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Abstract—Accurate models play important roles in 
capturing the salient characteristics of the network traffic, 
analyzing and simulating for the network dynamic, and 
improving the predictive ability for system dynamics. In this 
study, the ensemble of the flexible neural tree (FNT) and 
system models expressed by the ordinary differential 
equations (ODEs) is proposed to further improve the 
accuracy of time series forecasting. Firstly, the additive tree 
model is introduced to represent  more precisely ODEs for 
the network dynamics. Secondly, the structures and 
parameters of FNT and the additive tree model are 
optimized based on the Genetic Programming (GP) and the 
Particle Swarm Optimization algorithm (PSO). Finally, the 
expected level of performance is verified by using the 
proposed method, which provides a reliable forecast model 
for small-time scale network traffic. Experimental results 
reveal that the proposed method is able to estimate the 
small-time scale network traffic measurement data with 
decent accuracy. 
 
Index Terms—hybrid evolutionary method, small-time scale 
network traffic, the additive tree models, ordinary 
differential equations, ensemble learning 
 

I.  INTRODUCTION 

Network traffic modeling and analysis play a major 
role in characterizing network performance. Accurate 
models also play important roles in capturing the salient 
characteristics of the network traffic, analyzing for the 
network dynamic, and improving the forecasting ability 
for system dynamics. It has a fundamental meaning for 
many network designs and engineering problems, e.g., 
switcher designing, router, the management of devices,  
and its software development. 

Complexity is common feature in network geometry 
and information traffic. Complexity appears in practical 

situations of network traffic, such as the long-range 
correlations and self-similarity found in the statistical 
analysis of traffic measurements. It is also a convinced 
evidence of these phenomena at several different time 
scales. The complexity revealed from the traffic 
measurements has led to the suggestion that the network 
traffic cannot be analyzed in the current framework of 
existing models [1-3]. Other reliable traffic models and 
tools for quality assessment and control have been 
developed in [4-9].  

Recently, the rapid development of the communication 
and network technologies results in the uncertain 
characteristics of the traffic network, especially the 
nonlinear time series. The nonlinear time series are more 
accurately predicted by using some models, i.e., neural 
networks [10-13], support vector machines [14], adaptive 
algorithms [15-16]. 

Zhou et al. [17] proposed a new network traffic 
prediction model based on nonlinear time series 
ARIMA/GARCH. This model combined linear time 
series ARIMA model and non-linear GARCH model. A 
parameters estimation procedure of the proposed 
ARIMA/GARCH model was provided. Results indicated 
that this model could capture prominent traffic 
characteristics and provided better prediction accuracy 
compared to the existing FARIMA model. 

A framework of a traffic prediction model was 
proposed in [8] for eliminating the noises caused by 
random travel conditions, where the influence of special 
factors was calculated quantitatively. This framework 
combined several artificial intelligence technologies, e.g., 
wavelet transform, neural network, and fuzzy logic. In 
addition to developing the prediction framework, a 
wavelet de-noising method was also delivered and 
analyzed. 

A multiscale decomposition approach to real time 
traffic prediction was proposed in [9], where the raw 
traffic data was decomposed into multiple timescales 
using the wavelet transform. The wavelet coefficients and 
scaling coefficients at each scale were predicted 
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Figure 1.  Actual traffic measurements data. 

independently by using the ARIMA model. Then, the 
predicted wavelet coefficients and scaling coefficient 
were combined to represent the predicted traffic. The 
correlation structure of traffic caused by different 
network mechanisms was captured, which may not be 
obvious when examining the raw data directly. 

Meng et al. [18] applied the nonlinear time series 
analysis method to small-time scale traffic measurement 
data. The prediction-based method was used to determine 
the embedding dimension of the traffic data. Based on the 
reconstructed phase space, the local support vector 
machine prediction method was used to predict the traffic 
measurement data, and the BIC-based neighboring point 
selection method was used to choose the number of the 
nearest neighboring points for the local support vector 
machine regression model. 

