 2002 and theNIFTY index from 01 January 1998 to 03 December 2001. For both
indices, we divided the entiredatainto roughly two equal halves. No special ruleswere
used to select the training set other than ensuring a reasonabl e representation of the
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Figure 1. (a) Training and test data sets for the Nasdag-100 index and (b) the NIFTY
index
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parameter space of the problem domain (Abraham et al ., 2003). The compl exity of the
training and test datasetsfor both indicesisdepictedin Figure 1. Inthesection entitled
“Hybrid-learningModels,” webriefly describethedifferent learning algorithms. Thisis
section isfollowed by the* Experimentation Setup and Results” section. Thisis, inturn,
followed by the “Conclusions” section.

Particle-Swar m-Optimization (PSO)
Algorithm

ThePSO conducts searches using apopulation of particlesthat correspondtoindividu-
alsin an Evolutionary Algorithm (EA). Initially, apopulation of particlesisrandomly
generated. Each particlerepresents a potential solution and has aposition represented
by aposition vector x. A swarm of particlesmovesthrough the problem space, with the
moving velocity of each particle represented by a velocity vector v,.. At each time step,
afunctionf — representingaquality measure— iscalculated by using x, asinput. Each
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particle keepstrack of itsown best position, which isassociated with the best fithessit
hasachieved sofar in avector p,. Furthermore, thebest position among all theparticles
obtained sofar in thepopul ation iskept track of asp,.In addition tothisglobal version,
another version of PSO keeps track of the best position among all the topological
neighbors of aparticle. At each timestep t, by using theindividual best position, p,(t),
and the global best position, pg(t), anew velocity for particlei is updated by:

Vi (t+1) = v (1) +orf 1(pi (1) - % (1) + cof 2(pg (1) - % (1) (1)

where ¢, and c, are positive constantsand f | and f, are uniformly distributed random
numbersin[0,1]. Theterm c islimitedtotherangeof £V __ (if the velocity violatesthis
limit, itissettoitsproper limit). Changing vel ocity thisway enablestheparticlei tosearch
around both itsindividual best position, p,, and global best position, Py: Based on the
updated velocities, each particle changes its position according to:

X (t+2) =x; (t) +vi (t+1) @

The PSO al gorithm is employed to optimize the parameter vectors of FNT, ANN, and
WNN.

Hybrid-L earning M odels

Flexible Neural Tree M odel

In this research, a tree-structured encoding method with specific instruction set is
selected for representingaFNT model (Chenet al., 2005).

Flexible Neuron Instructor and FNT M odel

Thefunction set F and terminal instruction set T used for generating a FNT model are
described as follows:

S=FUT ={+,,+,;, L+, } U{x,%,,L,x.} ©)

where+ (i= 2,3, ---, N) denotenonleaf nodes’ instructionsandtaking i arguments. X , X,,
-+, X areleaf nodes’ instructionsand taking no other arguments. Theoutput of anonl eaf
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nodeiscal culated asaflexibleneuron model (seeFigure?2). From thispoint of view, the
instruction + isalso call ed aflexible neuron operator with i inputs.

In the construction process of aneural tree, if anonterminal instruction, that is, +,(i =
2,3,-,N)isselected, i real valuesarerandomly generated and used for representing the
connection strength between the node +, and its children. In addition, two adjustable
parametersa and b, arerandomly created as flexible activation function parameters.

For developing the FNT model, the following flexibl e activation function is used:

- a)?
f (@ by = expl- U0 @

Theoutput of aflexibleneuron + can becalculated asfoll ows. Thetotal excitation of +_
is:

net, =g w;Xx, ©)

=1

wherexj(j =12, -, n)aretheinputstonode+ . Theoutput of thenode+ isthen calculated
by:

PR
outp = f (an, by, netp) = exp(- %) o

n

A typical flexibleneuron operator and aneural treemodel areillustratedin Figure2. The
overall output of theflexible neural treecan berecursively computed from left to right
by the depth-first method.

Figure2. Aflexible neuron operator (left), and atypical representation of the FNT with
functioninstructionset F={+,,+, -+, + },andterminal instruction set T= { X , X,, X,
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Optimization of the FNT M odel

The optimization of FNT includes both tree-structure and parameter optimization.
Finding an optimal or near-optimal neural treeisformulated asaproduct of evolution.
A number of neural treevariation operators are devel oped as foll ows:

. Mutation

Four different mutati on operatorswere employedto generateoffspring fromtheparents.
These mutation operators are as foll ows:

(1) Changingoneterminal node: Randomly select oneterminal nodein theneural tree
and replaceit with another terminal node.

(2) Changingall theterminal nodes: Select each and every terminal nodeintheneural
treeand replaceit with another terminal node.