To predict the time series of internet traffic, a complex 
network based on genetic programming and particle 
swarm optimization was proposed in [19]. The structure 
of complex network was evolved by using genetic 
programming and the parameters encoded in this 
structure that were adjusted by using particle swarm 
optimization algorithm. The results demonstrated that this 
model had high prediction accuracy and reflected the 
actual characterize of the real network traffic precisely. 

In order to predict the small-time scale traffic 
measurements data, a hybrid evolutionary method for 
identifying a system of ordinary differential equations 
(ODEs) was presented in [20], where the tree-structure 
based evolution algorithm and particle swarm 
optimization (PSO) were used to evolve the architecture 
and the parameters of the additive tree models for the 
system of ordinary differential equations. In [21], the 
flexible neural tree (FNT) model was employed to predict 
the small-time scale traffic measurements data. Based on 
the pre-defined instruction/operator sets, the FNT model 
was created and evolved. This framework satisfied the 
following requirements: input variables selection, over-
layer connections and different activation functions for 
the various nodes are involved. The FNT structure was 
developed by using the Genetic Programming, and with 
which the parameters are optimized by the Particle 
Swarm Optimization algorithm. Also, the experiment 
results in [20-21] have demonstrated that the FNT and the 
system of ordinary differential equations are feasible and 
efficient for forecasting the small-scale traffic 
measurements data compared with the feed forward 
neural network model. 

In this paper, our research is to investigate the 
performance analysis of the ensemble of FNT and ODEs 
for small-time scale network traffic prediction. The 
additive tree model is introduced so that  more precisely 
ODEs for the network dynamics can be represented. We 
use a hybrid evolutionary method, in which GP and PSO 
are employed to evolve the architecture and the 
parameters of FNT and the additive tree models for 
system of ordinary differential equation identification, 
respectively. The proposed method interleaves both 
optimizations. To improve the prediction accuracies of 
time series, two ensemble methods are used.  

For the traffic data, we analyze the seemingly chaotic 
behavior of the small-scale traffic measurements data 
namely the TCP traffic data [20]. The TCP traffic data 
contains an hour’s worth of all wide-area traffic between 
Digital Equipment Corporation (DEC) and the rest of the 
world. The data package used in this paper is DEC-Pkt1, 
and the time stamps have millisecond precision [20, 22]. 
The traffic data aggregated with time bin 0.1s, which is 
the arrived package’s amount within the 0.1s time 
interval [21]. We divide the entire data into roughly two 
equal halves. No special rules are used to select the 
training set other than ensuring a reasonable 
representation of the parameter space of the problem 
domain [23]. The complexity of the training and test data 
sets for both indices is depicted in Fig. 1. 

This paper is organized as follows. In Section II, the 
details of the proposed method are described. In Section 
III, the examples are used to examine the effectiveness 
and veracity of the proposed method. Finally, the 
conclusions are drawn in Section IV. 

II.  MATERIALS AND METHODS 

A.  Flexible Neural Tree Model 
A FNT model could be viewed as a flexible multi-layer 

feed forward neural network with over-layer connections 
and free parameters in activation functions, in which the 
proper input variables or time-lags for constructing a 
time-series model could be selected automatically [21]. 
The adopted function set F and terminal instruction set T 
for generating a FNT model are described as: 

2 3 1{ , ,..., } { ,..., }N nS F T x x= = + + +∪ ∪           (1) 
where +i (i = 2, 3,…,N) denotes non-leaf nodes’  
instructions with i arguments. x1, x2, …, xn are leaf nodes’ 
instructions and take no other arguments. The output of a 
non-leaf node is calculated as a flexible neuron model 
shown in Fig. 2. In this sense, the instruction +i is also 
called a flexible neuron operator with i inputs, i real 
values are randomly generated and used for representing 
the connection strength between the node +i and its 
children [21]. Furthermore, the adjustable parameters ai 
and bi are randomly created as flexible activation function 
parameters. In this study, the flexible activation function 
is given by 

2( / )( , , ) i ix a b
i if a b x e − −=                                          (2) 
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The output of a flexible neuron +n is calculated as 
follows. The total excitation of +n is 

1
*

n

n j j
j

net w x
=

= ∑
                                                (3)                                                                     

where xj (j = 1,2,…,n) are the inputs to node +n. The 
output of the node +n is then calculated by                                                                                   

2( )
( , , )

n n

n

net a
b

n n n nout f a b net e
−−

= =                        (4)                                                                          
A typical flexible neural tree model is shown as Fig. 2. 

Then, the overall outputs of flexible neural tree are 
computed from left to right by depth-first method, 
recursively [21].  

 
Figure 2. A flexible neuron operator (top), a typical representation of 

neural tree with function instruction set F = {+2,+3,+4,+5,+6}, and 
terminal instruction set T = {x1, x2, x3} (bottom). 

 

 
Figure 3. Example of ODEs in the form of the additive tree model. 

B.  Additive Tree Model 
The tree-structure based evolution algorithm is 

introduced to evolve the architecture of the additive tree 
models for the system models with expressed by the 
ODEs. As shown in Fig. 3, the right-hand side of an ODE 
is encoded into an additive tree individual. Two 

instruction/operator sets I0 and I1 are defined to generate 
the additive tree in this approach: 

0

1

{ 2, 3, ..., }
{*, /, sin, cos, exp, log, , }

I N
I F T r x R

= + + +
= =∪

    (5) 

where F = {*, /, sin, cos, exp, rlog} and T = {x,R} are 
function and terminal set. +N, *, /, sin, cos, exp, rlog, x, 
and R denote the addition, multiplication, protected 
division, sine, cosine, exponent, protected logarithm, 
system inputs, and random constant number, respectively,  
and take N, 2, 2, 1, 1, 1, 1, 0 and 0 arguments [24]. N is 
an integer number (the maximum number of an ODE 
terms), I0 is the instruction set and the root node, and the 
instructions of other nodes are selected from the 
instruction set I1 [20].  

It is worth mentioning that if the right-hand side of 
ODEs is the polynomial, the instruction set I1 can be 
defined as I1 = {*2, *3, ..., *n, x1, x2, ..., xn, R} [24]. 

C.  Optimization of Model Structure 
A hybrid evolutionary method is used to obtain the 

structure optimization of models, in which GP and PSO 
are employed to evolve the architecture and the 
parameters of FNT and the additive tree models, 
respectively. The proposed method interleaves both 
optimizations. 

Finding an optimal or near-optimal tree model is 
formulated as a product of evolution. A number of tree 
variation operators are developed as follows [20, 21]: 

(1) Mutation. Three mutation operators were chosen to 
generate offsprings from the parents. The related 
mutation operators are described as: 

a) Change one terminal node: select a random terminal 
node in the tree and replace it with another terminal node, 
which is randomly generated. 

b) Grow: select a random leaf in hidden layer of the 
tree and replace it with a new generated subtree. 

c) Prone: randomly select a function node in a tree and 
replace it with a terminal node selected in the set T. 

(2) Crossover. First two parents are selected based on 
the predefined crossover probability Pc and select one 
nonterminal node in the hidden layer for each tree 
randomly, and then swap the selected subtree. 

(3)Selection. EP-style tournament selection [25] is 
applied to select the parents for the next generation. 
Pairwise comparison is conducted for the union of μ 
parents and μ offsprings. For each individual, q 
opponents are chosen uniformly at random from all the 
parents and offspring. For each comparison, if the 
individual’s fitness is no smaller than the opponent’s, it 
receives a selection. Select μ individuals out of parents 
and offsprings, which have most wins to form the next 
generation. This is repeated in each generation until a 
predefined number of generations or the optimal structure 
is found. 