(3) Growing: Select arandomleaf in thehidden layer of theneural treeand replaceit
with a newly generated subtree.

(4) Pruning: Randomly select afunction nodein theneural treeand replaceit witha
terminal node.

The neural tree operators were applied to each of the parents to generate an offspring
using the following steps:

(& A Poission random number N, with mean | , wasgenerated.

(b) Nrandom mutation operatorswereuniformly selected with replacement from the
previous four-mutation operator set.

(c) These N mutation operators were applied in sequence one after the other to the
parents to get the offspring.

. Crossover

Select two neural trees at random and select one nonterminal node in the hidden layer
for each neural tree randomly, then swap the selected subtree. The crossover operator
isimplemented with a predefined probability of 0.3 in this study.
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. Selection

Evolutionary-programming (EP) tournament sel ecti on was appliedto select the parents
for thenext generation. Pai rwise comparison is conducted for the uni on of mparentsand
moffspring. For eachindividual, g opponentsarechosen uniformly at randomfromall the
parentsand offspring. For each comparison, if theindividual’ sfithessisnosmaller than
theopponent’s, it isselected. Then select mindividual sfrom parentsand off spring that
have most winsto form the next generation.

i Parameter Optimization by PSO

Parameter optimization is achieved by the PSO algorithm as described in the “The
Particle-swar m-optimization (PSO) Algorithm” section. In thisstage, the FNT architec-
tureisfixed, asthebest tree developed by the end of run of the structured search. The
parameters(weightsand flexibleactivation-function parameters) encodedin thebest tree
formul ateaparticle. The PSO al gorithm worksasfoll ows:

(@ Aninitial populationisrandomly generated. Thelearning parametersc, andc,in
PSO should be assigned in advance.

(b) Theobjectivefunction valueis calculated for each particle.

(c) Modification of search point— thecurrent search point of each particleischanged
using Equations 1 and 2.

(d) If themaximum number of generationsisreached or nobetter parameter vector is
foundfor asignificantly longtime(~100 steps), then stop, otherwisegotostep (b).

The Artificial Neural Network (ANN) Model

A neural network classifier trained using the PSO algorithmwith flexiblebipolar sigmoid
activation functionsat hidden layer was constructed for the stock data. Before describ-
ingthedetailsof thealgorithmfor trainingthe ANN classifier, theissue of coding needs
to be addressed. Coding concerns the way the weights and the flexible activation-
function parametersof the ANN arerepresented by individual sor particles. A floating-
point coding schemeisadopted here. For neural network (NN) coding, supposethereare
M nodesin thehidden layer and onenodein theoutput layer and ninput variables, then
thenumber of total weightsisn” M+ M~ 1, thenumber of thresholdsisM + 1 and the
number of flexibleactivation-function parametersisM + 1, thereforethetotal number of
freeparametersinthe ANNtobecodedisn” M+ M+ 2(M + 1). These parametersare
codedintoanindividual or particleorderly. Thesimpleproposedtraining al gorithm for
aneura network isasfollows:
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Sep1: Initialization—Initial populationisgeneratedrandomly. Thelearning parameters
¢, and c, in the PSO should be assigned in advance.

Step 2: Evaluation — The objectivefunction value is calculated for each particle.

Step 3: Modification of search point — The current search point of each particleis
changed using Equations 1 and 2.

Step 4: If the maximum number of generationsisreached or no better parameter vector
isfound for asignificantly longtime (100 stepssay), then stop, otherwisegoto Step
2.

The WNN-Prediction Model

In terms of wavelet transfor mation theory, waveletsin thefollowing form:

XDy 4l RiT Z
a )rapbl Ril Z} (7)

j (

1
y =lyi=|a 2

X=(4,%,L%,), 8 =(a,a,L.a,). b=(0.b,L.b,)

are afamily of functions generated from one single function j (x) by the operation of
dilation andtranslation.j (x), whichislocalizedin both theti mespaceandthefrequency
space, is called amother wavelet and the parametersa and b, are named the scaleand
translation parameters, respectively.

In the standard form of awavelet neural network, output is given by:

M M I by
f)=qwyi(¥=awlal 2i —) )
i=1 i=1 &

wherey ; isthe wavelet activation function of i-th unit of the hidden layer and w, isthe
weight connecting thei-th unit of the hidden layer to the output-layer unit. Notethat for
then-dimensional input space, themultivariate wavel et-basi sfunction can be cal cul ated
by the tensor product of n single wavelet-basis functions as foll ows:

|
i =0 (%) 9)
i=1

Before describing detail s of the PSO al gorithm for training WNNSs, theissue of coding
needsto be addressed. Coding concerns the way the weights, dilation, and translation
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parametersof WNNs arerepresented by individual sor particles. A floating-point coding
schemeisadopted here. For WNN coding, supposethereareM nodesinthe hidden layer
and ninput variables, then thetotal number of parameterstobecodedis(2n+ 1)M. The
coding of aWNN into an individual or particleisasfollows:

| ailbll L ainblnwl | a21b21 LaanZnWZ | L | anlbnl I—ann bnan |
Thesimple proposed training algorithm for aWNN is asfollows:

Step 1: Aninitial populationisrandomly generated. Thelearning parameters, suchasc,,
c, in PSO should be assigned in advance.

Step 2: Parameter opti mizationwith PSO algorithm.

Step 3: if the maximum number of generationsisreached or no better parameter vector
isfound for asignificantly long time (~100 steps), then goto Step 4; otherwise go
to Step 2.

Step 4: Parameter opti mization with gradi ent-descent al gorithm.
Step 5: If a satisfactory solution is found then stop; otherwise go to Step 4.

The Local Linear WNN Prediction M odel

Anintrinsicfeatureof basis-function networksisthelocalized activation of the hidden-
layer units, so that the connection weights associated with the units can be viewed as
locally accurate piecewise constant models whose validity for any given input is
indicated by the activation functions. Compared to the multilayer perceptron neural
network, thislocal capacity providessomeadvantages, such aslearning efficiency and
structuretransparency. However, the problem of basi s-function networksreguiressome
special attention. Due to the crudeness of the local approximation, alarge number of
basi s-function unitshaveto beempl oyed to approximate agiven system. A shortcoming
of thewavel et neural network isthat for higher dimensional problemsmany hidden-layer
units are needed.

In order to take advantage of thelocal capacity of the wavel et-basi s functionswhile not
having too many hidden units, here we propose an alternative type of WNN. The
architectureof theproposed local linear WNN (LLWNN) isshownin Figure3. Itsoutput
in the output layer is given by:

Wip +Wipx, + L +W Xy (X) =

<
I
Qo=

.ﬂ

(10)

Qo=

2 x-b
(W +Wi1X:L+L+Wian)‘a1" 2] (T)

.ﬂ
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Figure 3. Architecture of a local linear wavelet neural network

where x = (X, X,, -+, X ). Instead of the straightforward weight w. (piecewise constant
mode), alinear modd:

Vi =Wig +Wipxg + U+WinXy 11

isintroduced. Theactivitiesof thelinear model v, (i = 1, 2, -, M) aredetermined by the
associated locally active wavelet functiony (x)(i = 1, 2, ---, M), thus v, is only locally
significant. The motivations for introducing local linear models into a WNN are as
follows: (1) Local-linear model shave been studiedin someneurofuzzy systems (Abraham,
2001) and offer good performances; and (2) L ocal-linear model s should provideamore
parsimonious interpolation in high-dimension spaces when modeling samples are
sparse. The scale and translation parameters and local-linear-model parameters are
randomly initialized at the beginning and are optimized by the PSO al gorithm.

Experiment Setup and Results

We considered 7-year stock data for the Nasdag-100 Index and 4-year for the NIFTY
index. Our target wasto devel op efficient forecast modelsthat could predict theindex
value of thefollowing trading day based on the opening, closing, and maximum val ues
on any given day. The training and test patterns for both indices (scaled values) are
illustrated in Figure 1. We used the same training- and test-data sets to evaluate the
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different connectionist models. More details are reported in the following sections.
Experimentswerecarried outonaPentium 1V, 2.8 GHz M achinewith 512 MB RAM and
theprogramsimplementedin C/C++. Test datawas presented tothetrained connectionist
models, and the output from the network compared with the actual index valuesin the
timeseries.

Theassessment of the prediction performanceof the different connectionist paradigms
were done by quantifying the predi ction obtained on an independent data set. Theroot-
mean-squared error (RMSE), maxi mum-absol ute-percentageerror (MAP), mean-abso-
lute-percentage error (MAPE), and correlation coefficient (CC) wereused to study the
performance of the trained forecasting model for the test data.

MAP is defined as foll ows:

) BPactual, i - Ppredicted, i| 9

MAP 100
Poredicted, i : (12)
whereP_ . . istheactual index value onday i and P redicted. istheforecast value of the
index on that day. Similarly MAPE isgiven as:
1N gpactual,i - Ppredicted, | Y
MAPE = — 3 € U 100 (13)
i=lg Pactual, i H

where N represents the total number of days.

i FNT Algorithm

Weusedtheinstructionset S={+,, +,, -, + ., X, X, X,} modeling the Nasdag-100index
andingtructionset S={+,, +,, -, + ., X, X, X, X;, X,} modelingtheNIFTY index. Weused
the flexible activation function of Equation 4 for the hidden neurons. Training was

terminated after 80 epochs on each dataset.