D. Optimization of Model Parameters using PSO 
According to the number of parameters of each tree 

model, the particles are randomly generated initially. 
Each particle xi represents a potential solution. A swarm 
of particles moves through space with the moving 
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velocity of each particle represented by a velocity vector 
vi [20]. At each step, each particle is evaluated and keeps 
tracking its best position, which is associated with the 
best fitness that has achieved so far in a vector Pbesti [21]. 
The best position among all the particles is kept as Gbest. 
The new velocity for particle i is updated by 

1 1

2 2

( 1) ( ) ( ( ))
( ( ) ( ))

i i i i

i

v t v t c r Pbest x t
c r Gbest t x t

+ = + − +
−

               (6)                               

where c1 and c2 are positive constant, and r1 and r2 are 
uniformly distributed random number in [0,1]. Based on 
the updated velocities, each particle changes its position 
according to the following equation: 

( 1) ( ) ( 1)i i ix t x t v t+ = + +                                      (7)                                                                        

E.  Fitness Function 
To obtain an optimal FNT and additive tree model, the 

following fitness function, the normalized mean squared 
errors, is given by 

1

1

1 ( )

1 ( )

N
i ii

N
ii

x x
NN M S E

x x
N

=

=

−
=

−

∑

∑
                                    (8)                                                                               

where xi, ix  and x  denote the actual, output of FNT 
model or additive tree model, and average traffic data 
respectively. 

F.  The General Learning Algorithm 
The general learning procedure for designing a FNT or 

ODE model is described as follows: 
1) Creating the initial population (flexible neural trees 

or addictive tree model, and their corresponding 
parameters); 

2) Structure optimization by neural tree variation 
operators as described in subsection C, in which the 
fitness is calculated by NMSE. 

3) If the better structure is found, then go to step 4), 
otherwise go to step 2); 

4) Parameter optimization is achieved by PSO 
described in subsection D. In this stage, the tree structure 
is fixed, and the optimal tree is obtained from the end of 
run of the similar to GP search. All the parameters used 
in the optimal tree formulate a parameter vector to be 
optimized by PSO; 

5) If the maximum number of iterations of PSO 
algorithm is reached, or no better parameter vector is 
found for a significantly long time (100 steps) then go to 
step 6); otherwise go to step 4); 

6) If satisfactory solution is found, then stop; otherwise 
go to step 2. 

G.  Ensemble Method 
In general, combining the outputs of several predicting 

models could improve the performance of the single one, 
which is based on a suitable decomposition of the 
prediction error [26-31]. Expected ensemble members 
must be accurate and diverse, which poses the problem of 
generating a set of predictors with reasonably individual 

performances and independently distributed predictions 
for the test points [26].  

FNT and ODEs are viewed as the feasible and efficient 
predictors with completely different components. To 
improve the accuracy of time series forecasting, the 
following methods are introduced to integrate the outputs 
of optimal FNT and ODEs model (N is the number of the 
predictors, fk(x) is the output of the ensemble model). 

(1) The basic ensemble method 
The basic ensemble method (BEM) output is defined 

as: 

1

1 ( )N
BEM kk

f f x
N =

= ∑
                                          (9)                       

Although this approach leads to improve the 
performance, it does not take into account the fact that 
some models may be more accurate than others. It has the 
advantage that it is easy to understand and implement. 

(2) The generalized ensemble method 
A generalization to the BEM method is to find weights 

for each output that minimize the positive and negative 
classification rates of the ensemble [26]. The general 
ensemble method (GEM) is defined as: 

1

1 ( )N
GEM k kk

f f x
N

α
=

= ∑
                                    (10)                      

where ( )k xα  is chosen to minimize the normalized mean 
squared errors between the predictor outputs and the 
desired values. The optimal weights of the ensemble 

predictors are optimized by using PSO algorithm. 

  
Figure 4. Filtered traffic measurements data 

TABLE I.   
PARAMETERS OF EXPERIMENT 

Parameters Value 

Population size 50 

Crossover probability 0.06 
Mutation probability 0.05 

PSO population size 50 

PSO maximum iterations 100 

PSO c1 2.0 
PSO c2 2.0 

PSO vmax 5.0 
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III.  EXPERIMENTAL RESULTS AND ANALYSIS 

In general, the traffic measurements are considered as 
a sum of a regular process and a stochastic part which are 
related to the high-frequency noise [32, 33]. Because the 
elimination of the noise may simplify the analyzed time 
series, the wavelet soft threshold noise reduction method 
is applied to deal with those data [21]. The difference 
between the original time series and the filtered signal are 
caused by the noisy component. The original traffic series, 
the corresponding filtered signal, and the noisy 
components are presented in Figs. 1, 4, and 5, 
respectively. Then, the filtered traffic measurements data 
are normalized in the interval [0, 1] with the following 
formula 

                     

m in

m ax m in

'
x x

x
x x

−
=

−                           (11)     

 Figure 5. Noisy component 

 
Figure 6. Comparison of actual data and the predicted ones by four 

methods.                                                                                                
The length of this traffic data set is 36000. The front 

33000 data points are used as the training set and the last 
3000 data points are used as the test set. Table I shows 
the parameters of experiment. In the paper, we use the 
front 10 variable to predict the current variable. The used 
instruction set for additive tree model I0 = {+2, +3, +4, 
+5,+6, +7, +8} and I1 = {*, /, log, exp, rlog, sin, cos, X1, X2, 
X3, …, X9}. The instruction sets used to create an optimal 

FNT model 

is 2 3 6 1 9{ , , ...., } { , ...., }S F T x x= = + + +∪ ∪ . And 
the experiments are carried out on a single-CPU personal 
computer (Pentium III 933 MHz). 

To access the performance of the different ensemble 
paradigms by quantifying the prediction obtained on an 
independent data set, the root mean squared error 
(RMSE), maximum absolute percentage error (MAP) and 
mean absolute percentage error (MAPE) are used to study 
the performance of the trained forecasting model for the 
test data, defined as:  

2
, ,1

, ,

,

, ,
1

,

1 ( )

| |
max( 100)

| |1 ( 100)

N
actual k predict kk

actual k predict k

predict k

N actual k predict k
k

predict k

RMSE y y
N

y y
MAP

y

y y
MAPE

N y

=

=

= −

−
= ×

−
= ×

∑

∑

(12) 

where N is the total number of the data, yactual,k is the k- th 
actual data, and  ypredic,k is the k-th forecast value. 

Table II and Table III summarize the results achieved 
using five different methods, and a comparison of actual 
network traffic time series data and the predicted ones by 
four different methods is shown in Fig. 6. From Table II 
and Table III, it can be clearly seen that ensemble 
methods can effectively improve the accuracy of small-
time scale network traffic prediction. The generalized 
ensemble method performs better than the basic ensemble 
one.  

The prediction error of GEM is shown in Fig. 7. 
Observing from Fig. 7, GEM could effectively predict the 
traffic data by using FNT and ODE models.  

The statistical distributions of the traffic measurements 
and the prediction values by GEM are shown in Fig. 8 
and Fig. 9.  From Figs. 8 and  9, we can see that the time 
series generated by the ensemble method have very 
similar probability distribution with the actual traffic 
measurements time series. Therefore, two ensemble 
methods can reproduce the statistical distribution of the 
real traffic measurements data. From Fig. 10, which 
depicts the statistical distributions of the absolute 
difference between the actual time series and the 
predicted data by GEM, it can be clearly seen that the 
prediction error of GEM for the traffic data mainly 
concentrates on the vicinity of zero. 

TABLE II.   
NMSE OF FOUR LEARNING METHODS 

NMSE Training data Testing data 

Neural network 0.092304 0.073236 

FNT 0.062945 0.011215 
ODE 0.062014 0.011147 

BEM 0.059123 0.009157 

GEM 0.048845 0.007324 
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Figure 7. The predicted errors 

 
Figure 8. The statistical distributions of the traffic measurements data. 

 Figure 9. The statistical distributions of the prediction data. 

 
Figure 10. The statistical distributions of the predicted errors. 

IV.  CONCLUSIONS 

In this paper, the ensemble of flexible neural tree 
model and ordinary differential equations has been 
proposed to predict the traffic measurement data. By 
using the flexible neural tree model and ordinary 
differential equations as wholly different and accurate 
predictors, the ensemble members are accurate and 
diverse. The architecture and the parameters of FNT and 
the additive tree models are evolved by GP and PSO, 
respectively. The experimental results show that the 
ensemble method can be successfully used for the 
prediction of traffic measurements data compared with 
other three methods. The prediction error converges to 
the small value, even at zero, and the prediction accuracy 
of the generalized ensemble method is superior to the 
basic ensemble one. 
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