. NN-PSOTraining

A feed-forward neural network with three input nodes and a single hidden layer
consisting of 10 neuronswas used for modeling the Nasdag-100index. A feed-forward
neural network with fiveinput nodesand asinglehidden layer consisting of 10 neurons
was used for modelingtheNIFTY index. Training wasterminated after 3000 epochson
each dataset.
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. WNN-PSO

A WNN with threeinput nodes and a single hidden layer consisting of 10 neuronswas
used for modeling the Nasdag-100 index. A WNN with five input nodes and a single
hidden layer consisting of 10 neuronswasused for modelingthe NIFTY index. Training
was terminated after 4000 epochs on each dataset.

i LLWNN-PSO

A LLWNN with three input nodes and a hidden layer consisting of five neurons for
modeling Nasdag-100index. A LLWNN withfiveinput nodesand asinglehidden layer
consisting of fiveneuronsfor modeling NIFTY index. Trainingwasterminated after 4500
epochs on each dataset.

Figure 4. Test results showing the performance of the different methods for modeling
the Nasdag-100 index
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Figure 5. Test results showing the performance of the different methods for modeling
the NIFTY index
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FNT [ NN-PSO [ WNN-PSO [ LLWNN-PSO
Training results
Nasdag-100 | 0.02598 0.02573 0.02586 0.02551
NIFTY 0.01847 0.01729 0.01829 0.01691
Teding results
Nasdag-100 | 0.01882 0.01864 0.01789 0.01968
NIFTY 0.01428 0.01326 0.01426 0.01564

Table 2. Statistical analysis of four learning methods (test data)

FNT [ NN-PSO [ WNN-PSO [ LLWNN-PSO
Nasdag-100
CC 0.997579 0.997704 0.997721 0.997623
MAP 98.107 141.363 152.754 230.514
MAPE 6.205 6.528 6.570 6.952
NIFTY
CC 0.996298 0.997079 0.996399 0.996291
MAP 39.987 27.257 30.671 30.814
MAPE 3.328 3.002 3.408 4.146

. Performance and Results Achieved

Table1 summarizesthetrainingand test resultsachievedfor thetwostock indicesusing
the four different approaches. The statistical analysis of the four learning methodsis
depictedin Table2. Figures4 and 5 depict thetest resultsfor the 1-day-ahead prediction
of Nasdag-100 index and NIFTY index respectively.

Conclusion

In this chapter, we have demonstrated how the chaotic behavior of stock indices could
bewell-represented by different hybrid learning paradigms. Empirical resultsonthetwo
data sets using four different learning models clearly reveal the efficiency of the
proposed techniques. In terms of RMSE values, for the Nasdag-100 index, WNN
performed marginally better than the other models and for the NIFTY index, the NN
approach gavethelowest generalization RM SE val ues. For both datasets, LLWNN had
thelowest trainingerror. FortheNasdag-100index (test data), WNN had thehighest CC,
but the lowest val ues of MAPE and MAP were achieved by using the FNT model. The
highest CCtogether with thebest MAPE/M AP valuesfor theNIFTY index wereachieved
using the NN trained using the PSO model. A low MAP valueisacrucial indicator for
eval uatingthestability of amarket under unforeseen fluctuati ons. Inthepresent example,
the predictability ensuresthat thedecreasein tradeisonly atemporary cyclic variation
that is perfectly under control.
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Our research wasto predict the share price for the foll owing trading day based on the
opening, closing, and maximum values on any given day. Our experimental results
indicatethat themost prominent parametersthat affect sharepricesaretheirimmediate
opening and closing val ues. Thefluctuationsin the sharemarket arechaoticin thesense
that they heavily depend on the values of their immediate forerunning fluctuations.
Long-term trends exist, but are slow variations and thisinformation is useful for long-
terminvestment strategies. Our study focused on short-termfloor tradesin whichtherisk
is higher. However, the results of our study show that even with seemingly random
fluctuations, thereisan underlying deterministic featurethat isdirectly encipheredin the
opening, closing, and maximum val ues of theindex of any day making predictability
possible.

Empirical resultsal so show that there arevariousadvantagesand disadvantagesfor the
different techniques considered. There is little reason to expect that one can find a
uniformly best learning algorithm for optimization of theperformancefor different stock
indices. Thisisinaccordancewiththeno-free-lunch theorem, which explainsthat for any
algorithm, any elevated performance over one class of problemsis exactly paid for in
performanceover another class(Macready & Woalpert, 1997). Our futureresearch will be
oriented towards determining the optimal way to combinethe different learning para-
digms using an ensemble approach (Magsood, Kahn, & Abraham, 2004) so as to
complement the advantages and disadvantages of the different methods considered.
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